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New prescription for perturbative

amplitudes

CHY formula (cachazo, He and Yuan) (See also Ricardo’s and Yvonne’s talks)
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Color trace factor, very alike Algebraic solutions  Pfaffian (depends on polarizations
to cyclic trace in MHV and momenta)

amplitudes



The scattering equations
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The scattering equations: reminiscent of early work on dual models / high-energy
string scattering (Fairlie and Roberts; Gross and Mende)

Some results:
* Proof of CHY formalism (Dolan and Goddard)
* In Ambi-twistor-space (Mason and Skinner; Adamo, Casali and Skinner)

* |n pure spinor formalism (Berkovits; Gomez, Yuan)

 Some work on explicit solutions (e.g. Dolan and Goddard; Sggaard and Zhang;
Cardona and Gomez; Zlotnikov; Gomez)



Simplest case:

The N-point scalar amplitude

For the N-point scalar amplitude (s = 0) one has

N—1
Ieren (21— Zy_1)(21 — zy)(zy—1 — 2p)
Av = [ TT4(5) : [T d=
h H, ]_(ZI ZI—I—].) =2
Here
5 Z —0 Sum over solutions
J#I Generally complicated solutions
at higher points. N-roots of
_ . Polynomial equations.
are the scattering equations where (can be complex)

z1=0,zy_1=1and zy = o0

Much like standard Kobe-Nielsen gauge fixing



lllustrating the 4-point scalar

amplitude

Following the prescription we have :
I S;
Ay — / dx (2 ) :
(z12)%(223)

We have the following total (not-independent) scattering
equations

zp =00, z1=0, p=x, zz=1

S s
A2y 28 zZip = —X, 2zp3=x—1
Z12 223 S

513, 23 0 Solution: X =
+ B s+t
Z13 223



lllustrating the 4-point scalar amplitude

So that:
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The correct result!



4-point scalar ‘stringy’ amplitude

We have: 1
ﬂ(1 . 2, 3, 4) = f dX(X)a’S12—1 (—I . X)a’514—1
0

so by integration we have

= —(a’) e i)l Zas) _ (% + l) + O(a’)

[(—a’(s12 + s14)) t

Same leading order result. (X, N
Different logic!



The N-point gluon amplitude

For gluons (s = 1) we have

/ , N 1 N—-2

Ay = / PEW y(z) TT'8(S) TT 1T dz.
i
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Sum over solutions
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Gluon amplitudes from string theory

e (n-4)/2 (21—22)(z2=24)(z0=21) (" 0y o s
Ap=im fl—[dz, N d"0 d QDH(Z, zj — 0;6;)
=3 =1\~ i+1 i<J
xl—[exp V2a'(6;-8)) (@ilei k) + @jeik;)  pipei 0i0pipje;;
(zi-z) (zi-z) (zi-%)?

Subtraction of fermionic and bosonic

degrees of freedom Koba-Nielsen factor:

important signs introduced
from orderings of integrations

Auxiliary Grassmann integrations introduce
multi-linearity in polarizations just as Pfaffian

does in the CHY formalism
(Other integrands possible to consider as well--*)



String Theory and CHY

* Interesting feature: Integration by parts identities in string
theory are in this viewpoint related to the scattering
equations.

exp[—a’s log(x) — o't log(1 — x)]
Ox exp[—a’s log(x) — o't log(1 — x)]

t .
= o (—S + ) exp[—a’s log(x) — o/t log(1 — x)
x (1—x) '

(E.g. Polchinski; Broedel, Schlotterer, Stieberger)

Open guestion: CHY Scattering equations: is the Kobe-Nielsen factor missing??!



Analogy between prescriptions

String theory Scattering eq. prescription

Integration in an ordered Integral saturated by delta-
manner along the real line. function and amplitude

L becomes localized.
Poles comes from pinching

regions. Solutions not necessarily on real

line.
Z; — ZJ — O

n—1
| [1,-36(5)
I|mf dz;| | | ©lzs0ii110n] © 95 X H(z)
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(NEJB, Damgaard, Tourkine, Vanhove)




Point of view :

e CHY formalism can be viewed as truncation of low-energy
String Scattering_ (NEJB, Damgaard, Tourkine, Vanhove)

e Useful: no need for integrations

e Advantages: Certain string considerations/symmetries can
carry over...

e E.g. both CHY formalism and string theory share invariance
under Mobius transformations

e Amplitudes are built up in similar ways.



Using the scattering eq. formalism

e Basically currently three options for evaluation:

e Direct numerical solutions

e Numerically very hard beyond 7pt .. Normally (real) numerical
results from 6pt up.

e Using rules for evaluation of residues: scattering eq. rules for
scalars, see e.g. (Cachazo, He and Yuan; Baadgaard Jepsen, NEJB,
Bourjaily, Damgaard, Feng; Gomez) and recent extension to gluons
(NEJB, Bourjaily, Damgaard, Feng; Cardona, Feng, Gomez and Huang)

e Finally some techniques for direct integration, see e.g. (Dolan and
Goddard; Cardona and Gomez; Zlotnikov; Sggaard and Zhang; Gomez)



Integration rules for scattering eq.

Scalar theories

Tin buth salr pIiu ntgrnd

¢> _ 1 )
An fdQCHY ((21_22)2(22_23)2°"(Zn_Z1)2

This can be thought of diagrammatically as a double line between points
1 to n. :

It will as its result after summing over the (n-3)!
solutions give the result for the n point 6,03tree.

Question: Can we identify the individual diagrams

in this tree amplitude? i



Integration rules for scattering eq.

e |t turns out we can!

e Again such rules comes very natural from a comparison of the
scattering equations and string theory.

n—1 _
iim [T oa] [ [lzotsnmn) & 22220 | [ il x i

o Z5(1)o(2) Zo(2)0(3) --+ Zo(n)o(1) i<z

From this ‘count’ we
Poles comes where z; — Z; — 0 get scattering eq.

so we can do a counting of how many
points pinching we need to have given a pole.

Integration rules



Integration rules for scattering eq.

The rules

e Have integrand H(z) with weight 2 in all variables (Mobius invariance).

e The integration rule is

Set of points (or
compliment set of
points)

Starting point: find nested sets in diagram.

(Baadsgaard Jepsen, NEJB, Bourjaily, Damgaard)

If:

Integrand has 2|q,| — 2
factors zi — z; where{/,j} C q,

All pairs of set have to
satisfy that either they are
nested (or their
compliment are).



Integration rules for scattering eq.

Example

1

(21 = 22)(z1 — 2z5)(20 — z4)(23 — z4)(23 — 25)(25 — Z6)

H(z) =

{3,4} : two variables, one factor connecting them
{5,6} : two variables, one factor connecting them 4
{2,3,4} : three variables, two factors connecting them

{3,4,5,6} : four variables, three factors connecting them

71 = {{3,4},{5,6},{2, 3,4} 1 ( 1 1 )

_I_
7, = {{3,4},{5,6},{3.4,5,6}} $34556 \S234  S3456




Diagrammatic interpretation

Examples
1 2
1 1 1 1
6 3 = ( + + + )
5235565561  S235615561  S345565561 5345615561
5 4
1 2 1 2
: 10 3
1
6 3 9 4 =
523545561 . . 523545567589510151012354589




Diagrammatic interpretation

Weaving diagrams

Given the integration rules it is now possible to make a intuitive
connection back to scalar Feynman diagrams:

1
5125455675345

1=




Diagrammatic interpretation

We can also decompose even further using partial fractioning identities:

4 4 5

3 5 /\ 1 3
— VE \75:> 4

2
; 7 6 7 5 7
¥ 5
1 1
We have:
1 py’ 1
4 @L@ ~22)(2~23)(25~ 24) (24 25)(25 = 26) (26~ 21)(27 — 21)
! 5 (21 =29 )(22—27)(27—24)(24— 26 )(26 — 25)(25— 23 )(23 — 1)

6



Diagrammatic interpretation

Now:
2 3 2 3 2 3
1 1 1
4 = 4 4+ 4
7 7 7
6 ° 6 ° o6 0
(z1—20)* (20— 23)(z3— 24) (24— 25) (25— 26)* (26 — 27) (27— 71)

=4 1 [ 1 1
(1

* (z3—27)(24—26) —24)(2p—27)(23—25) * (z2—25)(27—24)(21 — 23)

We see that all contributions are now decomposed into Q03 diagrams.



String theory

Useful laboratory

String F.eynman
theory adds diagrams
channels <=2 >ums
up.. s?paratg
kinematic
poles

2 1. M 1
1 1 2
51 Sim 5173
= > I < + + JT<
. 2
M . 3



String theory

Useful laboratory

String Feynman
theory adds diagrams
channels <-> sums

separate
kinematic

up..
6 i poles
= 6 1 +66 : . 2 :
5 3 | | | )
4 , 4 i



Gluon amplitudes

Providing analytic trees for Yang-Mills from traditional
methods difficult in arbitrary dimension.

e The scattering equation formalism appear to be the
perfect place to start.

e Formalism naturally combines the beautiful aspects of
string theory in a concrete formalism that avoid
integrations.

e As we will see ‘integration rules for gluons’ not

straightforward.....but still possible...
(NEJB, Bourjaily, Damgaard, Feng)



Starting point for gluon amplitudes

Starting point is the integrand:

_ (/2] Pt V()
An = ( 1) fQCHY (21_22)(22—23)°"(Zn_z1)

Where we have:

= 2 '8(S;) =(z,—25)(zs— 2t)* (2t — 2,)* zi 5(S;
Qchy = voI(SL(2))U 5(51) =(zr=2) (2520 (2= | | dzi6(S)

ieZ\{r,s, t}
pry = CD PAYD), where W= {7 ~¢ '
- (Z,'—Zj) iy - C B



Definition of Pfaffian

Generic integrand multi-linear in polarizations:

4pt : 8 x 8 matrix reduction > Pfaffian of 6 x 6 matrix
5pt : 10 x 10 matrix reduction - Pfaffian of 8 x 8 matrix
N-pt : 2N x 2N matrix reduction = Pfaffian of 2(N-1)x2(N-1) matrix



Gluon integrands from Pfaffian

For example at 4pt we have e.g. two types of terms:

€13€24534

(=21 + z3)(—22 + z4)(—23 + z4)
€12(€3-k1)(€4 k1)
(=21 + 22)(—z1 + z3)(—21 + z4)

Two observations:
1) multi-linearity always automatically satisfied
2) integrations follow contractions



Obstacles

New terms to deal with:

1 2
e Integrands: scalar type (only double or single lines !
everywhere): can be immediately integrated using the 4 34@2
rules

3
e Integrand: ‘tuple type’ (they have for example a triple line
or a cluster of double lines in a corner). Such integrands 'S >7* |
cannot be immediately integrated using the scatteringeq. ¢ > 5@2
rules. £ 3
e Not manifestly Mobius invariant integrands. They need

rewriting (using momentum conservation) before they can

be integrated. Some of such diagrams are tuple

1
1
diagrams. ) f 4@2
4 2
3
3



Dealing with diagonal terms in C

e \We start with contributions that are of the mobius violating type:

N P

e Now we can use partial fractioning identities to write
~ Erk)  Erk) . €i-ki)(z1—2a)
(zi—z))  (za—2z) (2a—2z)(zi—2))
(€i° k/)(Z/ _Za) New feature: numerators!
= )
(za=zi)(zi—2))

for 1 # a

by momentum

conservation I#i,a



Dealing with diagonal terms in C

e Now such diagrams will have numerator contributions but are still
possible to compute using the basic scalar rules. Basically a
numerator factor is like a denominator factor but counts as -1.

12

e We can consider
6 / B 3
No<1/
5 4
H(z) = (z2—26)
(z1—22)4(21— 26)* (22— 23)* (22— 24 )(23 — 24)(23 — 25 )(24— 25 )(Z4 — 26 ) (25 — 26 )*
{1.2}
{1,6} . . {1,2,3} . .
> two points, two lines three vertices, four lines
{2,3} {2,3,4}
{5,6} | {1,2,6} Not in because of dotted



Dealing with diagonal terms in C

e Now such diagrams will have numerator contributions but are still
possible to compute using the basic scalar rules. Basically a
numerator factor is like a denominator factor but counts as -1.

12

e We can consider
/2 \
6 \\A> 3
5

A
H(z) = (z2—z6)

(z1=22)% (21— 26)* (20— 23)* (20— 24) (23— 24 )(23 — 25 )(24 — 25 )( 24 — 26 ) (25 — Z6 )?

{1,2},{5,6},{1,2,3}

{1,6},{2,3},{2,3,4} (1 s 1) 1 +(L+ 1) 1
{2,3},{5,6},{1,2,3} S12 523 5565123 S16 556 ) 5235234
{2,3},{5,6},{2,3,4}




Dealing with tuple diagrams

e Here the link to string theory will be important. We will consider
integrals in the scattering equation formalism such as

2 3

/\ (z1—24)
1 \><7 te (21— 20)*(20—23)* (23— 24)* (24— 25)* (25— 26 ) (21 — 26 )*(21 — 25 ) (24— Z5)
5 5

e We will sometimes for convenience focus on the outer rim which we
will denote

2 3

1
IQ“ e e P s e e B e
S




Dealing with tuple diagrams

o The integrations we will consider how to deal with will be of the form:

/’ \ (Z1 Z4)2
\ l// (21 —29)3(20—23)(23—24)* (24— 25)* (25— 26 )(21 — 26)*(21 — 23) (24— Z6)

Here we have problems in lines: {1, 2}, {4, 5},{1,2,3}, and {1, 2,6}

Now we in the following in a systematic way see how to deal with such
integrals. Here the ‘link’ to string theory is useful, i.e.:

1= lm & | ﬂdz, @-2)z-z)zn-2) || 12—z H(2)

a’—0
1<i<j<n



4 point gluon amplitudes

e We will start with the four point gluon amplitude to illustrate the
procedure. What we do here will extend to higher points.

e For the four amplitude we have the following decomposition:

Ay = a1 €12€634 + Az €13€24 + B1 €12 + P2 €13 + cyclic

e From working out the Pfaffian we have

12 1 2 Lo

ar = s12 z B = (xko)esk) @ — (e3k1)E€s ko) E
-+ 3 43 4 3
1 2

1 2 1 2
a2 = =512 B2 = —(exk3)€s ki) — (€2 k1)Es k)
X X X



4 point gluon amplitudes

e Now we can use the scalar integration rules to write:

1 2 12 12
X - K- -G
= ——, e = | — + —
512 523 512 523
4 43
e So that
B, = €3k1)€xka)s23+(€3ko) (€4 k1)513 _ E2ki)esks)s2s+E2ks)eski)siz
1 — ! 2 —
512523 512523
e However this diagram is a problem:

1 2

4 3



4 point gluon amplitudes

e Now we will use that we have a dual description in terms of string
theory type integrations. At four points we can write:

0

0= f dzH(z)(—2)**12(1 — z)®'*

—00

1 00

+ l%'s12 f dz H(z)(2)* 2(1 — 2)*'5 4 /@ (S12+23) f dz H(z)(2)* $2(z — 1)*'

0 1

e This gives for the type of integrand we are considering:
1 2 1 2 1 2

O: ZZ + eia’s12 z _ eia’(512+523) z

4= 3 4= 3 4 3

Feature: Kobe-Nielsen factor important!



4 point gluon amplitudes

e This identity natural splits in two ways: (like string theory monodromy)
(NEJB, Damgaard, Vanhove; Stieberger)

e Real part:
12 1 2 12
0= Z + COS(Q’,S12)Z — COS(Q’,(512+523))Z
4 3 4 3 4 3

e Imaginary part:
2 1 2

1
0= sin(a’sm)z - sin(a'(512+523))z

4 3 4 3



4 point gluon amplitudes

e Now in the field theory limit we have:
1 2 1 2

z _ S12+53 E _ S12tS3  s13
- T2 T2
212 512 512

4 3 4 3

e Thus we have the following simple expression for the four gluon
amplitude:

1
Ay %613624 + p (612634513 +€12((e3k1)€sko) + €3 ko) Eeakr)) + 613(62'k1)(€4°k3))

1 :
o (612(63'k2)(€4‘k1)+€13(€2‘k3)(€4'k1))] + cyclic.



Higher point gluon amplitudes

e At higher point we of course get more problematic tuples as well. For
example at 5 point we have:

2 2 2
1 1 1
3 3 3
4 4 4

e Using the notation:

PT(1 2, ..., n) = (21 _22)(22_23)(23_24) e (Zn_Z1)



Higher point gluon amplitudes

e It is now clear that using the same type of trick as for four points at
higher points (2 — tuple identity)

n—1
0=s2PT(1,2,...,n)+ Z(s1z+52(3...k))PT(1, k2, k1, n)
k=3
S12+52(3 k) PT(1,....k, 2, k+1,...,n)

Md

e Or ldy1oy=-
P PT(1,2,...,n)

e So that we e.g. hav

1 . 1 .
+ S45+S
ld{4,5) @3 SR @3 T UL @3
S45 S45
4 4 4

1 (545+S15 _535)

2
Su5 523 512




Higher point gluon amplitudes

e Similarly we can consider

2
1 1
5(12)3 5(34)5 5(1 2)3 525 525
12545 512545 512
4 4 4

S(12)3 (5135(34)5 25, 525)

512513545 512545 545 512

2
1 1
S1 (25)54(35) o (25)524 S14
Idys,131d3 43 3= < 3—— 3
15534 515534 515
4 4 4

(51(25)54(35) 51(25)524 53(24)514)
515534 \ 512534 515534 515523




Generalizations and higher point gluon

amplitudes
e For 2-tuples the identities before are fine but for diagrams like
2 3
1 4
S

we need yet another generalization. Here again ‘monodromy’ guides the
way. Here we have identities like

0= PT(1,2,3,4,5,6)s103+PT(1,2,4,3,5,6)(5123+534)
+PT(1,2,4,5,3,6)(s123+5345)+PT(1,4,2,3,5,6)(5123+523)4)
+PT(1,4,2,5,3,6)(s123+5023)4+535)+ PT(1,4,5,2,3,6)(5123 +523)(45))



Generalizations and higher point gluon

amplitudes

e This can be written as

0= Z PT(1 , 01, ...,0n-2, n)(51...k + ngigj)

oe({2, ..., k}{k+1, ..., n-1}) {i,j}oi>0o

e Giving the following tuple identity

—1

|C|{1 _____ k} PT(1 n)s Z PT(1 o1, , On 2,n)(51...k +ZSGI.GJ.):1
Ik oe({2,..., k}D{k+1,...,n-1}) {i,j}Hoi>o;

e Now such identities provide the remaining problematic diagrams.



Generalizations and higher point gluon

amplitudes

e For example

2 3 2 3
. @4 _ 5123 + 534 @ 51 23 1 53(45) @ 51 2315234 @ 4
5123 5123 5123
5 5
B S123+ S04+ 53(45) 51 23+ 5(23)(45)
5123 5123

B 1 ( S123+ 534 N 5123 1 53(45) N 5123+ 5(23)4 N 5123 1 5(23)(45) )

2

5193 512556 512545 523556 523545



Five and six point amplitudes

e Through the new techniques we can now expand the Pfaffian terms
and just integrate the various contributions.

e Procedure works as follows: First one computes all basic scalar
integrations, next all C diagonal terms are converted into Mobius
invariant terms with possible tuples.

e Next all tuple diagrams are rewritten to basic scalar integrands via the
monodromy type relations.

e This immediately provides results for five and six gluon amplitudes.

e Beyond six point, same procedure works — manipulations do become more
complicated.



What is learned

e \We have seen that analytic expressions for gluon amplitudes can be
directly written down using the integration rules as well as the
monodromy prescription.

e This gives yet another method for computation of amplitudes in D-
dimensions.

e We will now see how the result can be refined so that we also can
directly generate analytic results for BCJ numerators.

e Results can be compared to previous results in the literature from
either analytic integration (Medina et al), or pure spinor results (Mafra,
Schlotterer, Stieberger; Mafra, Schlotterer).



Color-Kinematics Duality

It follows from CHY that if we can expand

PI'Y = > monx PT(1,0(2), ..., 0(n=1),n)

Then the coefficients N1 5 , are KK Jacobi BCJ
numerators.

This is required from demanding consistency of KLT
squaring in the CHY formalism.



Color-Kinematics Duality

The starting point is the directly computed integrand that arises from the
Pfaffian.

We have seen how to reduce the various contributions to integrands
that can be readily integrated using the integration rules.

New goal: to bring Pfaffian directly to the form:

PIY = > mon X PT(1,0(2), .., (n=1),n)

The reduction procedure will also be a very useful tool for many other
integrands : i.e. reduction to single closed Hamiltonian cycles.



Example 4 points

e Starting point is:

ni n» n3 Na ns Nne
Pf'W = + + + + +
(1234)  (1324)  (14)(23)  (124)(3) (134)(2) (14)(2)(3)
we get: (reducing (14) with {a,b}={1,3}) 1 =_( 1 .\ 1 )
1 S24 1 (1243) (1234) (1324)
(14)(23)  s14 (1324)
1 €k3i €ks> €k3y + €k3y €k3i
(124)(3)  (1243) (1234) _( (1234) (1324))
1 €k>1 €k>3 €k>1 €k>1 + €kr3
(134)(2) ~ (1243) (1324) _((1234) T T 1324) )
1 €k3i €k3> (2,4)

(14)(2)(3)  (134)(2) (14)(2) (4, 3)(3,2)



Example 4 points

Thus we can finally reduce:
1 (2, 4) €k21 €k23

(14)(2) (4,3)(3,2)  (1234) (14)(23)

So that we arrive

1 €kz1(eks1+€ks?) S24 €k33 €k33 1
= + (€k31(€k21+ €k23) — )
(14)(2)(3) (1234) S14 (1324)
And now
n n The freedom in picking
v = 1.{2.3}.4 + 1.{3.2}.4 reductions can be used to
(1234) (1324) derive different numerator

decompositions



A systematic algorithm for integrands

Given the amplitudes considered the previous slides we can generate

the following generic relation:

& o > o3
< ! /sa |Al > 1
: Saﬂ A
— (—1)|A2| N B A , Mg = {
QEZ; < ' ekap  [A] =1
a ggalLUAg) a® < $h

That is any cycle A can (given two points ain Aand b notin A) be
written in the alternative form ‘left’ here the the KK type relations has
been used:

PT(a, Ay, ar, Ag) = (=)™ )" PT(a,0,a)

o€A1WA,

(Feature: monodromy type rewriting of terms important)



A systematic algorithm for integrands

e Starting point is a generic diagram with a number of disjoint cycles:

e Reducing a cycle A relative to points a and b gives two different cases

after a reduction, depending on if B8 lies in the cycle same as b or in a
different one:

2 A LAY R

I.a




A systematic algorithm for integrands

e As we can easily verify:

so only need to worry about type |.b.

Terms type |.b will be of a
type where two cycles are
connected by a link, we will
now consider reduction of
such contributions.




A systematic algorithm for integrands

e The starting point for reduction of diagrams of type Il

( "7 ’
..... N
Type 11

is a reduction of cycle A with respect to points a and b in the link:

3

S A LUAS o

II.a IL.b

Again we characterize according to if B lies in same cycle as b, in
another cycle, or in the link y.



A systematic algorithm for integrands

e Now ll.a and Il.b are of same type as l.aand |.b

3

S A LAY o

IL.a ILb Il.c (3.15)

Thus we will iterate to get fewer cycles. Only issue is Il.c but it now
contains a shorter link than the starting point type Il, so it will always be
possible reduce until no link exist.

A systematic application of these reductions thus guaranties (after a
finite number of steps) that we end up an integrand consisting of only
single Hamiltonian cycles.



Conclusion

* Integration methods gives a clear path forward.

 We can provide analytic and covariant expressions in
many cases.

e Useful tool for rewriting.

 Another point: Use ‘string theory’ for inspiration to write
down CHY integrands.

* Many new applications for various CHY integrands.
(See e.g. Fu, Du, Huang and Feng)



Conclusions

Open questions:

* Needed: better fundamental ‘mathematical’ understanding of the
scattering eq. formalism?

* Question: Can the map between string theory and the scattering eq.
formalism and become more precise?

(Mathematical identity in a limit linking very different integrands...)

What is the precise mathematical
connection???

n—1
lim f 1_[ dz; [ l_l @[Za(,-+1)0(,-)] < Hn—3 5(51) ] X l—l |Z,-J-|a,5"f X H(Z)
i=1

a’—0 Zo(1)o(2) 20(2)0(3) -+ Zo(n)o(1) i<z



Conclusion

 Method: A clear way forward for many different theories.
We can provide analytic and covariant expressions.

* Observation: solutions to the scattering equations not
very important.

* Goal: extend analytic methods to many other types of
theories

* General relativity/Gravity: need to consider integrands
multiplied with Pfaffian squared.

* Loops: forward limits / Q-cuts

Many new interesting aspects to consider in this regard!



