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MODULAR FEATURES OF SUPERSTRING 
SCATTERING AMPLITUDES



•  NON-PERTURBATIVE FEATURES OF STRING AMPLITUDES

Connects perturbative with non-perturbative effects
Constraints imposed by SUSY, Duality, Unitarity

Modular Forms;  Automorphic forms for higher-rank groups; …. 

PART OF A BROADER PROGRAMME

earlier work involving:  
Stephen Miller;  Don Zagier;  Boris Pioline;  Jorge Russo;  
Rudolfo Russo;  Carlos Mafra;  Oliver Schlotterer;
 Anirban Basu;  Sav Sethi;  Michael Gutperle, .…..

         Coefficients of BPS interactions encoding BPS microstate-counting 

GENERAL SETTING
TO WHAT EXTENT DO DUALITY AND SUPERSYMMETRY CONSTRAIN THEORIES WITH A 
LARGE AMOUNT OF SUPERSYMMETRY? •  Maximal supergravity/Type II string theory;

•  ½-maximal supergravity/heterotic, type I string theory.  

Mathematical connections: MODULAR INVARIANTS OF RIEMANN SURFACES; MULTIPLE-ZETA VALUES 
                                     and their ELLIPTIC GENERALISATIONS; SEGAL MODULAR FORMS,    ETC 

With:  Eric D’Hoker;  Pierre Vanhove;  Omer Gurdogan 
•  EXPLICIT FEATURES OF LOW ORDER TYPE II STRING PERTURBATION THEORY

THE LOW ENERGY EXPANSION OF STRING AMPLITUDES

Consider narrowly-focused aspects of the low energy expansion of closed string 
theory obtained from maximally supersymmetric closed string scattering amplitudes.

•  ULTRA-VIOLET PROPERTIES OF SUPERGRAVITY
How do field theory UV divergences arise in low energy limit?



FOUR-GRAVITON SCATTERING IN TYPE IIB STRING THEORY

(NON-ANALYTIC PIECES ARE ESSENTIAL, BUT WILL BE IGNORED IN THIS TALK)

TO WHAT EXTENT CAN WE DETERMINE THESE COEFFICIENTS?

Symmetric function of Mandelstam invariants           (with                       ).s, t, u s + t + u = 0
Has an expansion in power series of                                 and                             .�2 = s2 + t2 + u2 �3 = s3 + t3 + u3

⇠ s2p+3q + . . .

Coefficients are               -invariant functions of 
scalar fields (moduli, or coupling constants).

SL(2,Z)

T (s, t, u;Ω) =
∑

p,q

E(p,q)(Ω)σp
2 σ

q
3

BOUNDARY DATA:  STRING PERTURBATION THEORY Ω2 → ∞ g → 0(          )

linearized curvature R ∼ kµ kν ϵρσ

s = −2 k1 · k2
t = −2 k1 · k4
u = −2 k1 · k3

inverse string coupling constant
Ω = Ω1 + iΩ2One complex modulus 	 Ω2 =

1

g
= e−φ

A(4)(ϵr, kr;Ω) = R4 T (4)(s, t, u;Ω)



TREE-LEVEL  (“VIRASORO” AMPLITUDE)

INFINITE SERIES of             terms.  COEFFICIENTS ARE POWERS OF ODD RIEMANN    VALUES 
WITH RATIONAL COEFFICIENTS

d2kR4 ⇣

�2 = s2 + t2 + u2

Generalisation to N-particle scattering involves MULTI-ZETA VALUES.

A(4)
0 (ϵr, kr) = g−2 R4 T (4)

0 (s, t, u)

T (4)
0 =

1

stu

Γ(1− α′s)Γ(1− α′t)Γ(1− α′u)

Γ(1 + α′s)Γ(1 + α′t)Γ(1 + α′u)

Tree-level SUPERGRAVITY
R4

d4R4 d6R4

d10R4 d12R4

d8R4

skR4 � d2kR4

=
3

σ3
exp

[ ∞∑

n=1

2ζ(2n+ 1)

2n+ 1
α′2n+1

σ2n+1

]

σn = sn + tn + un



VERY BRIEF REVIEWZETA VALUES AND MULTIPLE-ZETA VALUES

•  Special values of POLYLOGARITHMS

ZETA VALUES:  

Lia(z) =
∞∑

n=1

zn

na ζ(a) = Lia(1)

Even zeta values                            ζ(2n) = cn π
2n ζ(2n+ 1)Odd zeta values                 transcendental?  

MULTI-ZETA VALUES (MZV’s)

•  Special values of MULTIPLE POLYLOGARITHMS

ζ(a1, . . . , ar) = Lia1,...,ar (1, . . . , 1)) =
∑

0<k1<···<kr

r∏

ℓ=1

k−aℓ
ℓ

w =
r∑

ℓ=1

aℓ“weight” r“depth”

Lia1,...,ar (z1, . . . , zr) =
∑

0<k1<···<kr

r∏

ℓ=1

(
zℓ
kℓ

)aℓ

•  MZV are numbers with algebraic properties inherited from the algebraic properties 
    of multiple polylogarithms – “STUFFLE” and  “SHUFFLE” relations.

w = 8   e.g. first non-trivial (irreducible) case is weight 

350 ζ(3, 5) = 875 ζ(6, 2) + 240 ζ(2)4 − 1400 ζ(3) ζ(5)

•  THE DIMENSION     OF THE SUBSPACE OF MZV’S OF WEIGHT     OVER w
��

w=0

dw xw =
1

1 � x2 � x3

dw Q



HOW DOES THIS GENERALIZE TO HIGHER GENUS ??

OPEN-STRING TREES:  For            coefficients of higher derivative interactions of order 
          (Yang-Mills)

N > 4
(Stieberger, Broedel, Mafra, Schlotterer)

α′n

are MULTIPLE ZETA VALUES with weight n

•  Special values of single-valued multiple polylogarithms – NO MONODROMIES 
     (generalisations of  BLOCH-WIGNER dilogarithm                                                  )Im (Li2(z) + log(1− z) log |z|)

w = 11

•  First non-trivial case is

weight

ζsv(3, 5, 3) = 2ζ(3, 5, 3)− 2ζ(3)ζ(3, 5)− 10ζ(3)2ζ(5)

N-PARTICLE TREE AMPLITUDES

•  Kills even zeta values ζsv(2n) = 0 ζsv(2n+ 1) = 2ζ(2n+ 1)Also                                        - ODD ZETA’S ONLY

 coefficients are Single-Valued MZV’s (svMZV’s)CLOSED-STRING TREES:  For
           (gravity) 

N > 4 (Brown)

(Schlotterer, Stieberger)

•  Role of the KLT construction?



Coefficients of higher derivative interactions

MODULAR INVARIANTS FOR SURFACE 

GENUS ONE

Integral over complex 
structure

Low energy expansion - integrate powers of the genus-one Green function over the torus 
and over the modulus of the torus – difficult! (MBG, D’Hoker, Russo,  Vanhove)

A(4)
1 (ϵr, kr) =

π

16
R4

∫

M1

dτ2

y2
B1(s, t, u; τ) τ = x+ iy

B1(s, t, u; τ) =
1

y4

∫

Σ4

4∏

i=1

d2z exp

⎛

⎝−α′

2

∑

i<j

ki · kj G(zi, zj)

⎞

⎠ Vertex operator
Corr. function

Green function

Expanding in a power series in momenta gives 

1

w!

1

y4

∫

Σ4

4∏

i=1

d2zi

⎛

⎝
∑

0<i<j≤4

sijG(zi − zj)

⎞

⎠
w

=
∑

i

σpi
2 σqi

3 j(pi,qi)(τ)
∑

i

(2pi + 3qi) = w

(with           ) α′ = 4

Coefficients of higher derivative interactions: Ξ(p,q) =

∫

M1

d2τ

y2
j(p,q)(τ)

FEYNMAN DIAGRAMS ON TOROIDAL WORLD-SHEET



“MODULAR GRAPH FUNCTIONS”

“Weight” w = ℓ1 + ℓ2 + · · ·+ ℓ6 D2w R4contributes to

MOMENTUM-SPACE PROPAGATOR: m,n ∈ Zinteger world-sheet momenta

Ĝ(m,n) =
y

|mτ + n|2

z = u+ τ v

The Green function on a torus of complex structure                 :

G(z) = − ln

∣∣∣∣
θ1(z|τ)
θ′1(0|τ)

∣∣∣∣
2

− π

2y
(z − z̄)2

=
∑

(m,n) ̸=(0,0)

Ĝ(m,n)e2πi(mu−nv) + 2 ln
(
2π |η(τ)|2

)
doubly periodic function

τ = x+ iy

              is sum of world-sheet Feynman diagrams.  j(p,q)(τ)

l1!
l5!

l2!

l3!

l6!

l4!1

2 3

4

lS ! labels number of propagators on line SDℓ1,ℓ2,ℓ3,ℓ4;ℓ5,ℓ6 =

General contribution to 4-particle amplitude: i , j = 1, 2, 3, 4

Modular function

Each of these is a modular function - invariant under SL(2,Z)
τ → aτ + b

cτ + d

a, b, c, d ∈ Z, ad− bc = 1

(D’Hoker, MBG, Vanhove)



NON-HOLOMORPHIC SL(2) EISENSTEIN SERIES

Ca,b,c(τ) =
∑

(mr,nr )̸=(0,0)∑
i mi=0=

∑
j nj

ya+b+c

|m1τ + n1|2a|m2τ + n2|2b|m3τ + n3|2c

Multiple sums:

WORLD-SHEET FEYNMAN DIAGRAMS

Es(τ) =
∑

(m,n) ̸=(0,0)

ys

|mτ + n|2s

Ca,b,c sequence
e.g. 

w = a+ b+ c (          ) vertices w − 1 D2wR4

(two-loop diagrams)

2 loop

D2

e.g.
=

∑

(m,n) ̸=(0,0)

y2

|mτ + n|4≡ E2(τ)1 loop d4R4

….. …..

C4,3,2C1,1,1≡ D3 C2,2,1≡ D1,1,1,1;1 C3,1,1≡ D2,1,1,1

d4R4 d10R4 d10R4 d18R4



SOLUTION: (also Zagier)C1,1,1 = E3 + ζ(3)

w = 4 (∆− 2)C2,1,1 = 9E4 − E2
2

(∆− 6)C3,1,1 =
6

5
E5 +

ζ(5)

10
+ 16E5 − 4E2 E3 .w = 5

INHOMOGENEOUS LAPLACE 
EIGENVALUE EQUATIONS 

∆ = y2 (∂2
x + ∂2

y)

Direct analysis looks forbidding.   But these functions satisfy simple Laplace
equations with Laplacian

w = 3 ∆ (C1,1,1 − E3) = 0

Simple examples of LAPLACE EQUATIONS : Eisenstein series

w > 5 Degeneracy – simultaneous inhomogeneous Laplace eigenvalue equations. 



1

2 3

41

2

1

2 3

1

2 3

D5 D2,2,1 D3,1,1 D1,1,1,1;1≡ C2,2,1

1

2 3

4

`	

1

2

1

2 3

D4 D2,1,1 ≡ C2,1,1 D1,1,1,1D2
2= E2

2

1

3

4

2

1

2 3

4 1

32

1

32

4

D2,1,1,1≡ C3,1,1 D3 D2D1,1,1 D2

COEFFICIENTS OF           (WEIGHT-4)d8R4

COEFFICIENTS OF            (WEIGHT-5)d10R4



RELATION TO SINGLE-VALUED ELLIPTIC MULTIPLE POLYLOGARITHMS

z1

z3

z2

z4

 A  typical Modular Graph Function: 

D(�) =

�
d2z1 . . . d2z4

•             IS SINGLE VALUED (IN   ) ELLIPTIC MULTIPLE POLYLOGARITHM D̃(�; �) �

z1

z3

z2

z4

z5D̃(�; �) =

�
d2z2 d2z3 d2z4Now  Consider

with � = exp(2�i(z5 � z1))

(D’Hoker, MBG, Gurdogan, Vanhove)

i.e. Split one vertex of a modular graph function, 
leaving two vertices UNINTEGRATED

A MODULAR GRAPH FUNCTION IS A SINGLE-VALUED ELLIPTIC MULTIPLE 
POLYLOGARITHM EVALUATED AT A SPECIAL VALUE OF ITS ARGUMENT

It is easy to see that  D(τ) = D̃(1; τ)

•  GENERALISATION OF SINGLE-VALUED ELLIPTIC POLYLOGARITHM OF ZAGIER (1990)

Da,b(�; �) =
(2i�2)a+b�1

2i�

�

(m,n) �=(0,0)

e2i�(nu�mv)

(m� + n)a(m�̄ + n)b



MODULAR GRAPH FUNCTIONS OF ARBITRARY WEIGHT

SINGLE-VALUED ELLIPTIC MULTIPLE POLYLOGARITHMS

As with MZV’s, these elliptic functions satisfy a fascinating set of polynomial relationships 
     – we have found a few of these  (with great difficulty!)                                      

Special values of 	

LAURENT SERIES 

•  The coefficients of the Laurent series       are rational multiples of MULTIPLE ZETA VALUES.

A general modular graph function has a                 expansion with a finite number of
powers of  �2

•  In the               limit

ck
w

D...(q, q̄) �
w�

�w+1

ck
w �k

2 + O(e��2)�2 � �

q = e2�i�

Determined by explicit analysis

POLYNOMIAL RELATIONSHIPS 	



e.g.

C1,1,5(y)
(Zerbini)

(y = �2)

•  It turns out (in every example we have studied):
          WHEN THE LAURENT SERIES OF THE POLYNOMIAL VANISHES THE EXACT POLYNOMIAL VANISHES.
     

IS THIS ALWAYS THE CASE – IS THIS A THEOREM?

•  Specific polynomials (over    ) of modular graph functions with a given weight 
     have vanishing Laurent series (MAKING USE OF MZV ALGEBRAIC RELATIONS).  

Q

9

8
�sv(3, 5, 3) � 225

16
�sv(5)�sv(3)2 � 9573

256
�sv(11)Weight-11 svMZV



�3D411 + 109 C222 + 408 C321 + 36C411 + 18 C211 E2 + 12 E2
3 � 211E6 + 12 E3�3 = 0

weight 6

polynomial of weight 6 in functions of different depth. 

e.g.

EXAMPLES OF POLYNOMIAL RELATIONSHIPS 	

polynomial of weight 5 in functions of different depth (different no. of loops).

e.g. D5 − 60C3,1,1 − 10E2 C1,1,1 + 48E5 − 16 ζ(5) = 0weight 5

−60 −10 +48 −16ζ(5) = 0

Other explicit low-weight examples are known (D’Hoker, Kaidi;   Basu) 

MODULAR GRAPH FUNCTIONS OF ANY GIVEN WEIGHT SATISFY 
POLYNOMIAL RELATIONS  WITH RATIONAL COEFFICIENTS

Elliptic generalisation of the rational polynomial relations between multiple polylogarithms 
and single-valued MZV’s



•  WHAT IS THE BASIS OF MODULAR GRAPH FUNCTIONS?

•  Some (presumably) related issues in open string loop amplitudes (Broedel, Mafra, Matthes, Schlotterer), 
     which involve  “HOLOMORPHIC” ELLIPTIC MULTIPLE POLYLOGARITHMS (Brown,Levin).   

•  IMPORTANT GENERALISATION TO MODULAR GRAPH FORMS

OBVIOUS QUESTIONS: 	

•  Are these related by a “KLT” type of relation - c.f open and closed tree-level amplitudes.

•  Is there an elliptic analogue of the iterated integral representation of multiple polylogarithms 



These coefficients are analogous to the tree-level coefficients:

 WHAT IS THE CONNECTION BETWEEN THEM ?

d8 R4 d10 R4

INTEGRATION OVER FUNDAMENTAL DOMAIN

Integrating over    - using the earlier relations - gives the one-loop expansion: τ

GENUS-ONE EXPANSION COEFFICIENTS : 

A(4)
1 =

π

3

(
1 + 0σ2 +

ζ(3)

3
σ3 + 0σ2

2 +
116 ζ(5)

5
σ2 σ3 . . .

)
R4

+ non-analytic threshold piece 



GENUS TWO 

Amplitude is explicit but difficult to study.      Low energy expansion: 
(D’Hoker, Gutperle, Phong)

(
A(4)

2 = g2
s

4
3
ζ(4) σ2R

4 +4ζ(4)σ3R
4 + . . .

)

d6 R4d4 R4

Result:

(D’Hoker, MBG, Pioline, R. Russo)

GENUS THREE

HIGHER GENERA New problems - No explicit expression

d6 R4

Technical difficulties analysing 3-loops.  Gomez and Mafra evaluated 
the leading low energy behaviour using PURE SPINOR FORMALISM,  giving

A(4)
3 = g4s

(
4

27
ζ(6)σ3 + . . .

)
R4

�

M2

|d3�|2

det(Im�)3
(GENUS-TWO MODULAR INVARIANT)

Performing an integral over genus-two fundamental domain is non-trivial!

Related to a WEAKLY HOLOMORPHIC JACOBI 
FORM analogous to the K3 elliptic genus.



A(4)(s, t, u;Ω) = R4 T (s, t, u;Ω)

⇠ s2p+3q + . . .
T (s, t, u;Ω) =

∑

p,q

E(p,q)(Ω)σp
2 σ

q
3

SL(2,Z) invariant functionsUsing:

•  Duality between M-theory (quantum 11-dimensional supergravity on two-torus)
    and and string theory compactified on a circle

•  Nonlinear supersymmetry

SOLUTIONS:  NON-HOLOMORPHIC EISENSTEIN SERIES   
With b.c:  Power behaviour as 

Ω2 → ∞

∆Ω E(0,0)(Ω) =
3

4
E(0,0)(Ω) R4�� = �2

2(�
2
�1

+ �2
�2

)

D4 R4∆Ω E(1,0)(Ω) =
15

4
E(1,0)(Ω)

NON-PERTURBATIVE EXTENSION

e.g. Type IIB

Ω = Ω1 + iΩ2

Ω2 =
1

g
= e−φ



NON-HOLOMORPHIC EISENSTEIN SERIES

•                 invariant  (generalises to higher rank duality groups)SL(2, Z)

•  Fourier series Es(Ω) = 2
∞∑

k=0

Fk(Ω2) cos(2πikΩ1) .

•  Solution of LAPLACE EIGENVALUE EQN.

�� Es(�) = s(s � 1) Es(�)

•  ZERO MODE               - TWO POWER-BEHAVED TERMS (perturbative) :  k = 0

F0 = Ωs
2 +

√
πΓ(s− 1

2 )ζ(2s− 1)

ζ(2s)Γ(s)
Ω1−s

2

�n(k) =
X

p|k

pn

divisor sum

•  NON-ZERO MODES             - D-INSTANTON SUMk > 0

Fk =
2πs

ζ(2s)Γ(s)
|k|s− 1

2 σ2s−1(k)Ω
1
2
2 Ks− 1

2
(2π|k|Ω2)

∼ πs− 1
2

ζ(2s)Γ(s)
|k|s−1 σ2s−1(k) e

−2π|k|Ω2 (1+O(Ω−1
2 ))

Parabolic subgroup

Poincare series –
manifest 

Es(Ω) =
∑

gcd(p,q)=1

Ωs
2

|p + qΩ|2s
=

∑

γ∈Γ∞\SL(2,Z)

(Im γΩ)s

SL(2, Z)
(
1 b
0 1

)



Perturbative terms:     tree-level        genus-two             D-instantons 
                       NO GENUS-ONE TERM (no ¼-BPS states)

NON-RENORMALISATION BEYOND 2 LOOPS FOR d4 R4
1
4 −BPS

LOW ORDER INTERACTION COEFFICIENTS

NON-RENORMALISATION BEYOND 1-LOOP FOR R4 1
2 − BPS

Perturbative terms:     tree-level        genus-one             D-instantons

�(5) g
1
2
s E 5

2
(�) = �(5) g�2

s +
4

3
�(4) g2

s +
�

k �=0

(. . . ) �4(k) e�2�|k|�2e2�ik�1

E(1,0) = �(5) E 5
2
(�)α′5

MBG, Gutperle, Vanhove

2�(3) g
� 1

2
s E 3

2
(�) = 2�(3) g�2

s + 4�(2) g0
s +

�

k �=0

(. . . ) �2(k) e�2�|k|�2e2�ik�1

α′3 E(0,0) = 2�(3) E 3
2
(�)



Structure also motivated by (but not directly derived from) supersymmetry.
                                                                          (See also, Yifan	Wang,	Xi	Yin,	2015)

This equation was conjectured by consideration of duality between two-loop eleven-dimensional 
supergravity compactified on a two-torus and type IIB compactified on a circle.

THE SOLUTION OF THIS EQUATION HAS SOME WEIRD AND WONDERFUL (PUZZLING) FEATURES.

NEXT ORDER    gs E(0,1)(Ω)σ3 R4 O(α′6 d6 R4)

R4

(∆Ω − 12) E(0,1)(Ω) = −
(
2ζ(3) E 3

2
(Ω)

)2 The square of the
coefficient of 

           NOT an Eisenstein series but satisfies INHOMOGENEOUS Laplace equationE(0,1)(Ω)
MBG, Vanhove

PRECISE AGREEMENT WITH EXPLICIT STRING THEORY LOOP CALCULATIONS 

ZERO MODE OF SOLUTION (zero net D-instanton number):

SUM OF D-INSTANTONSGENUS ZERO GENUS ONE GENUS TWO GENUS THREE

g E(0,1)

��
zero
mode

=
2

3
�(3)2 g�2 +

4

3
�(2) �(3) g0 + 4�(4) g2 +

4

27
�(6) g4 +

�

k

cke�4�k/g



HIGHER-RANK DUALITY GROUPS

With Levi sub-group
 

Choice of maximal parabolic :  

B.c..’s require � = ↵1       Dynkin diagramG = Ed+1

L↵1 = Spin(d, d)
1	

2	

3	 4	 d+1	5	 d	

Coefficients of                   turn out to be specific                     
automorphic functions for higher-rank groups that 
generalise the SL(2) Eisenstein series.  These are 

associated with specific maximal parabolic subgroups 
of G, labelled by a simple root,    .�

R4 , D4R4

Langlands Eisenstein series EG
�;s

Duality Group

6

7

space-time
dimension

9

8 

5

4

3

SL(2, Z)
SL(2, Z)

SL(3, Z)⇥ SL(2, Z)

SL(5, Z)

SO(5, 5, Z)

10B 

E6(6)(Z)

E7(7)(Z)
E8(8)(Z)

G(Z)

10A 1

G(Z)\G(R)/K(R)Moduli space



•  Extended to         (Fleig, Kleinschmidt, Persson)E9 , E10 , E11

•  CONSTANT TERMS encode STRING PERTURBATION RESULTS in compactified theories.   

EG
�1; 32

R4 EG
�1; 52

D4R4

VERY STRIKING SIMPLIFICATIONS WHEN s =
3
2

, s =
5
2

•  ½-BPS AND ¼-BPS SOLUTIONS:                    ,

EG
(0,1) D6R4•  The coefficient of                       satisfies appropriate  inhomogeneous 

     Laplace eigenvalue equation – more difficult to analyse.

SOLUTIONS

         BPS orbits are “MINIMAL ORBITS” contained in     EEd+1

↵1; 32

1
2
�

        BPS orbits are “NEXT-TO-MINIMAL ORBITS” contained in     E
Ed+1

↵1; 52

1
4
�

The instantons fill out orbits under the action of  the Levi factor in the maximal 
parabolic sub-group:

     A charge                  instanton in    dimensions (almost always) identified with 
     euclidean world-line of a charge    BPS black hole in           dimensions wrapped    
        times around the circle of radius     .    

q
rd

D
D + 1

k = d⇥ q

d

•  NON-ZERO FOURIER MODES encode effects of D-instantons.

	(Bossard,Cosnier-Horeau,Pioline)
•  Extension to ½-maximal supersymmetry in D=3.  Instantons in D=3
      counts ½- and ¼-BPS dyons (c.f.  DVV, …. formula).     



CONNECTION BETWEEN STRING DUALITY 
AND SUGRA UV DIVERGENCES

Maximal SUGRA has           UV divergences in “Critical” dimensions D = Dclog ⇤

One loop in D=8

Two loops in D=7

Three loops in D=6

Four loops in D=11/2

R4

d4 R4

d6 R4

d8 R4

d?? R4

Is            protected ???

Five loops in D=???

d8 R4

“Protected” terms

Dc = 4 +
6
L

These are reflected by         terms in the corresponding automorphic functions log g



More Generally:
To WHAT EXTENT DO STRING THEORY DUALITIES CONSTRAIN THE STRUCTURE OF 
PERTURBATIVE SUPERGRAVITY? – ULTRAVIOLET DIVERGENCES??

SUPERSTRING PERTURBATION THEORY IS FREE OF UV DIVERGENCES.  CAN WE UNDERSTAND

THE UV PROPERTIES OF SUPERGRAVITY BY CAREFUL CONSIDERATION OF THE LOW ENERGY 
LIMIT OF STRING THEORY? 

The coefficients of the UV divergences in maximal supergravity up to 3 loops in 
various dimensions > 4 are precisely reproduced by log terms in modular coefficients.

UV PROPERTIES OF SUPERGRAVITY 	


