The mechanics and geometry of real and fictitious elastic charges

Michael Moshe

Syracuse University & Harvard University

 ${\rm KITP}$ - March 2016

The mechanics and geometry of real and fictitious elastic charges (in 2D)

Michael Moshe

Syracuse University & Harvard University

KITP - March 2016

Contractile cells

Challenges related with singular sources in elasticity

Collective behavior of cells¹

Failure of amorphous solids

Mechanics of complex defects

Kirigami

¹Livne et al. 2014 Nature Communications

Talk plan

- ▶ The formalism
- ▶ Geometry of elastic charges
- ▶ Mechanics of elastic charges
- ► Fictitious elastic charges

Why?

▶ An elastic body - a manifold $(\tilde{\mathcal{M}}, \bar{\mathfrak{g}})$.

- ► An elastic body a manifold $(\tilde{\mathcal{M}}, \bar{\mathfrak{g}})$.
- ▶ A configuration an embedding $\phi: \tilde{\mathcal{M}} \to \mathbb{R}^2$.

- ► An elastic body a manifold $(\tilde{\mathcal{M}}, \bar{\mathfrak{g}})$.
- ▶ A configuration an embedding $\phi: \tilde{\mathcal{M}} \to \mathbb{R}^2$.
- \blacktriangleright The configuration induces actual metric ${\mathfrak g}$

- ► An elastic body a manifold $(\tilde{\mathcal{M}}, \bar{\mathfrak{g}})$.
- ▶ A configuration an embedding $\phi: \tilde{\mathcal{M}} \to \mathbb{R}^2$.
- ▶ The configuration induces actual metric \mathfrak{g}
- ► The strain tensor

$$u_{ij} = \frac{1}{2} \left(\mathfrak{g}_{ij} - \bar{\mathfrak{g}}_{ij} \right)$$

- ▶ An elastic body a manifold $(\tilde{M}, \bar{\mathfrak{g}})$.
- ▶ A configuration an embedding $\phi: \tilde{\mathcal{M}} \to \mathbb{R}^2$.
- ▶ The configuration induces actual metric \mathfrak{g}
- ► The strain tensor

$$u_{ij} = \frac{1}{2} \left(\mathfrak{g}_{ij} - \bar{\mathfrak{g}}_{ij} \right)$$

▶ The elastic energy - penalty for local metric discrepancies

$$E = \int \mathcal{W}(\mathfrak{g}, \bar{\mathfrak{g}}) \, \mathrm{d}V$$

- ▶ An elastic body a manifold $(\tilde{\mathcal{M}}, \bar{\mathfrak{g}})$.
- ▶ A configuration an embedding $\phi : \tilde{\mathcal{M}} \to \mathbb{R}^2$.
- ightharpoonup The configuration induces actual metric $\mathfrak g$
- ► The strain tensor

$$u_{ij} = \frac{1}{2} \left(\mathfrak{g}_{ij} - \bar{\mathfrak{g}}_{ij} \right)$$

▶ The elastic energy - penalty for local metric discrepancies

$$E = \int \mathcal{W}(\mathfrak{g}, \bar{\mathfrak{g}}) \, \mathrm{d}V$$

For example - a Hookean constitutive law

$$\mathcal{W}(\mathfrak{g},\bar{\mathfrak{g}}) = \frac{1}{2} A^{ijkl} u_{ij} u_{kl}$$

A is the elastic tensor.

- ► An elastic body a manifold $(\tilde{M}, \bar{\mathfrak{g}})$.
- ▶ A configuration an embedding $\phi: \tilde{\mathcal{M}} \to \mathbb{R}^2$.
- \triangleright The configuration induces actual metric \mathfrak{g}
- ► The strain tensor

$$u_{ij} = \frac{1}{2} \left(\mathfrak{g}_{ij} - \bar{\mathfrak{g}}_{ij} \right)$$

▶ The elastic energy - penalty for local metric discrepancies

$$E = \int \mathcal{W}(\mathfrak{g}, \bar{\mathfrak{g}}) \, \mathrm{d}V$$

$$\bar{dl}^2 = \bar{\mathfrak{g}}_{11} du^2 + 2\bar{\mathfrak{g}}_{12} du \, dv + \bar{\mathfrak{g}}_{22} dv^2$$

$$dl^2 = \mathfrak{g}_{11}du^2 + 2\mathfrak{g}_{12}du\,dv + \mathfrak{g}_{22}dv^2$$

$$\mathfrak{g}=\bar{\mathfrak{g}}?$$

► Two manifolds are isometric iff their curvatures are identical

- ➤ Two manifolds are isometric iff their curvatures are identical
- ▶ Planar configuration \Rightarrow $K_G = 0$

- ➤ Two manifolds are isometric iff their curvatures are identical
- ▶ Planar configuration \Rightarrow $K_G = 0$ Euclidean $\bar{\mathfrak{g}}$ \Rightarrow $\bar{K}_G = 0$ \Rightarrow Compatibility

- ➤ Two manifolds are isometric iff their curvatures are identical
- ▶ Planar configuration $\Rightarrow K_G = 0$ Euclidean $\bar{\mathfrak{g}}$ $\Rightarrow \bar{K}_G = 0$ \Rightarrow Compatibility Non-Euclidean $\bar{\mathfrak{g}}$ $\Rightarrow \bar{K}_G \neq 0$ \Rightarrow Incompatibility

- ➤ Two manifolds are isometric iff their curvatures are identical
- ▶ Planar configuration $\Rightarrow K_G = 0$ Euclidean $\bar{\mathfrak{g}}$ $\Rightarrow \bar{K}_G = 0$ \Rightarrow Compatibility Non-Euclidean $\bar{\mathfrak{g}}$ $\Rightarrow \bar{K}_G \neq 0$ \Rightarrow Incompatibility

 K_G is the source for residual stresses

The elastic problem

$$E = \int \mathcal{W}(\mathfrak{g}, \bar{\mathfrak{g}}) \, \mathrm{d}V$$

The elastic problem

$$E = \int \mathcal{W}(\mathfrak{g}, \bar{\mathfrak{g}}) \, \mathrm{d}V$$

What is the reference metric of an elastic charge? (Geometry)

The elastic problem

$$E = \int \mathcal{W}(\mathfrak{g}, \bar{\mathfrak{g}}) \, \mathrm{d}V$$

What is the reference metric of an elastic charge? (Geometry)

How this functional can be minimized in practice? (Mechanics)

Geometric description of elastic charges²

 $^{^2\}mathrm{M.M.}$ et al. 2015 PNAS

The solution

Multipoles of curvature

$$\bar{K} = D^n \delta(\vec{x})$$

$$D^0 = q$$
, $D^1 = \vec{b} \cdot \vec{\nabla}$, $D^2 = \vec{\nabla} \cdot \mathbf{Q} \cdot \vec{\nabla}$, ...

The solution

Multipoles of curvature

$$\bar{K} = D^n \delta(\vec{x})$$

$$D^0 = q$$
, $D^1 = \vec{b} \cdot \vec{\nabla}$, $D^2 = \vec{\nabla} \cdot \mathbf{Q} \cdot \vec{\nabla}$, ...

A conformal representation of the reference metric

$$\bar{\mathfrak{g}} = e^{2\phi(r,\theta)} \left(\begin{array}{cc} 1 & 0 \\ 0 & r^2 \end{array} \right)$$

$$\phi(r,\theta) = \beta + \alpha \ln(r) + \sum_{n=1}^{\infty} r^{-n} (\alpha_n \sin(n\theta) + \beta_n \cos(n\theta))$$

The monopole $\phi = \frac{\alpha}{2\pi} \ln r$

The monopole $\phi = \frac{\alpha}{2\pi} \ln r$

The dipole $\phi = \frac{b\cos\theta}{2\pi r}$

The monopole $\phi = \frac{\alpha}{2\pi} \ln r$

The dipole $\phi = \frac{b\cos\theta}{2\pi r}$

The quadrupole
$$\phi = \frac{Q\cos 2\theta}{2\pi r^2}$$

The monopole
$$\phi = \frac{\alpha}{2\pi} \ln r$$

The dipole
$$\phi = \frac{b\cos\theta}{2\pi r}$$

The quadrupole
$$\phi = \frac{Q\cos 2\theta}{2\pi r^2}$$

Why is it good?

Localized plastic deformation

Defects in amorphous solids $\,$

Localized plastic deformation

Defects in amorphous solids $\,$

Elastic charge at least of quadrupolar order

Displacement field of a localized plastic deformation 3

 $^{^3{\}rm Dasgupta}$ et al. 2012 PRL

The description of several elastic charges⁴

⁴Livne et al. 2014 Nature Communications

The description of several elastic charges⁴

Additivity of the conformal factor

$$\bar{\mathfrak{g}} = e^{2\varphi} \left(\begin{array}{cc} 1 & 0 \\ 0 & r^2 \end{array} \right) \qquad \varphi = \sum \varphi_i$$

⁴Livne et al. 2014 Nature Communications

Mechanics of elastic charges⁵

 $^{^5\}mathrm{M.M.},\;\mathrm{et}\;\mathrm{al.}\;2015\;\mathrm{PRE}$

The equilibrium equation

Define the stress tensor:
$$\sigma^{\mu\nu} = \frac{\partial W(\mathfrak{g},\bar{\mathfrak{g}})}{\partial u_{\mu\nu}}$$

The equilibrium equation

$$\left(\nabla_{\mu} + \bar{\Gamma}^{\lambda}_{\lambda\mu} - \Gamma^{\lambda}_{\lambda\mu}\right)\sigma^{\mu\nu} = 0 \qquad \sigma^{\mu\nu}n_{\nu} = 0$$

The equilibrium equation

Define the stress tensor: $\sigma^{\mu\nu} = \frac{\partial W(\mathfrak{g},\bar{\mathfrak{g}})}{\partial u_{\mu\nu}}$

The equilibrium equation

$$\left(\nabla_{\mu} + \bar{\Gamma}^{\lambda}_{\lambda\mu} - \Gamma^{\lambda}_{\lambda\mu}\right)\sigma^{\mu\nu} = 0 \qquad \sigma^{\mu\nu}n_{\nu} = 0$$

A nonlinear equation for $\mathfrak{g}!$

The equilibrium equation

Define the stress tensor:
$$\sigma^{\mu\nu} = \frac{\partial W(\mathfrak{g},\bar{\mathfrak{g}})}{\partial u_{\mu\nu}}$$

The equilibrium equation

$$\left(\nabla_{\mu} + \bar{\Gamma}^{\lambda}_{\lambda\mu} - \Gamma^{\lambda}_{\lambda\mu}\right)\sigma^{\mu\nu} = 0 \qquad \sigma^{\mu\nu}n_{\nu} = 0$$

A nonlinear equation for g!

Representation if the solution

$$\sigma^{\mu\nu}=\sqrt{\frac{1}{|\mathfrak{g}|}}\sqrt{\frac{1}{|\overline{\mathfrak{g}}|}}\varepsilon^{\mu\alpha}\varepsilon^{\nu\beta}\nabla_{\alpha}\bar{\nabla}_{\beta}\psi$$

$$\mathfrak{g} = \bar{\mathfrak{g}} + \eta \mathfrak{g}^{(1)} + \eta^2 \mathfrak{g}^{(2)} + O(\eta^3)$$
$$\psi = \eta \psi^{(1)} + \eta^2 \psi^{(2)} + O(\eta^3)$$

$$\mathfrak{g} = \bar{\mathfrak{g}} + \eta \mathfrak{g}^{(1)} + \eta^2 \mathfrak{g}^{(2)} + O(\eta^3)$$
$$\psi = \eta \psi^{(1)} + \eta^2 \psi^{(2)} + O(\eta^3)$$

$$\frac{1}{V}\bar{\Delta}\bar{\Delta}\psi^{(1)} + \frac{2\bar{K}_G}{V}\bar{\Delta}\psi^{(1)} + \frac{1}{V}(1+\nu_p)\bar{\mathfrak{g}}^{\mu\nu}\left(\partial_{\mu}\bar{K}_G\right)\left(\partial_{\nu}\psi^{(1)}\right) = \bar{K}_G$$

$$\mathfrak{g} = \bar{\mathfrak{g}} + \eta \mathfrak{g}^{(1)} + \eta^2 \mathfrak{g}^{(2)} + O(\eta^3)$$
$$\psi = \eta \psi^{(1)} + \eta^2 \psi^{(2)} + O(\eta^3)$$

$$\frac{1}{V}\bar{\Delta}\bar{\Delta}\psi^{(1)} + \frac{2\bar{K}_G}{V}\bar{\Delta}\psi^{(1)} + \frac{1}{V}(1+\nu_p)\bar{\mathfrak{g}}^{\mu\nu}\left(\partial_{\mu}\bar{K}_G\right)\left(\partial_{\nu}\psi^{(1)}\right) = \bar{K}_G$$

$$\bar{K}_G \sim \eta \rightarrow \frac{1}{V} \bar{\Delta} \bar{\Delta} \psi^{(1)} = \bar{K}_G$$

$$\mathfrak{g} = \bar{\mathfrak{g}} + \eta \mathfrak{g}^{(1)} + \eta^2 \mathfrak{g}^{(2)} + O(\eta^3)$$
$$\psi = \eta \psi^{(1)} + \eta^2 \psi^{(2)} + O(\eta^3)$$

$$\frac{1}{Y}\bar{\Delta}\bar{\Delta}\psi^{(1)} + \frac{2\bar{K}_G}{Y}\bar{\Delta}\psi^{(1)} + \frac{1}{Y}(1+\nu_p)\bar{\mathfrak{g}}^{\mu\nu}\left(\partial_{\mu}\bar{K}_G\right)\left(\partial_{\nu}\psi^{(1)}\right) = \bar{K}_G$$

$$ar{K}_G \sim \eta \to rac{1}{Y} ar{\Delta} ar{\Delta} \psi^{(1)} = ar{K}_G$$

$$E = rac{1}{2} \int \psi^{(1)} ar{K}_G \, dS$$

$$E = \frac{1}{2} \int \psi^{(1)} K_G \, dS$$

Interacting elastic multipoles

$U_{12}=\int \psi_1 ar{K}_2dS$		
Defect type	ψ	$ar{K}_G$
Monopole	$\frac{Y}{8\pi}q \mathbf{x} ^2\left(\ln \mathbf{x} -1\right)$	$q\delta({f x})$
Dipole	$\frac{Y}{4\pi}(\mathbf{p}\cdot\mathbf{x})\ln \mathbf{x} $	$(\mathbf{p}\cdot\nabla)\delta(\mathbf{x})$
Quadrupole	$\frac{Y}{16\pi}(\hat{\mathbf{x}}^T \cdot \mathbf{Q} \cdot \hat{\mathbf{x}})$	$\frac{1}{4}(\nabla^T \cdot \mathbf{Q} \cdot \nabla)\delta(\mathbf{x})$
Point	$\frac{Y}{16\pi}(\hat{\mathbf{x}}^T\cdot\mathbf{C}\cdot\hat{\mathbf{x}})$	$\frac{1}{4}(\nabla^T \cdot \mathbf{C} \cdot \nabla)\delta(\mathbf{x})$
External	$\frac{1}{2}\mathbf{x}^T \cdot \mathrm{Cof}(\sigma) \cdot \mathbf{x}$	_

Challenges related with singular sources in elasticity

Collective behavior of cells

Failure of amorphous solids

Mechanics of complex defects

Interactions between holes

Challenges related with singular sources in elasticity

Collective behavior of cells

Failure of amorphous solids

Mechanics of complex defects

Kirigami

Mechanics of Kirigami

A small taste from a work in progress

Array of frames

Array of frames

Fictitious elastic charges

Fictitious elastic charges

$$\bar{K}_{\mathrm{Im}} = \alpha \tilde{\Delta} \delta \left(\mathbf{x} \right) + \beta \tilde{\Delta} \Delta \delta \left(\mathbf{x} \right)$$

Fictitious elastic charges

$$\bar{K}_{\rm Im} = \alpha \tilde{\Delta} \delta \left(\mathbf{x} \right) + \beta \tilde{\Delta} \Delta \delta \left(\mathbf{x} \right)$$

The lowest order of the fictitious charge is always the quadrupole

Screening defects (Seung & Nelson 88')

$$\frac{1}{Y}\Delta\Delta\chi=\bar{K}-K$$

Screening the quadrupole

Effective mechanics of pulled frames

Screening the quadrupole

Effective mechanics of pulled frames

Neighboring frames are compatible

Neighboring frames are compatible

Frames are frustrated

Collective excitation of screening quadrupoles

