The correlahedron

Paul Heslop

因 Durham
University

April 19th KITP

based on: arXiv:1701.00453 with Eden, Mason
as well as a number of papers with:
Bourjaily, Chicherin, Doobary, Eden, Korchemsky, Mason, Sokatchev, Tran.

Idea

- Amplituhedron \Leftrightarrow Amplitudes
- Correlators \rightarrow Amplitudes (squared) (multiple lightlike limits)
- Strongly suggests the existence of a bigger geometric object:

The correlahedron

- Correlators \Leftrightarrow correlahedron
- Correlahedron \rightarrow (squared) amplituhedron

Plan of talk

- super-amplitudes, super-correlators and the amplitude/correlator duality via lightlike limit in superspace
- bosonised superspace and the lightlike limit as "freeze and project"
- geometry: amplituhedron, squared amplituhedron and correlahedron
- "freeze and project" correlahedron \rightarrow amplituhedron
- algebra from geometry: cylindrical decomposition

Superamplitudes

Superamplitude integrands in planar $\mathcal{N}=4$ SYM

- Divide by MHV tree
- Momentum supertwistor space [Hodges, Mason skinner]

$$
\mathbb{C}^{4 \mid 4} \ni \mathcal{Z}_{i}^{\mathcal{A}}=\left(Z_{i}^{A} \mid \chi_{i}^{\prime}\right)
$$

(Z_{i} related to momentum of particle, χ_{i} particle type)

- Structure of n-point superamplitude

$$
\mathcal{A}_{n}=\sum_{\ell, k} a^{\ell} \mathcal{A}_{n ; k}^{(\ell)}
$$

where $\mathcal{A}_{n ; 0}^{(0)}=1$ and $\mathcal{A}_{n ; k}^{(\ell)}=O\left(\chi^{4 k}\right)$ is an N^{k} MHV superamplitude.
1st non-trivial example: $\mathcal{A}_{5 ; 1}^{(0)}=\frac{\delta^{4}\left(\chi_{1}\langle 2345\rangle+\ldots+\chi_{5}\langle 1234\rangle\right)}{\langle 1234\rangle \ldots\langle 5123\rangle}$ where $\langle i j k l\rangle=\operatorname{det}\left(Z_{i} Z_{j} Z_{k} Z_{l}\right)$

Correlators in $\mathcal{N}=4$

AdS/CFT

Supergravity/String theory on $A d S_{5} \times S^{5}=\mathcal{N}=4$ super Yang-Mills

- Correlation functions of gauge invariant operators in SYM \leftrightarrow string scattering in AdS $\times S$
- Stress-tensor multiplet \rightarrow gravity in AdS
- Contain data about anomalous dimensions of operators and 3 point functions via OPE \rightarrow integrability / bootstrap
- Big Bonus more recently: Correlators give scattering amplitudes

Super-correlators

Correlation function integrands of chiral stress-tensor multiplets in planar $\mathcal{N}=4$ SYM

- Chiral superspace $=$ space of 2-planes in supertwistor space

$$
\operatorname{Gr}(2,(4 \mid 4)) \ni X_{i \alpha}^{A}=\left(1_{2}, x_{i \alpha \dot{\alpha}} \mid \theta_{i \alpha}^{\prime}\right)
$$

- Structure of n-point supercorrelators

$$
\left\langle\mathcal{O}\left(X_{1}\right) \mathcal{O}\left(X_{2}\right) \ldots \mathcal{O}\left(X_{n}\right)\right\rangle=\sum_{\ell, k} a^{\ell} G_{n ; k}^{(\ell)}
$$

- \mathcal{O} is the stress-tensor multiplet

$$
\mathcal{O}\left(X_{i}\right)=\ldots+\theta_{I, J L L}^{4} \operatorname{tr}\left(\Phi_{I J}\left(x_{i}\right) \Phi_{K L}\left(x_{i}\right)\right)+\ldots+\theta^{8} L\left(x_{i}\right)
$$

- chiral superspace instead of usual analytic superspace
- insight from twistor Feynman diagram approach [chicherin Doobary Korchensky Mason sokatchev pH]

So far looks very similar to the superamplitude, but:

- Complication: Much higher power of superspace variables,

$$
G_{n ; k}^{(\ell)}=O\left(\theta^{4(n+k)}\right)
$$

(in chiral superspace - also possible to use analytic superspace which requires the introduction of further bosonic variables)

- Simplification:

$$
G_{n ; k}^{(\ell)}=\int d^{8} \theta_{n+1} \ldots d^{8} \theta_{n+\ell} G_{n+\ell ; k+\ell}^{(0)}
$$

therefore only need consider tree-level correlators $G_{n ; k}^{(0)}$ get loops for free!

Correlators \rightarrow Amplitudes

```
[Eden Korchemsky Sokatchev, Alday Eden Korchemsky Maldacena Sokatchev,
Eden Korchemsky Sokatchev PH, Adamo Bullimore Mason Skinner]
```

The amplitude/correlator duality states

$$
\lim \frac{G_{n}}{G_{n ; 0}^{(0)}}=\left(\mathcal{A}_{n}\right)^{2}
$$

- Here "lim" is the lightlike limit: the 2-planes X_{i} consecutatively intersect in twistor space.
- Eg Choose a basis of the plane such that:

$$
x_{i 1} \rightarrow Z_{i-1} \quad x_{i 2} \rightarrow Z_{i}
$$

Each side is an expansion (in both superspace variables and coupling). Expanding:

$$
\lim \frac{G_{n ; k}^{(\ell)}}{G_{n ; 0}^{(0)}}=\left(\mathcal{A}^{2}\right)_{n ; k}^{(\ell)}=\sum_{k_{1}+k_{2}=k, \ell_{1}+\ell_{2}=\ell} \mathcal{A}_{n ; k_{1}}^{\left(\ell_{1}\right)} \mathcal{A}_{n ; k_{2}}^{\left(\ell_{2}\right)}=2 \mathcal{A}_{n ; k}^{(\ell)}+\ldots
$$

Putting this with the relation between loop and tree correlators: a single tree-level correlator contains many $(k+1)$ different loop-level amplitudes! (also in any ordering of points)

$$
G_{n ; k}^{(0)} \rightarrow \begin{cases}\left(A^{2}\right)_{n ; k}^{(0)} & n \text {-point lightlike limit } \\ \left(A^{2}\right)_{n-1 ; k-1}^{(1)} & n \text {-1-point lightlike limit } \int d^{8} \theta_{n} \\ \left(A^{2}\right)_{n-2 ; k-2}^{(2)} & n \text {-2-point lightlike limit, } \int d^{8} \theta_{n-1} d^{8} \theta_{n} \\ \vdots & \\ \left(A^{2}\right)_{n-k ; 0}^{(k)} & n-k \text {-point lightlike limit, } \int d^{8} \theta_{n-k+1} \ldots d^{8} \theta_{n}\end{cases}
$$

Bosonised superspace for the amplitude

[Hodges, Arkani-Hamed Trnka]

- Key feature: bosonised supertwistors $\mathbb{C}^{4 \mid 4} \rightarrow \mathbb{C}^{4+k}$
- Introduce $4 k$ global fermionic variables ϕ_{l}^{a}

$\left(Z_{i}^{A}, \chi_{i}^{\prime}\right)$	\rightarrow	$Z_{i}^{\mathcal{A}}=\left(Z_{i}^{A}, \chi_{i}^{\prime} \phi_{l}^{a}\right)$
\in		\in
$\mathbb{C}^{4 \mid 4}$		\mathbb{C}^{4+k}

Eg $\mathcal{A}_{5 ; 1}^{(0)}$ becomes

$$
\mathcal{A}_{5 ; 1}^{(0)}=\frac{\delta^{4}\left(\chi_{1}\langle 2345\rangle+\ldots+\chi_{5}\langle 1234\rangle\right)}{\langle 1234\rangle \ldots\langle 5123\rangle} \rightarrow \frac{\langle 12345\rangle^{4}}{\left\langle 1234 Y_{0}\right\rangle \ldots\left\langle 5123 Y_{0}\right\rangle}
$$

- angle brackets $\rightarrow 5 \times 5$ determinants
- $Y_{0}=(0,0,0,0,1)$ projecting onto the original twistors
- Get back to superspace simply by integrating out all the ϕ 's

Bosonised superspace for the correlator

- Clear generalisation to correlators. But now $4(n+k) \phi$'s

$$
\begin{array}{lc}
\left(X_{i \alpha}^{A}, \theta_{i \alpha}^{\prime}\right) & \rightarrow X_{i \alpha}^{\mathcal{A}}=\left(X_{i \alpha}^{A}, \theta_{i \alpha}^{\prime} \phi_{l}^{a}\right) \\
\in & \in \\
\operatorname{Gr}(2,4 \mid 4) & \operatorname{Gr}(2,4+n+k)
\end{array}
$$

- correlator becomes a function of $n 2$-planes in $4+n+k$ dimensions

Eg for $G_{5 ; 1}^{(0)}$ the points become $X_{i \alpha}^{\mathcal{A}} \in \operatorname{Gr}(2,10)$

$$
G_{5 ; 1}^{(0)}=\frac{\left\langle X_{1} X_{2} X_{3} X_{4} X_{5}\right\rangle^{4}}{\prod_{i<j}\left\langle X_{i} X_{j} Y_{0}\right\rangle}
$$

where the brackets are 10×10 determinants and $Y_{0}=\binom{0_{4 \times 6}}{1_{6 \times 6}}$

- Note: traditional analytic superspace approach numerator $=$ huge polynomial structure hard to see immediately [Eden schubert sokatchev]
- Here it takes the conceptually very simple form $\left\langle X_{1} X_{2} X_{3} X_{4} X_{5}\right\rangle^{4}$

Known correlators

summary of what is known

- We know $G_{n ; n-4}^{(0)}$ explicitly for all $n \leq 14$ (equivalently the 4 -point correlator to 10 loops) [Eden Schubert sokatchev, Eden Korchensky sokatchev pH, Bour jaily Tran Pe]
- The bosonised superspace is $4+n+k=2 n$ dimensional

$$
G_{n ; n-4}^{(0)}=\left\langle X_{1} X_{2} \ldots X_{n}\right\rangle^{4} \times f^{(n-4)}\left(\left\langle X_{i} X_{j} Y_{0}\right\rangle\right)
$$

- Crucial hidden permutation symmetry is manifest: permutation symmetry of $\left\langle X_{1} X_{2} \ldots X_{n}\right\rangle^{4}$!
- $f^{(n-4)}\left(X_{i j}^{2}\right) \rightarrow f^{(n-4)}\left(\left\langle X_{i} X_{j} Y_{0}\right\rangle\right): f$-graphs, graphical operations
- the analogue of MHV amplitudes BUT contains a lot of non-trivial info eg 4 - and 5 -point amplitudes to 10, 9 loops !
- Only one other correlator is known explicitly, $G_{6 ; 1}^{(0)}$
[chicherin Doobary Korchemsky sokatchev pH]

superinvariants in bosonised superspace

- Bosonised superspace provides very useful new way to consider superspace (nilpotent) invariants (even ifit wasn't accompanied with the geometrical aspect)
- Clarifies non-trivial identities and symmetries
- Consider $G_{6 ; 1}^{(0)}$ found originally in analytic superspace
- The relevant superspace structures were found (eventually) to have the form $\mathcal{I}^{i k k ; \alpha \beta \gamma \delta}$
- satisfy an identity as a very non-trivial consequence of superconformal invariance:

$$
\sum_{i=1}^{6} X_{i \alpha} \mathcal{I}^{i j k l ; \alpha \beta \gamma \delta}=0 \quad(\text { for all } j, k, l, M, \beta, \gamma, \delta)
$$

- bosonised superspace is $n+k+4=11$-dimensional, but we have 6 X s therefore define

$$
\langle\ldots\rangle^{i \alpha}:=\left\langle X_{11} X_{12} X_{21} \ldots \widehat{X_{i \alpha}} \ldots X_{62}\right\rangle(-1)^{\alpha}
$$

- Superspace structure means we always have four such brackets, so the most general structure is

$$
\mathcal{I}^{i j k l ; \alpha \beta \gamma \delta}=\langle\ldots\rangle^{i \alpha}\langle\ldots\rangle^{j \beta}\langle\ldots\rangle^{k \gamma}\langle\ldots\rangle^{/ \delta}
$$

- Further the non-trivial identity is a simple consequence of generalised Schouten identity in 11 dimensions

$$
\sum_{i=1}^{6} X_{i \alpha}\langle\ldots\rangle^{i \alpha}=0
$$

(can't antisymmetrise 12 objects in 11 dimensions)

The correlator itself $G_{6 ; 1}^{(0)}$ (originally given in analytic superspace) can be directly transcribed to this bosonised superspace as

$$
G_{6 ; 1}^{(0)}=\frac{A_{2}-2 A_{1}-8 B_{2}}{\prod_{1 \leq i<j \leq 6}\left\langle Y_{0} X_{i} X_{j}\right\rangle},
$$

where

$$
\begin{aligned}
& A_{1}=\left\langle Y_{0} X_{5 \alpha} X_{1} X_{6 \gamma}\right\rangle\left\langle Y_{0} X_{5 \beta} X_{2} X_{6 \delta}\right\rangle\left\langle Y_{0} X_{3} X_{5}\right\rangle\left\langle Y_{0} X_{4} X_{6}\right\rangle \mathcal{I}^{5566 ; \alpha \beta \gamma \delta}+S_{6} \text { perm } \\
& A_{2}=\left\langle Y_{0} X_{5 \alpha} X_{1} X_{6 \gamma}\right\rangle\left\langle Y_{0} X_{5 \beta} X_{2} X_{6 \delta}\right\rangle\left\langle Y_{0} X_{3} X_{4}\right\rangle\left\langle Y_{0} X_{5} X_{6}\right\rangle \mathcal{I}^{5566 ; \alpha \beta \gamma \delta}+S_{6} \text { perm } \\
& B_{2}=\left\langle Y_{0} X_{4 \alpha} X_{3} X_{6 \gamma}\right\rangle\left\langle Y_{0} X_{5 \beta} X_{2} X_{6 \delta}\right\rangle\left\langle Y_{0} X_{1} X_{6}\right\rangle\left\langle Y_{0} X_{4} X_{5}\right\rangle \mathcal{I}^{4566 ; \alpha \beta \gamma \delta}+S_{6} \text { perm }
\end{aligned}
$$

Note this is clearly much more complicated than the analagous 6 pnt NMHV amplitude \Leftarrow no Yangian (also no spurious poles though)

$Y_{0} \rightarrow Y$

- NB Y_{0} becomes a crucial player in the -hedron story.
- Here we saw it as a fixed object which projects the extended brackets to 4-brackets
- Note that $Y_{0} \in \operatorname{Gr}(n+k, n+k+4)$ and given the manifest $G L(n+k+4)$ symmetry of the problem it is useful to let Y_{0} vary (and call it Y)
- so the amplituhedron and correlahedron naturally extend to functions of Y as well as the external data, Z_{i} or X_{i}
- also natural to multiply by a volume differential form factor on the Grassmanian $\prod_{i=1}^{n+k}\left\langle Y d^{4} Y_{i}\right\rangle$
- NB this procedure gives a volume form on the Grassmanian
- integrate form over a delta function $\delta\left(Y ; Y_{0}\right)$ to get back original

Lightlike limit in bosonised superspace

Question: what does the lightlike limit look like in bosonised superspace?
Answer: Geometric "freeze and project" procedure Importantly: Act directly on $G_{n ; k}$ (without needing to divide by the tree)

Light like limit

- Freeze: $\left\langle X_{i} X_{i+1} Y\right\rangle \rightarrow 0$ means Y intersects the 4-plane formed by the two 2-planes X_{i}, X_{i+1}. So Y is simultaneously frozen to intersect $n 4$-planes.
- Project: At the same time we project from all n of these intersection points (onto any co-dimension n plane that doesn't go through them)
- the second "project" step is necessary to reduce the dimension of the space down from $\mathbb{C}^{n+k+4} \rightarrow \mathbb{C}^{k+4}$ in which the amplitude lives
- corresponds to dividing by the additional 4 n fermionic degrees of freedom in $G_{n ; 0}^{(0)}$

Freeze and Project, explicit procedure

- perform the freezing of Y as $Y=Y_{1} \wedge . . \wedge Y_{n+k}$ with

$$
\begin{array}{lr}
Y_{p}=\sigma_{i}^{\alpha} X_{i \alpha}-\tau_{i}^{\alpha} X_{i+1 \alpha} & \text { for } p=i=1 \ldots n, \\
Y_{p}=\hat{Y}_{p^{\prime}} & p=n+p^{\prime}, \quad p^{\prime}=1 \ldots k
\end{array}
$$

for some parameters $\sigma_{i}^{\alpha}, \tau_{i}^{\alpha}$.

- project from $Y_{1}, \ldots Y_{n}$. In practice we can pick a basis for \mathbb{R}^{k+n+4}

$$
\text { basis }=\left\{Y_{1}, \ldots, Y_{n}, e_{1}, \ldots, e_{4+k}\right\}
$$

where $e_{1}, \ldots e_{4+k}$ are any $4+k$ vectors such that this yields an independent basis.

- Choose $\hat{Y}_{p^{\prime}}$ to be a linear combination of the $e_{\mathcal{A}^{\prime}}$
- Projection is then

$$
X_{i \alpha} \rightarrow \hat{X}_{i \alpha} \quad \text { where } \quad \hat{X}_{i \alpha}^{\mathcal{A}}= \begin{cases}0 & \mathcal{A}=1, \ldots, n \\ X_{i \alpha}^{\mathcal{A}} & \mathcal{A}=n+1, \ldots, n+k+4\end{cases}
$$

in this basis

- define reduced brackets in the obvious way on the hyperplane spanned by $\left\{e_{1}, \ldots, e_{4+k}\right\}$ and it is clear that

$$
\langle\hat{\mathcal{X}}\rangle:=\left\langle Y_{1} \ldots Y_{n} \mathcal{X}\right\rangle
$$

Here \mathcal{X} represents any collection of $4+k$ independent vectors, and $\hat{\mathcal{X}}$ the same vectors projected onto the hyperplane.

- Defining $Z_{i}:=\sigma_{i} \cdot X_{i}=\tau_{i} \cdot X_{i+1}+Y_{i}$ then after the projection $\hat{Z}_{i}:=\sigma_{i} . \hat{X}_{i}=\tau_{i} . \hat{X}_{i+1}$ and the projected planes \hat{X}_{i} intersect each other consecutively at \hat{Z}_{i} in the projected space.
- Thus freezing and projection yields a k-plane \hat{Y} living in the $4+k$ dimensional hyperplane spanned by $\left\{e_{1}, \ldots e_{4+k}\right\}$ and we have projected planes $\hat{X}_{i \alpha}$ in the same $4+k$ dimensional space.

EG. $G_{5 ; 1}^{(0)} \rightarrow A_{5 ; 1}^{(0)}$
Here we have $Y=Y_{1} \wedge \cdots \wedge Y_{6} \in \operatorname{Gr}(6,10)$ and we freeze Y_{1}, \ldots, Y_{5} as $Y_{i}=\sigma_{i}^{\alpha} X_{i \alpha}-\tau_{i}^{\alpha} X_{i+1}$, leaving $Y_{6}=\hat{Y}$ orthogonal. Then

$$
\begin{aligned}
& \prod_{i=1}^{6}\left\langle Y d^{4} Y_{i}\right\rangle \frac{\left\langle X_{1} X_{2} X_{3} X_{4} X_{5}\right\rangle^{4}}{\left\langle Y X_{1} X_{2}\right\rangle \ldots\left\langle Y X_{4} X_{5}\right\rangle} \xrightarrow{\text { freeze } Y} \begin{aligned}
\text { proectX }
\end{aligned}\left(\prod_{i=1}^{5} \frac{d^{2} \sigma_{i} d^{2} \tau_{i}}{\left(\tau_{i-1} \cdot \sigma_{i}\right)^{2}}\right) \frac{\left\langle Y d^{4} \hat{Y}\right\rangle\left\langle Y_{1 . .} Y_{5} \hat{Z}_{1} . . \hat{Z}_{5}\right\rangle^{4}}{\left\langle Y \hat{Z}_{1} \hat{Z}_{2} \hat{Z}_{3} \hat{Z}_{4}\right\rangle \ldots\left\langle Y \hat{Z}_{5} \hat{Z}_{1} \hat{Z}_{2} \hat{Z}_{3}\right\rangle} \\
&=\left(\prod_{i=1}^{5} \frac{d^{2} \sigma_{i} d^{2} \tau_{i}}{\left(\tau_{i-1} \cdot \sigma_{i}\right)^{2}}\right) \frac{\left\langle\hat{Y} \hat{Y}^{2} d^{4} \hat{Y}\right\rangle\left\langle\hat{Z}_{1} . . \hat{Z}_{5}\right\rangle^{4}}{\left\langle\hat{Y} \hat{Z}_{1} \hat{Z}_{3} \hat{Z}_{4}\right\rangle \ldots\left\langle\hat{Y} \hat{Z}_{5} \hat{Z}_{1} \hat{Z}_{2} \hat{Z}_{3}\right\rangle} \\
& \downarrow \\
& \frac{\left\langle\hat{Y} d^{4} \hat{Y}\right\rangle\left\langle\hat{Z}_{1} . . \hat{Z}_{5}\right\rangle^{4}}{\left\langle\hat{Y} \hat{Z}_{1} \hat{Z}_{2} \hat{Z}_{3} \hat{Z}_{4}\right\rangle \ldots\left\langle\hat{Y} \hat{Z}_{5} \hat{Z}_{1} \hat{Z}_{2} \hat{Z}_{3}\right\rangle}
\end{aligned}
$$

Using

$$
\left\langle X_{1} X_{2} X_{3} X_{4} X_{5}\right\rangle=\left\langle Y_{1} . . Y_{5} \hat{Z}_{1} . . \hat{Z}_{5}\right\rangle \prod_{i=1}^{5}\left(\tau_{i} \cdot \sigma_{i+1}\right)^{-1}
$$

as well as

$$
\left\langle Y X_{i} X_{j}\right\rangle=\left\langle Y \hat{Z}_{i-1} \hat{z}_{i} \hat{Z}_{j-1} \hat{Z}_{j}\right\rangle \times\left(\tau_{i-1} \cdot \sigma_{i} \tau_{j-1} \cdot \sigma_{j}\right)^{-1} .
$$

Non-maximal lightlike limit

- Similar procedure at loop-level
- In superspace: non-maximal lightlike limit of $G_{n ; k}^{(0)}+$ integrate out the fermionic variables not associated with the limit.
- In bosonised superspace: additional projection from the planes corresponding to these variables
- The freeze and project procedure is simple to implement in practice algebraically using mathematica (much easier than in superspace where we have to essentially pick separate components)
- Non-trivial checks: We show that the $G_{6 ; 1}^{(0)}$ correlator indeed reduces to $\left(\mathcal{A}^{2}\right)_{6 ; 1}^{(0)}\left(6\right.$ point NMHV) as well as $\left(\mathcal{A}^{2}\right)_{5 ; 0}^{(1)}$ (5 point MHV 1 loop parity even and odd) via this freeze and project procedure

Geometry: -hedrons

[Arkani-Hamed Trnka, Arkani-Hamed Thomas Trnka]
Amplituhedron: beautiful geometric picture giving amplitudes from pure geometry
(Tree) Amplituhedron
amplituhedron $_{n ; k}(Z)=\left\{Y \in \operatorname{Gr}(k, 4+k): Y_{p}^{A}=C_{p}^{i} Z_{i}^{A}\right.$ for $\left.C \in \operatorname{Gr}^{+}(k, n)\right\}$.

Definition somewhat implicit \Rightarrow difficult to obtain explicit results from. (although see [Arkkni-Hamed Thomas Trnka])

Squared (tree) amplituhedron

squared amplituhedron $n ; k)=\left\{Y \in \operatorname{Gr}(k, 4+k):\left\langle Y Z_{i-1} Z_{i} Z_{j-1} Z_{j}\right\rangle>0\right\}$.

Much more explicit, easier to compute from.

Loop level squared amplituhedron

$$
\begin{aligned}
& \text { squared amplituhedron }{ }_{n ; k}^{(\ell)}(Z) \\
& =\left\{\left(Y, \mathcal{L}_{1}, . ., \mathcal{L}_{\ell}\right):\left\langle Y Z_{i-1} Z_{i} Z_{j-1} Z_{j}\right\rangle>0,\left\langle Y Z_{i-1} Z_{i} \mathcal{L}_{j}\right\rangle>0,\left\langle Y \mathcal{L}_{i} \mathcal{L}_{j}\right\rangle>0\right\} . \\
& Y \in \operatorname{Gr}(k, 4+k), \quad \mathcal{L}_{i} \in \operatorname{Gr}(2,4+k)
\end{aligned}
$$

Corrrelahedron

Correlahedron proposal

$$
\left\{Y \in \operatorname{Gr}(n+k, n+k+4):\left\langle Y X_{i} X_{j}\right\rangle>0\right\} .
$$

Lives in a (very) large dimension but is conceptually very simple

- Further, performing exactly the same "freeze and project" procedure as detailed above reduces the geometry to (in the maximal lightlike limit)

$$
\left\langle Y X_{i} X_{j}\right\rangle= \begin{cases}0 & |i-j|=1 \quad \bmod n \\ \frac{\left\langle\hat{Y} \hat{Z}_{i-1} \hat{Z}_{i} \hat{Z}_{j-1} \hat{Z}_{j}\right\rangle}{\tau_{i-1} \cdot \sigma_{i} \tau_{j-1} \cdot \sigma_{j}} & \text { otherwise } .\end{cases}
$$

So the correlahedron space reduces to the squared amplituhedron

- (up to signs from the denominator. This reflects the ambiguity in $X_{i} \rightarrow Z_{i-1} \wedge Z_{i}$ or $X_{i} \rightarrow Z_{i} \wedge Z_{i-1}$). This choice of signs either doesn't seem to matter, or only 1 sign choice matters.

So the same geometric procedure (freeze and project):

correlator \rightarrow (squared) amplitude correlahedron \rightarrow (squared) amplituhedron

Algebra (volume forms) from geometry

- Amplitude is the unique volume form with no divergences inside the amplituhedron and log divergences on its boundary
[Arkani-Hamed Trnka]
- Given an explicit description of the geometry (as for the squared amplituhedron) there is a straightforward algorithm to obtain this differential form via "cylindrical decomposition" (see [Arkani-Hamed Lam] for related approaches)
- Start with the same procedure as for converting multiple integrals over regions to iterated single integrals, ie convert any region in \mathbb{R}^{n} to a union of non-intersecting regions of the form
- Instead of integrating over this region one assigns a differential form to it by assigning to each inequality a dlog:
$a\left(x_{1}, . ., x_{i-1}\right)<x_{i}<b\left(x_{1}, . ., x_{i-1}\right) \quad \rightarrow \quad d \log \left(\frac{x_{i}-b\left(x_{1}, . ., x_{i-1}\right)}{x_{i}-a\left(x_{1}, . ., x_{i-1}\right)}\right)$
thus yielding the n-form

$$
\prod_{i=1}^{n} \frac{d x_{i}\left(b\left(x_{1}, . . x_{i-1}\right)-a\left(x_{1}, . . x_{i-1}\right)\right)}{\left(x_{i}-b\left(x_{1}, . . x_{i-1}\right)\right)\left(x_{i}-a\left(x_{1}, . . x_{i-1}\right)\right)}
$$

- One then simply adds together the contributions from each region.
- This gives a form with log divergences on each boundary and no divergences inside (as long as the original region is convex).
- Remarkably it is independent of the order in which you perform the cylindrical decomposition (for linear inequalities)

Simple example

- Consider a triangle in P^{2} with vertices Z_{1}, Z_{2}, Z_{3}
- give them inhomogeneous coordinates $Z_{i}=\left(x_{i}, y_{i}, 1\right)$
- region (inside of the triangle) is the space of $Y \in P^{2}$ such that

$$
\left\langle Y Z_{1} Z_{2}\right\rangle>0, \quad\left\langle Y Z_{2} Z_{3}\right\rangle>0, \quad\left\langle Y Z_{3} Z_{1}\right\rangle>0
$$

- also give Y inhomogeneous coordinates $Y=(x, y, 1)$

$$
\begin{aligned}
& \frac{x y_{1}-x_{2} y_{1}-x y_{2}+x_{1} y_{2}}{x_{1}-x_{2}}<y<\frac{x y_{1}-x_{3} y_{1}-x y_{3}+x_{1} y_{3}}{x_{1}-x_{3}} \text { and } x_{1}<x<x_{3} \\
& \frac{x y_{1}-x_{2} y_{1}-x y_{2}+x_{1} y_{2}}{x_{1}-x_{2}}<y<\frac{x y_{2}-x_{3} y_{2}-x y_{3}+x_{2} y_{3}}{x_{2}-x_{3}} \text { and } x_{3}<x<x_{2} .
\end{aligned}
$$

So the differential form corresponding to the above region becomes

$$
\begin{aligned}
& d \log \left(\frac{y-\frac{x y_{1}-x_{3} y_{1}-x y_{3}+x_{1} y_{3}}{x_{1}-x_{3}}}{y-\frac{x y_{1}-x_{2} y_{1}-x y_{2}+x_{1} y_{2}}{x_{1}-x_{2}}}\right) \wedge d \log \left(\frac{x-x_{3}}{x-x_{1}}\right)+d \log \left(\frac{y-\frac{x y_{2}-x_{3} y_{2}-x y_{3}+x_{2} y_{3}}{x_{2}-x_{3}}}{y-\frac{x y_{1}-x_{2} y_{1}-x y_{2}+x_{1} y_{2}}{x_{1}-x_{2}}}\right) \wedge d \log \left(\frac{x-x_{2}}{x-x_{3}}\right) \\
& =\frac{d x d y\left(x_{2} y_{1}-x_{3} y_{1}-x_{1} y_{2}+x_{3} y_{2}+x_{1} y_{3}-x_{2} y_{3}\right)^{2}}{\left(x_{1} y-x_{1} y_{2}-x_{2} y-x y_{1}+x_{2} y_{1}+x y_{2}\right)\left(x_{1} y-x_{1} y_{3}-x_{3} y-x y_{1}+x_{3} y_{1}+x y_{3}\right)\left(x_{2} y-x_{2} y_{3}-x_{3} y-x y_{2}+x_{3} y_{2}+x y_{3}\right)}
\end{aligned}
$$

$$
=\frac{\left\langle Y d^{2} Y\right\rangle\left\langle Z_{1} Z_{2} Z_{3}\right\rangle^{2}}{\left\langle Y Z_{1} Z_{2}\right\rangle\left\langle Y Z_{2} Z_{3}\right\rangle\left\langle Y Z_{3} Z_{1}\right\rangle}
$$

- The procedure is very straightforward to implement in mathematica (which has a very powerful Cylindrical Decomposition algorithm)
- Unfortunately it scales badly with the number of variables so is only useful in fairly small examples
- active area of computational research to improve speed
- Using this procedure verified the squared amplituhedron gives the square of the amplitude in a number of cases.
eg. $\left(\mathcal{A}^{2}\right)_{7 ; 3}^{(0)}$
- this should give the combination $2 N^{3} M H V_{7}+2 N M H V_{7} N^{2} M H V_{7}$
- squared amplituhedron $=$ subset of $Y=Y_{1} \wedge Y_{2} \wedge Y_{3} \subset \operatorname{Gr}(3,7)$ such that $\langle Y i i+1 j j+1\rangle>0$
- We coordinatise $\operatorname{Gr}(3,7)$ as

$$
\left(\begin{array}{l}
Y_{1} \\
Y_{2} \\
Y_{3}
\end{array}\right)=\left(\begin{array}{lllllll}
1 & a & b & 0 & c & d & 0 \\
0 & e & f & 1 & g & h & 0 \\
0 & i & j & 0 & k & 1 & 1
\end{array}\right)\left(\begin{array}{c}
Z_{1} \\
\vdots \\
Z_{7}
\end{array}\right)
$$

- Set the Z_{i} as basis elements, then the inequalities are written in the variables a, \ldots, l.
- performing a cylindrical decomposition, converting the result into a differential form and covariantising yields:

$$
\begin{aligned}
& \left\langle Y d^{4} Y_{1}\right\rangle\left\langle Y d^{4} Y_{2}\right\rangle\left\langle Y d^{4} Y_{3}\right\rangle\langle 1234567\rangle^{4} \times \\
& \left(\frac{\langle Y 7123\rangle}{\langle Y 1234\rangle\langle Y 1267\rangle\langle Y 2345\rangle\langle Y 2356\rangle\langle Y 2367\rangle\langle Y 7134\rangle\langle Y 7145\rangle\langle Y 7156\rangle}+\ldots\right)
\end{aligned}
$$

- precisely the lightlike limit of the 7 point correlator, or equivalently the square of the amplitude $2 \mathrm{~N}^{3} \mathrm{MHV}_{7}+2 \mathrm{NMHV}_{7} \mathrm{~N}^{2} \mathrm{MHV}_{7}$

5-point 1 loop NMHV

Here we have external twistors $Z_{i} \in P^{4}$, the loop 2-plane $\mathcal{L}=\mathcal{L}_{1} \wedge \mathcal{L}_{2} \in \operatorname{Gr}(2,5)$ as well as $Y \in P^{4} . Y$ and \mathcal{L} satisfy the following inequalities
$\langle\mathcal{L} Y 12\rangle>0,\langle\mathcal{L} Y 23\rangle>0,\langle\mathcal{L} Y 34\rangle>0,\langle\mathcal{L} Y 45\rangle>0,\langle\mathcal{L} Y 51\rangle>0$ $\langle Y 1234\rangle>0,\langle Y 2345\rangle>0,\langle Y 3451\rangle>0,\langle Y 4512\rangle>0,\langle Y 5123\rangle>0$

Putting coordinates for \mathcal{L} and Y as

$$
\binom{\mathcal{L}_{1}}{\mathcal{L}_{2}}=\left(\begin{array}{ccccc}
1 & 0 & a & b & 0 \\
0 & 1 & c & d & 0
\end{array}\right)\left(\begin{array}{c}
Z_{1} \\
\vdots \\
Z_{5}
\end{array}\right), \quad Y=\left(\begin{array}{lllll}
e & f & 1 & g & h
\end{array}\right)\left(\begin{array}{c}
Z_{1} \\
\vdots \\
Z_{5}
\end{array}\right),
$$

inequalities lead (via cyl. decomp.)
$-\frac{2 a d e f-2 a e g-2 b c e f+b e-c f g+d f+2 g}{d e f g h(a d-b c)(a e+c f-1)(a d f-a g+b(-c) f+b)} d a \wedge d b \wedge . . \wedge d h$

This lifts to the co-ordinate independent form

$$
\begin{aligned}
& \frac{\left\langle\mathcal{L} Y d^{2} \mathcal{L}_{1}\right\rangle\left\langle\mathcal{L} Y d^{2} \mathcal{L}_{2}\right\rangle\left\langle Y d^{4} Y\right\rangle\langle 12345\rangle^{4}}{\langle Y 1234\rangle\langle Y 2345\rangle\langle Y 3451\rangle\langle Y 4512\rangle\langle Y 5123\rangle} \\
& \times\left(\frac{\langle 1234 Y\rangle\langle 2345 Y\rangle}{\langle\mathcal{L} Y 12\rangle\langle\mathcal{L} Y 23\rangle\langle\mathcal{L} Y 34\rangle\langle\mathcal{L} Y 45\rangle}+\frac{\langle 5134 Y\rangle\langle 2345 Y\rangle}{\langle\mathcal{L} Y 23\rangle\langle\mathcal{L} Y 34\rangle\langle\mathcal{L} Y 45\rangle\langle\mathcal{L} Y 51\rangle}\right. \\
& \quad+\frac{\langle 1234 Y\rangle\langle 5123 Y\rangle}{\langle\mathcal{L} Y 12\rangle\langle\mathcal{L} Y 23\rangle\langle\mathcal{L} Y 34\rangle\langle\mathcal{L} Y 51\rangle}+\frac{\langle 1245 Y\rangle\langle 5123 Y\rangle}{\langle\mathcal{L} Y 12\rangle\langle\mathcal{L} Y 23\rangle\langle\mathcal{L} Y 45\rangle\langle\mathcal{L} Y 51\rangle} \\
& \left.\quad+\frac{\langle 1245 Y\rangle\langle 5134 Y\rangle}{\langle\mathcal{L} Y 12\rangle\langle\mathcal{L} Y 34\rangle\langle\mathcal{L} Y 45\rangle\langle\mathcal{L} Y 51\rangle}\right)
\end{aligned}
$$

- Recognise the sum of five box functions (parity even part of the one loop amplitude) multiplied by the tree-level NMHV amplitude.
- precisely what we expect: the square of the superamplitude at first non-trivial order in both coupling and the Grassmann odd variable expansion is

$$
\begin{aligned}
\left.\left(\frac{A_{\mathrm{MHV}}^{(0)}+A_{\mathrm{NMHV}}^{(0)}+a A_{\mathrm{MHV}}^{(1)}+a A_{\mathrm{NMHV}}^{(1)}+\ldots}{A_{\mathrm{MHV}}^{(0)}}\right)^{2}\right|_{a^{1}, \chi^{4}} & =\frac{2 A_{\mathrm{MHV}}^{(0)} A_{\mathrm{NMHV}}^{(1)}+A_{\mathrm{NMHV}}^{(0)} A_{\mathrm{MHV}}^{(1)}}{\left(A_{\mathrm{MHV}}^{(0)}\right)^{2}} \\
& =2 \frac{A_{\mathrm{NMHV}}^{(0)}}{A_{\mathrm{MHV}}^{(0)}}\left(\bar{M}_{\mathrm{MHV}}^{(1)}+M_{\mathrm{MHV}}^{(1)}\right)
\end{aligned}
$$

Examples checked:

- Tree level:
- $\left(\mathcal{A}^{2}\right)_{5 ; 1}^{(0)}$ (5 point NMHV)
- $\left(\mathcal{A}^{2}\right)_{6: 2}^{(0)}\left(6\right.$ point $\left.\mathrm{N}^{2} \mathrm{MHV}\right)$ Here we needed to sum two orientations
- $\left(\mathcal{A}^{2}\right)_{7 ; 3}^{(0)}\left(7\right.$ point $\left.\mathrm{N}^{3} \mathrm{MHV}\right)$
- Loop level:
- $\left(\mathcal{A}^{2}\right)_{4: 0}^{(1)}(4$ point 1-loop)
- $\left(\mathcal{A}^{2}\right)_{4: 0}^{(2)}$ (4 point 2-loop)
- $\left(\mathcal{A}^{2}\right)_{5 ; 1}^{(1)}$ (5 point 1-loop NMHV)

Direct Correlahedron Check

- Unfortunately the smallest example of the correlator $G_{5 ; 1}^{(0)}$ is already far too big for cylindrical decomposition to be helpfu!
- $Y \in \operatorname{Gr}(6,10)$ is 24 dimensional!
- Worse: evidence that a naive implementation of the above procedure can not work. We know the singularity structure of the correlator, contains eg $1 /\left(\tau_{i-1} . \sigma_{i}\right)^{2}$ and more generally Parke-Taylor-like singularities $1 /(\tau . \sigma \sigma . \nu \nu . \tau)$ Singularity structure "wraps around".
- Use additional local $G L(2)$ symmetries of each X_{i}.
- Using this we can put coordinates on Y as follows

$$
Y=\left(\begin{array}{c}
Y_{1} \\
\vdots \\
Y_{6}
\end{array}\right)=\left(\begin{array}{cccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & a & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & b \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & c & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & e & f
\end{array}\right)
$$

Correlahedron inequalities $\left\langle Y X_{i} X_{j}\right\rangle>0$ become

- rewriting as a cylindrical decomposition and converting to a differential form gives

$$
\frac{(a-b)^{2} d a d b d c d e d f}{(a-1) a(b-1) b(e-c f)(c(-f)+c+e+f-1)(a b-a f-b c+c f-e)}
$$

- The known answer in these coordinates becomes
$\frac{d \mu(a, b, c, e, f)}{(a-1) a(b-1) b(e-c f)(c(-f)+c+e+f-1)(a b-a f-b c+c f-e)}$
where $d \mu(a, b, c, e, f)$ is the measure, $\left\langle Y d^{4} Y_{1}\right\rangle \ldots\left\langle Y d^{4} Y_{6}\right\rangle$ reduced to these variables.
- Complete agreement on identifying
$d \mu(a, b, c, e, f)=(a-b)^{2} d a d b d c$ de $d f$. Note that the term $(a-b)^{2}$ is indeed the natural measure factor, the Vandermonde determinant squared, one obtains when writing an integral measure on $G L(2)$ invariant under conjugation in terms of its eigenvalues.

Conclusions and further directions

- Proposed a conceptually simple geometric object the "correlahedron" equivalent to stress-tensor multiplet correlators

- Further examples both of the squared amplituhedron and especially the correlahedron
- Clarify subtleties, especially the ". . . " above
- Take bosonised superspace more seriously: understand how to extract components directly rather than going via superspace
- Generalisations: Higher charge correlators [chicherin Drummond Sokatchev pH]
- Obtaining amplitudes from the $k=n-4$ squared amplitude (limit of 4-pnt correlator)

