The correlahedron

Paul Heslop

April 19th KITP

based on: arXiv:1701.00453 with Eden, Mason as well as a number of papers with: Bourjaily, Chicherin, Doobary, Eden, Korchemsky, Mason, Sokatchev, Tran.

Idea

- $\bullet\$ Correlators \rightarrow Amplitudes (squared) (multiple lightlike limits)
- Strongly suggests the existence of a bigger geometric object:

The correlahedron

- Correlators ⇔ correlahedron
- Correlahedron \rightarrow (squared) amplituhedron

Plan of talk

- super-amplitudes, super-correlators and the amplitude/correlator duality via lightlike limit in superspace
- bosonised superspace and the lightlike limit as "freeze and project"
- geometry: amplituhedron, squared amplituhedron and correlahedron
- "freeze and project" correlahedron \rightarrow amplituhedron
- algebra from geometry: cylindrical decomposition

Superamplitudes

Superamplitude integrands in planar $\mathcal{N} = 4$ SYM

- Divide by MHV tree
- Momentum supertwistor space [Hodges, Mason Skinner]

$$\mathbb{C}^{4|4} \ni \mathcal{Z}_i^{\mathcal{A}} = (Z_i^{\mathcal{A}}|\chi_i')$$

(Z_i related to momentum of particle, χ_i particle type)

Structure of n-point superamplitude

$$\mathcal{A}_n = \sum_{\ell,k} a^\ell \mathcal{A}_{n;k}^{(\ell)}$$

where $\mathcal{A}_{n;0}^{(0)} = 1$ and $\mathcal{A}_{n;k}^{(\ell)} = O(\chi^{4k})$ is an N^kMHV superamplitude. 1st non-trivial example: $\mathcal{A}_{5;1}^{(0)} = \frac{\delta^4(\chi_1 \langle 2345 \rangle + ... + \chi_5 \langle 1234 \rangle)}{\langle 1234 \rangle ... \langle 5123 \rangle}$ where $\langle ijkl \rangle = det(Z_i Z_j Z_k Z_l)$ Correlators in $\mathcal{N} = 4$

AdS/CFT

Supergravity/String theory on $AdS_5 \times S^5 = \mathcal{N}=4$ super Yang-Mills

- Correlation functions of gauge invariant operators in SYM ↔ string scattering in AdS × S
- Stress-tensor multiplet \rightarrow gravity in AdS
- Contain data about anomalous dimensions of operators and 3 point functions via OPE →integrability / bootstrap
- Big Bonus more recently: Correlators give scattering amplitudes

Super-correlators

Correlation function integrands of chiral stress-tensor multiplets in planar $\mathcal{N}=4$ SYM

Chiral superspace = space of 2-planes in supertwistor space

$$Gr(2,(4|4))
i X_{i\alpha}^{\mathcal{A}} = \left(1_{2}, x_{i\alpha\dot{\alpha}} \middle| \theta_{i\alpha}^{I}\right)$$

Structure of n-point supercorrelators

$$\langle \mathcal{O}(X_1)\mathcal{O}(X_2)\ldots\mathcal{O}(X_n)\rangle = \sum_{\ell,k} a^\ell G_{n;k}^{(\ell)}$$

O is the stress-tensor multiplet

$$\mathcal{O}(X_i) = ... + \theta_{IJ,KL}^4 tr(\Phi_{IJ}(x_i)\Phi_{KL}(x_i)) + ... + \theta^8 L(x_i)$$

chiral superspace instead of usual analytic superspace

• insight from twistor Feynman diagram approach [Chicherin Doobary Korchemsky Mason Sokatchev PH] So far looks very similar to the superamplitude, but:

Complication: Much higher power of superspace variables,

$$G_{n;k}^{(\ell)} = O(heta^{4(n+k)})$$

(in chiral superspace - also possible to use analytic superspace which requires the introduction of further bosonic variables)

• Simplification:

$$G_{n;k}^{(\ell)} = \int d^8 heta_{n+1} ... d^8 heta_{n+\ell} G_{n+\ell;k+\ell}^{(0)}$$

therefore only need consider tree-level correlators $G_{n;k}^{(0)}$ get loops for free!

$Correlators \rightarrow Amplitudes$

Eden Korchemsky Sokatchev, Alday Eden Korchemsky Maldacena Sokatchev, Eden Korchemsky Sokatchev PH. Adamo Bullimore Mason Skinner

The amplitude/correlator duality states

$$\lim \frac{G_n}{G_{n;0}^{(0)}} = (\mathcal{A}_n)^2$$

- Here "lim" is the lightlike limit: the 2-planes X_i consecutatively intersect in twistor space.
- Eg Choose a basis of the plane such that:

$$X_{i1} \rightarrow Z_{i-1}$$
 $X_{i2} \rightarrow Z_i$

Each side is an expansion (in both superspace variables and coupling). Expanding:

$$\lim \frac{G_{n;k}^{(\ell)}}{G_{n;0}^{(0)}} = (\mathcal{A}^2)_{n;k}^{(\ell)} = \sum_{k_1+k_2=k,\ell_1+\ell_2=\ell} \mathcal{A}_{n;k_1}^{(\ell_1)} \mathcal{A}_{n;k_2}^{(\ell_2)} = 2\mathcal{A}_{n;k}^{(\ell)} + \dots$$

Putting this with the relation between loop and tree correlators: a single tree-level correlator contains many (k + 1) different loop-level amplitudes! (also in any ordering of points)

$$G_{n;k}^{(0)} \rightarrow \begin{cases} (A^2)_{n;k}^{(0)} & n\text{-point lightlike limit} \\ (A^2)_{n-1;k-1}^{(1)} & n-1\text{-point lightlike limit} \int d^8\theta_n \\ (A^2)_{n-2;k-2}^{(2)} & n-2\text{-point lightlike limit}, \int d^8\theta_{n-1}d^8\theta_n \\ \vdots \\ (A^2)_{n-k;0}^{(k)} & n-k\text{-point lightlike limit}, \int d^8\theta_{n-k+1}\dots d^8\theta_n \end{cases}$$

Bosonised superspace for the amplitude

[Hodges, Arkani-Hamed Trnka]

- Key feature: bosonised supertwistors $\mathbb{C}^{4|4} \to \mathbb{C}^{4+k}$
- Introduce 4k global fermionic variables ϕ_I^a

Eg $\mathcal{A}_{5:1}^{(0)}$ becomes

$$\mathcal{A}_{5;1}^{(0)} = \frac{\delta^4(\chi_1 \langle 2345 \rangle + ... + \chi_5 \langle 1234 \rangle)}{\langle 1234 \rangle ... \langle 5123 \rangle} \rightarrow \frac{\langle 12345 \rangle^4}{\langle 1234 Y_0 \rangle ... \langle 5123 Y_0 \rangle}$$

- angle brackets \rightarrow 5×5 determinants
- $Y_0 = (0, 0, 0, 0, 1)$ projecting onto the original twistors
- Get back to superspace simply by integrating out all the φ's

Bosonised superspace for the correlator

• Clear generalisation to correlators. But now $4(n+k) \phi$'s

• correlator becomes a function of *n* 2-planes in 4+n+k dimensions

Eg for $G_{5:1}^{(0)}$ the points become $X_{i\alpha}^{\mathcal{A}} \in Gr(2, 10)$

$$G_{5;1}^{(0)} = \frac{\langle X_1 X_2 X_3 X_4 X_5 \rangle^4}{\prod_{i < j} \langle X_i X_j Y_0 \rangle}$$

where the brackets are 10×10 determinants and $Y_0 = \begin{pmatrix} 0_{4 \times 6} \\ 1_{6 \times 6} \end{pmatrix}$

- Note: traditional analytic superspace approach numerator = huge polynomial structure hard to see immediately [Eden Schubert Sokatchev]
- Here it takes the conceptually very simple form $\langle X_1 X_2 X_3 X_4 X_5 \rangle^4$

Known correlators

summary of what is known

We know G⁽⁰⁾_{n;n-4} explicitly for all n ≤ 14 (equivalently the 4-point correlator to 10 loops)

Eden Schubert Sokatchev, Eden Korchemsky Sokatchev PH, Bourjaily Tran PH

• The bosonised superspace is 4+n+k=2n dimensional

$$G_{n;n-4}^{(0)} = \langle X_1 X_2 \dots X_n \rangle^4 \times f^{(n-4)}(\langle X_i X_j Y_0 \rangle)$$

- Crucial hidden permutation symmetry is manifest: permutation symmetry of $\langle X_1 X_2 \dots X_n \rangle^4$!
- $f^{(n-4)}(x_{ij}^2) \rightarrow f^{(n-4)}(\langle X_i X_j Y_0 \rangle)$: *f*-graphs, graphical operations
- the analogue of MHV amplitudes BUT contains a lot of non-trivial info eg 4- and 5-point amplitudes to 10, 9 loops !
- Only one other correlator is known explicitly, $G_{6;1}^{(0)}$

superinvariants in bosonised superspace

- Bosonised superspace provides very useful new way to consider superspace (nilpotent) invariants (even if it wasn't accompanied with the geometrical aspect)
- Clarifies non-trivial identities and symmetries
- Consider $G_{6:1}^{(0)}$ found originally in analytic superspace
- The relevant superspace structures were found (eventually) to have the form $\mathcal{I}^{ijkl;\alpha\beta\gamma\delta}$
- satisfy an identity as a very non-trivial consequence of superconformal invariance:

$$\sum_{i=1}^{6} X_{i\alpha} \mathcal{I}^{ijkl;\alpha\beta\gamma\delta} = 0 \qquad \text{(for all } j, k, l, M, \beta, \gamma, \delta\text{)},$$

$G_{6:1}^{(0)}$ in bosonised superspace

 bosonised superspace is n+k+4 = 11-dimensional, but we have 6 Xs therefore define

$$\langle \dots \rangle^{i\alpha} := \langle X_{11}X_{12}X_{21}\dots \widehat{X_{i\alpha}}\dots X_{62} \rangle (-1)^{\alpha}.$$

 Superspace structure means we always have four such brackets, so the most general structure is

$$\mathcal{I}^{ijkl;\alpha\beta\gamma\delta} = \langle \dots \rangle^{i\alpha} \langle \dots \rangle^{j\beta} \langle \dots \rangle^{k\gamma} \langle \dots \rangle^{l\delta}$$

• Further the non-trivial identity is a simple consequence of generalised Schouten identity in 11 dimensions

$$\sum_{i=1}^{6} X_{i\alpha} \langle \dots \rangle^{i\alpha} = 0 \; .$$

(can't antisymmetrise 12 objects in 11 dimensions)

The correlator itself $G_{6;1}^{(0)}$ (originally given in analytic superspace) can be directly transcribed to this bosonised superspace as

$$G_{6;1}^{(0)} = \frac{A_2 - 2 A_1 - 8 B_2}{\prod_{1 \le i < j \le 6} \langle Y_0 X_i X_j \rangle},$$

where

$$\begin{split} A_1 &= \langle Y_0 X_{5\alpha} X_1 X_{6\gamma} \rangle \langle Y_0 X_{5\beta} X_2 X_{6\delta} \rangle \langle Y_0 X_3 X_5 \rangle \langle Y_0 X_4 X_6 \rangle \mathcal{I}^{5566;\alpha\beta\gamma\delta} + S_6 \text{ perm} \\ A_2 &= \langle Y_0 X_{5\alpha} X_1 X_{6\gamma} \rangle \langle Y_0 X_{5\beta} X_2 X_{6\delta} \rangle \langle Y_0 X_3 X_4 \rangle \langle Y_0 X_5 X_6 \rangle \mathcal{I}^{5566;\alpha\beta\gamma\delta} + S_6 \text{ perm} \\ B_2 &= \langle Y_0 X_{4\alpha} X_3 X_{6\gamma} \rangle \langle Y_0 X_{5\beta} X_2 X_{6\delta} \rangle \langle Y_0 X_1 X_6 \rangle \langle Y_0 X_4 X_5 \rangle \mathcal{I}^{4566;\alpha\beta\gamma\delta} + S_6 \text{ perm} \end{split}$$

Note this is clearly much more complicated than the analagous 6 pnt NMHV amplitude \leftarrow no Yangian (also no spurious poles though)

$Y_0 \rightarrow Y$

- NB *Y*₀ becomes a crucial player in the -hedron story.
- Here we saw it as a fixed object which projects the extended brackets to 4-brackets
- Note that $Y_0 \in Gr(n + k, n + k + 4)$ and given the manifest GL(n + k + 4) symmetry of the problem it is useful to let Y_0 vary (and call it Y)
- so the amplituhedron and correlahedron naturally extend to functions of Y as well as the external data, Z_i or X_i
- also natural to multiply by a volume differential form factor on the Grassmanian $\prod_{i=1}^{n+k} \langle Yd^4 Y_i \rangle$
- NB this procedure gives a volume form on the Grassmanian
- integrate form over a delta function $\delta(Y; Y_0)$ to get back original

Lightlike limit in bosonised superspace Question: what does the lightlike limit look like in bosonised superspace?

Answer: Geometric "freeze and project" procedure Importantly: Act directly on $G_{n:k}$ (without needing to divide by the tree)

Light like limit

- Freeze: (X_iX_{i+1}Y) → 0 means Y intersects the 4-plane formed by the two 2-planes X_i, X_{i+1}. So Y is simultaneously frozen to intersect n 4-planes.
- Project: At the same time we project from all *n* of these intersection points (onto any co-dimension *n* plane that doesn't go through them)
- the second "project" step is necessary to reduce the dimension of the space down from C^{n+k+4} → C^{k+4} in which the amplitude lives
- corresponds to dividing by the additional 4n fermionic degrees of freedom in $G_{n;0}^{(0)}$

Freeze and Project, explicit procedure

• perform the freezing of Y as $Y = Y_1 \land .. \land Y_{n+k}$ with

$$\begin{aligned} Y_p &= \sigma_i^{\alpha} X_{i\alpha} - \tau_i^{\alpha} X_{i+1 \alpha} & \text{for } p &= i = 1 \dots n , \\ Y_p &= \hat{Y}_{p'} & p &= n + p', \quad p' &= 1 \dots k \end{aligned}$$

for some parameters σ_i^{α} , τ_i^{α} .

• project from Y_1, \ldots, Y_n . In practice we can pick a basis for \mathbb{R}^{k+n+4}

$$\mathsf{basis} = \left\{ Y_1, \ldots, Y_n, e_1, \ldots, e_{4+k} \right\},\,$$

where $e_1, \ldots e_{4+k}$ are any 4 + k vectors such that this yields an independent basis.

- Choose $\hat{Y}_{p'}$ to be a linear combination of the $e_{\mathcal{A}'}$
- Projection is then

$$X_{ilpha} o \hat{X}_{ilpha}$$
 where $\hat{X}^{\mathcal{A}}_{ilpha} = \left\{egin{array}{cc} 0 & \mathcal{A} = 1, \dots, n \ X^{\mathcal{A}}_{ilpha} & \mathcal{A} = n{+}1, \dots, n{+}k{+}4 \end{array}
ight.$

in this basis

 define reduced brackets in the obvious way on the hyperplane spanned by {*e*₁,..., *e*_{4+k}} and it is clear that

$$\langle \hat{\mathcal{X}} \rangle := \langle Y_1 \dots Y_n \mathcal{X} \rangle .$$

Here \mathcal{X} represents any collection of 4 + k independent vectors, and $\hat{\mathcal{X}}$ the same vectors projected onto the hyperplane.

- Defining $Z_i := \sigma_i X_i = \tau_i X_{i+1} + Y_i$ then after the projection $\hat{Z}_i := \sigma_i \hat{X}_i = \tau_i \hat{X}_{i+1}$ and the projected planes \hat{X}_i intersect each other consecutively at \hat{Z}_i in the projected space.
- Thus freezing and projection yields a *k*-plane \hat{Y} living in the 4+*k* dimensional hyperplane spanned by $\{e_1, \ldots, e_{4+k}\}$ and we have projected planes $\hat{X}_{i\alpha}$ in the same 4+*k* dimensional space.

EG. $G_{5;1}^{(0)} \rightarrow A_{5;1}^{(0)}$ Here we have $Y = Y_1 \wedge \cdots \wedge Y_6 \in Gr(6, 10)$ and we freeze Y_1, \ldots, Y_5 as $Y_i = \sigma_i^{\alpha} X_{i\alpha} - \tau_i^{\alpha} X_{i+1\alpha}$, leaving $Y_6 = \hat{Y}$ orthogonal. Then

Using

$$\langle X_1 X_2 X_3 X_4 X_5 \rangle = \langle Y_1 ... Y_5 \hat{Z}_1 ... \hat{Z}_5 \rangle \prod_{i=1}^5 (\tau_i ... \sigma_{i+1})^{-1}$$

as well as

$$\langle YX_iX_j \rangle = \langle Y\hat{Z}_{i-1}\hat{Z}_i\hat{Z}_{j-1}\hat{Z}_j \rangle \times (\tau_{i-1}.\sigma_i \tau_{j-1}.\sigma_j)^{-1}$$

Non-maximal lightlike limit

- Similar procedure at loop-level
- In superspace: non-maximal lightlike limit of $G_{n;k}^{(0)}$ + integrate out the fermionic variables not associated with the limit.
- In bosonised superspace: additional projection from the planes corresponding to these variables
- The freeze and project procedure is simple to implement in practice algebraically using mathematica (much easier than in superspace where we have to essentially pick separate components)
- Non-trivial checks: We show that the $G_{6;1}^{(0)}$ correlator indeed reduces to $(\mathcal{A}^2)_{6;1}^{(0)}$ (6 point NMHV) as well as $(\mathcal{A}^2)_{5;0}^{(1)}$ (5 point MHV 1 loop parity even and odd) via this freeze and project procedure

Geometry: -hedrons

[Arkani-Hamed Trnka, Arkani-Hamed Thomas Trnka] Amplituhedron: beautiful geometric picture giving amplitudes from pure geometry

(Tree) Amplituhedron

$$ext{amplituhedron}_{n;k}(Z) = \left\{ extsf{Y} \in \textit{Gr}(k,4{+}k): \ extsf{Y}^{\mathcal{A}}_{
ho} = \textit{C}^i_{
ho} Z^{\mathcal{A}}_i extsf{ for } \mathcal{C} \in \textit{Gr}^+(k,n)
ight\}.$$

Definition somewhat implicit \Rightarrow difficult to obtain explicit results from. (although see [Arkani-Hamed Thomas Trnka])

Squared (tree) amplituhedron

$$\text{squared amplituhedron}_{n;k}(Z) = \left\{ Y \in \textit{Gr}(k,4{+}k): \ \langle YZ_{i-1}Z_iZ_{j-1}Z_j \rangle > 0 \right\}.$$

Much more explicit, easier to compute from.

Loop level squared amplituhedron

squared amplituhedron^{(ℓ)}_{*n*,*k*}(*Z*) = $\left\{ (Y, \mathcal{L}_1, ..., \mathcal{L}_\ell) : \langle YZ_{i-1}Z_iZ_{j-1}Z_j \rangle > 0, \langle YZ_{i-1}Z_i\mathcal{L}_j \rangle > 0, \langle Y\mathcal{L}_i\mathcal{L}_j \rangle > 0 \right\}.$ $Y \in Gr(k, 4+k), \qquad \mathcal{L}_i \in Gr(2, 4+k)$ Correlahedron proposal

$$\left\{ Y\in Gr(n{+}k,n{+}k{+}4):\ \langle YX_iX_j
angle >0
ight\} .$$

Lives in a (very) large dimension but is conceptually very simple

 Further, performing exactly the same "freeze and project" procedure as detailed above reduces the geometry to (in the maximal lightlike limit)

$$\langle YX_iX_j\rangle = \begin{cases} 0 & |i-j| = 1 \mod \\ \frac{\langle \hat{Y}\hat{Z}_{i-1}\hat{Z}_i\hat{Z}_{j-1}\hat{Z}_j\rangle}{\tau_{i-1}.\sigma_i\,\tau_{j-1}.\sigma_j} & \text{otherwise} \ . \end{cases}$$

So the correlahedron space reduces to the squared amplituhedron

n

(up to signs from the denominator. This reflects the ambiguity in X_i → Z_{i-1} ∧ Z_i or X_i → Z_i ∧ Z_{i-1}). This choice of signs either doesn't seem to matter, or only 1 sign choice matters.

So the same geometric procedure (freeze and project):

correlator \rightarrow (squared) amplitude correlahedron \rightarrow (squared) amplituhedron

Algebra (volume forms) from geometry

- Amplitude is the unique volume form with no divergences inside the amplituhedron and log divergences on its boundary [Arkani-Hamed Trnka]
- Given an explicit description of the geometry (as for the squared amplituhedron) there is a straightforward algorithm to obtain this differential form via "cylindrical decomposition" (see [Arkani-Hamed Lam] for related approaches)
- Start with the same procedure as for converting multiple integrals over regions to iterated single integrals, ie convert any region in Rⁿ to a union of non-intersecting regions of the form

$$\left\{\begin{array}{ccc} a < x_1 < b, \\ a(x_1) < x_2 < b(x_2), \\ (x_1, \dots, x_n) : a(x_1, x_2) < x_3 < b(x_1, x_2), \\ \dots, \\ a(x_1, \dots, x_{n-1}) < x_n < b(x_1, \dots, x_{n-1}) \end{array}\right\},\$$

 Instead of integrating over this region one assigns a differential form to it by assigning to each inequality a dlog:

$$a(x_1,..,x_{i-1}) < x_i < b(x_1,..,x_{i-1}) \quad o \quad d\log\left(rac{x_i - b(x_1,..,x_{i-1})}{x_i - a(x_1,..,x_{i-1})}
ight)$$

thus yielding the *n*-form

$$\prod_{i=1}^{n} \frac{dx_i \Big(b(x_1, .., x_{i-1}) - a(x_1, .., x_{i-1}) \Big)}{\Big(x_i - b(x_1, .., x_{i-1}) \Big) \Big(x_i - a(x_1, .., x_{i-1}) \Big)} .$$

- One then simply adds together the contributions from each region.
- This gives a form with log divergences on each boundary and no divergences inside (as long as the original region is convex).
- Remarkably it is independent of the order in which you perform the cylindrical decomposition (for linear inequalities)

Simple example

- Consider a triangle in P^2 with vertices Z_1, Z_2, Z_3
- give them inhomogeneous coordinates $Z_i = (x_i, y_i, 1)$
- region (inside of the triangle) is the space of $Y \in P^2$ such that

$$\langle \textit{YZ}_1\textit{Z}_2\rangle > 0, \quad \langle \textit{YZ}_2\textit{Z}_3\rangle > 0, \quad \langle \textit{YZ}_3\textit{Z}_1\rangle > 0 \; .$$

• also give Y inhomogeneous coordinates Y = (x, y, 1)

$$\frac{xy_1 - x_2y_1 - xy_2 + x_1y_2}{x_1 - x_2} < y < \frac{xy_1 - x_3y_1 - xy_3 + x_1y_3}{x_1 - x_3} \text{ and } x_1 < x < x_3$$
$$\frac{xy_1 - x_2y_1 - xy_2 + x_1y_2}{x_1 - x_2} < y < \frac{xy_2 - x_3y_2 - xy_3 + x_2y_3}{x_2 - x_3} \text{ and } x_3 < x < x_2$$

So the differential form corresponding to the above region becomes

$$d \log \left(\frac{y - \frac{xy_1 - x_3y_1 - xy_3 + x_1y_3}{x_1 - x_3}}{y - \frac{xy_1 - x_2y_1 - x_1y_2 + x_1y_2}{x_1 - x_2}}\right) \wedge d \log \left(\frac{x - x_3}{x - x_1}\right) + d \log \left(\frac{y - \frac{xy_2 - x_3y_2 - xy_3 + x_2y_3}{x_2 - x_3}}{y - \frac{xy_1 - x_2y_1 - x_1y_2 + x_1y_2}{x_1 - x_2}}\right) \wedge d \log \left(\frac{x - x_2}{x - x_3}\right)$$

$$= \frac{dxdy \left(x_2y_1 - x_3y_1 - x_1y_2 + x_3y_2 + x_1y_3 - x_2y_3\right)^2}{\left(x_1y - x_1y_2 - x_2y - x_1y_1 + x_2y_1 + x_2y_2\right) \left(x_1y - x_1y_3 - x_3y - x_1y_1 + x_3y_1 + x_3y_3\right) \left(x_2y - x_2y_3 - x_3y - x_2y_2 + x_3y_2 + x_3y_3\right)^2}$$

$$=\frac{\langle Yd^2Y\rangle\langle Z_1Z_2Z_3\rangle^2}{\langle YZ_1Z_2\rangle\langle YZ_2Z_3\rangle\langle YZ_3Z_1\rangle}$$

- The procedure is very straightforward to implement in mathematica (which has a very powerful Cylindrical Decomposition algorithm)
- Unfortunately it scales badly with the number of variables so is only useful in fairly small examples
- active area of computational research to improve speed
- Using this procedure verified the squared amplituhedron gives the square of the amplitude in a number of cases.

eg. $(\mathcal{A}^2)^{(0)}_{7;3}$

- this should give the combination $2N^3MHV_7 + 2NMHV_7N^2MHV_7$
- squared amplituhedron = subset of $Y = Y_1 \land Y_2 \land Y_3 \subset Gr(3,7)$ such that $\langle Yi i+1 j j+1 \rangle > 0$
- We coordinatise Gr(3,7) as

$$\left(\begin{array}{c} Y_1 \\ Y_2 \\ Y_3 \end{array}\right) = \left(\begin{array}{ccccc} 1 & a & b & 0 & c & d & 0 \\ 0 & e & f & 1 & g & h & 0 \\ 0 & i & j & 0 & k & l & 1 \end{array}\right) \left(\begin{array}{c} Z_1 \\ \vdots \\ Z_7 \end{array}\right)$$

- Set the *Z_i* as basis elements, then the inequalities are written in the variables *a*, ..., *I*.
- performing a cylindrical decomposition, converting the result into a differential form and covariantising yields:

$$\begin{array}{l} \langle Yd^{4} Y_{1} \rangle \langle Yd^{4} Y_{2} \rangle \langle Yd^{4} Y_{3} \rangle \langle 1234567 \rangle^{4} \times \\ \left(\frac{\langle Y7123 \rangle}{\langle Y1234 \rangle \langle Y1267 \rangle \langle Y2345 \rangle \langle Y2356 \rangle \langle Y2367 \rangle \langle Y7134 \rangle \langle Y7145 \rangle \langle Y7156 \rangle} + \dots \right) \ . \end{array}$$

• precisely the lightlike limit of the 7 point correlator, or equivalently the square of the amplitude $2N^3MHV_7 + 2NMHV_7N^2MHV_7$

5-point 1 loop NMHV

Here we have external twistors $Z_i \in P^4$, the loop 2-plane $\mathcal{L} = \mathcal{L}_1 \land \mathcal{L}_2 \in Gr(2,5)$ as well as $Y \in P^4$. Y and \mathcal{L} satisfy the following inequalities

$$\begin{split} & \langle \mathcal{L}Y12\rangle > 0, \; \langle \mathcal{L}Y23\rangle > 0, \; \langle \mathcal{L}Y34\rangle > 0, \; \langle \mathcal{L}Y45\rangle > 0, \; \langle \mathcal{L}Y51\rangle > 0 \\ & \langle Y1234\rangle > 0, \; \langle Y2345\rangle > 0, \; \langle Y3451\rangle > 0, \; \langle Y4512\rangle > 0, \; \langle Y5123\rangle > 0 \end{split}$$

Putting coordinates for \mathcal{L} and Y as

$$\left(\begin{array}{c} \mathcal{L}_1\\ \mathcal{L}_2\end{array}\right) = \left(\begin{array}{cccc} 1 & 0 & a & b & 0\\ 0 & 1 & c & d & 0\end{array}\right) \left(\begin{array}{c} Z_1\\ \vdots\\ Z_5\end{array}\right), \qquad \mathbf{Y} = \left(\begin{array}{cccc} e & f & 1 & g & h\end{array}\right) \left(\begin{array}{c} Z_1\\ \vdots\\ Z_5\end{array}\right),$$

inequalities lead (via cyl. decomp.)

$$-rac{2adef-2aeg-2bcef+be-cfg+df+2g}{defgh(ad-bc)(ae+cf-1)(adf-ag+b(-c)f+b)}da\wedge db\wedge ..\wedge dh$$

This lifts to the co-ordinate independent form

- Recognise the sum of five box functions (parity even part of the one loop amplitude) multiplied by the tree-level NMHV amplitude.
 precisely what we expect: the square of the superamplitude at first
- non-trivial order in both coupling and the Grassmann odd variable expansion is

$$\begin{pmatrix} A_{\text{MHV}}^{(0)} + A_{\text{NMHV}}^{(0)} + aA_{\text{MHV}}^{(1)} + aA_{\text{NMHV}}^{(1)} + \cdots \\ A_{\text{MHV}}^{(0)} \end{pmatrix}^2 |_{a^1,\chi^4} = \frac{2A_{\text{MHV}}^{(0)}A_{\text{NMHV}}^{(1)} + A_{\text{NMHV}}^{(0)}A_{\text{MHV}}^{(1)}}{\left(A_{\text{MHV}}^{(0)}\right)^2} \\ = 2\frac{A_{\text{NMHV}}^{(0)}}{A_{\text{MHV}}^{(0)}} \left(\overline{M}_{\text{MHV}}^{(1)} + M_{\text{MHV}}^{(1)}\right) ,$$

Examples checked:

- Tree level:
 - ► (A²)⁽⁰⁾_{5;1} (5 point NMHV)
 - $(\mathcal{A}^2)^{(0)}_{6:2}$ (6 point N²MHV) Here we needed to sum two orientations
 - (A²)⁽⁰⁾_{7;3} (7 point N³MHV)
- Loop level:
 - ► (A²)⁽¹⁾_{4;0} (4 point 1-loop)
 - (A²)⁽²⁾_{4;0} (4 point 2-loop)
 - ► (A²)⁽¹⁾_{5;1} (5 point 1-loop NMHV)

Direct Correlahedron Check

- Unfortunately the smallest example of the correlator G⁽⁰⁾_{5;1} is already far too big for cylindrical decomposition to be helpful!
- $Y \in Gr(6, 10)$ is 24 dimensional!
- Worse: evidence that a naive implementation of the above procedure can not work. We know the singularity structure of the correlator, contains eg 1/(τ_{i-1}.σ_i)² and more generally Parke-Taylor-like singularities 1/(τ.σ σ.ν ν.τ) Singularity structure "wraps around".
- Use additional local GL(2) symmetries of each X_i.
- Using this we can put coordinates on Y as follows

$$Y = \begin{pmatrix} Y_1 \\ \vdots \\ Y_6 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & a & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & b \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & c & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & e & f \end{pmatrix}$$

Correlahedron inequalities $\langle YX_iX_j \rangle > 0$ become

 rewriting as a cylindrical decomposition and converting to a differential form gives

$$\frac{(a-b)^2 da \, db \, dc \, de \, df}{(a-1)a(b-1)b(e-cf)(c(-f)+c+e+f-1)(ab-af-bc+cf-e)}$$

• The known answer in these coordinates becomes

 $d\mu(a, b, c, e, f)$

 $\overline{(a-1)a(b-1)b(e-cf)(c(-f)+c+e+f-1)(ab-af-bc+cf-e)}$

where $d\mu(a, b, c, e, f)$ is the measure, $\langle Yd^4 Y_1 \rangle \dots \langle Yd^4 Y_6 \rangle$ reduced to these variables.

• Complete agreement on identifying $d\mu(a, b, c, e, f) = (a - b)^2 da db dc de df$. Note that the term $(a - b)^2$ is indeed the natural measure factor, the Vandermonde determinant squared, one obtains when writing an integral measure on GL(2) invariant under conjugation in terms of its eigenvalues.

Conclusions and further directions

 Proposed a conceptually simple geometric object the "correlahedron" equivalent to stress-tensor multiplet correlators

- Further examples both of the squared amplituhedron and especially the correlahedron
- Clarify subtleties, especially the "..." above
- Take bosonised superspace more seriously: understand how to extract components directly rather than going via superspace
- Generalisations: Higher charge correlators [Chicherin Drummond Sokatchev PH]
- Obtaining amplitudes from the k = n 4 squared amplitude (limit of 4-pnt correlator)