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Challenges related with singular sources in elasticity

Collective behavior of cells! Mechanics of complex defects

Kirigami

1. . .
Livne et al. 2014 Nature Communications



Talk plan

The formalism
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Geometry of elastic charges
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Mechanics of elastic charges
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Fictitious elastic charges



Geometric formulation of elasticity
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The configuration induces actual metric g

v

The strain tensor
Ujj = %(gz‘j — 8ij)

The elastic energy - penalty for local metric discrepancies
E=[W(g.g)dV

v

For example - a Hookean constitutive law
W (g,8) = 3 A u;;up

A is the elastic tensor.



Geometric formulation of elasticity - 2D

» An elastic body - a manifold (M, Q).

v

A configuration - an embedding ¢ : M — R2.
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The configuration induces actual metric g
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The strain tensor
Ujj = %(gz‘j — 8ij)

The elastic energy - penalty for local metric discrepancies
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Incompatibility and residual stresses

» Two manifolds are isometric iff their curvatures are

identical

» Planar configuration = Kg=20
Euclidean g = Kg=0 = Compatibility
Non-Euclidean § = Kg#0 = Incompatibility

K¢ s the source for residual stresses
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The elastic problem

E=[W(g,0)dV

What is the reference metric of an elastic charge? (Geometry)

How this functional can be minimized in practice? (Mechanics)



Geometric description of elastic charges?

2M.M. et al. 2015 PNAS
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The solution

Multipoles of curvature
K =D") (%)

Dl=gq, D'=b-V, D*=V.Q-V,

A conformal representation of the reference metric

e (10
g:ew(,e)(O T2)

¢ (r,0) =B+ aln(r) + > 02 r~" (ay sin (nf) + By, cos (nd))



The monopole

¢=5-Inr
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The monopole

¢=5-Inr

The dipole

¢ __ bcosh
- 27nr

The quadrupole
¢ Q cos 26
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The monopole

¢=5-Inr

The dipole

¢ __ bcosh
- 27nr

The quadrupole
¢ Q cos 26

“omr?

Why is it good?



Localized plastic deformation

Defects in amorphous solids




Localized plastic deformation

Defects in amorphous solids

Elastic charge at least of quadrupolar order



Displacement field of a localized plastic deformation?

3Dasgupta et al. 2012 PRL



The description of several elastic charges*

4tLivne et al. 2014 Nature Communications



The description of several elastic charges*

Additivity of the conformal factor

_ 1 0
9:€2¢<0 r2) @ZZ%

4tLivne et al. 2014 Nature Communications



Mechanics of elastic charges®

5M.M., et al. 2015 PRE
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The equilibrium equation

OW(g,g
Define the stress tensor: o = #
n

The equilibrium equation
<Vu+f‘§M—F§M> o =0 o*n, =0

A nonlinear equation for g!

Representation if the solution

ot =, /ﬁq /Eﬁeu%uﬁva%w
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Solving the equilibrium equation
g q q
g=g+nsY +n%g® +0(n?)
¥ =M + 0293 + 0(n?)
LARU 4 B9 B0 1 £ (14 1) (9,5) (A00) = R

KG ~T1n— %Aﬁw(l) = KG

E = %f’l/)(l)f_((y ds




Interacting elastic multipoles

Urp = [ 1Ko dS
Defect type ( Kqg
Y o2
Monopole 5-¢x|* (In|x| — 1) q0(x)
Dipole %(P -x) In [x| (p-V)i(x)
Quadrupole %(3{[ Q%) 1V Q- V)i(x)
. Y kT .C. % 1T
Point o (X X) LT C-V)i(x)
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Mechanics of Kirigami

A small taste from a work in progress
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Fictitious elastic charges
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Fictitious elastic charges

Kim = aAd (x) + BAAS (x)

The lowest order of the fictitious charge is always the quadrupole



Screening defects (Seung & Nelson 887)




Screening the quadrupole

Effective mechanics of pulled frames



Screening the quadrupole
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Array of fictitious quadrupoles
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Array of fictitious quadrupoles




Array of fictitious quadrupoles

Collective excitation of screening quadrupoles



Thank you
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