The mechanics and geometry of real and fictitious elastic charges

Michael Moshe
Syracuse University \& Harvard University

KITP - March 2016

The mechanics and geometry of real and fictitious elastic charges (in 2D)

Michael Moshe
Syracuse University \& Harvard University

KITP - March 2016

Examples of singular sources of deformations

Examples of singular sources of deformations

Contractile cells

Examples of singular sources of deformations

Contractile cells
Plastic deformations

Examples of singular sources of deformations

Contractile cells
Plastic deformations

Examples of singular sources of deformations

Contractile cells
Plastic deformations

Examples of singular sources of deformations

Contractile cells

Plastic deformations
Holes

Challenges related with singular sources in elasticity

Collective behavior of cells ${ }^{1}$

Failure of amorphous solids

[^0]
Talk plan

- The formalism
- Geometry of elastic charges
- Mechanics of elastic charges
- Fictitious elastic charges

Geometric formulation of elasticity

Why?

Geometric formulation of elasticity - 2D

Geometric formulation of elasticity - 2D

- An elastic body - a manifold $(\tilde{\mathcal{M}}, \overline{\mathfrak{g}})$.

Geometric formulation of elasticity - 2D

- An elastic body - a manifold $(\tilde{\mathcal{M}}, \overline{\mathfrak{g}})$.
- A configuration - an embedding $\phi: \tilde{\mathcal{M}} \rightarrow \mathbb{R}^{2}$.

Geometric formulation of elasticity - 2D

- An elastic body - a manifold $(\tilde{\mathcal{M}}, \overline{\mathfrak{g}})$.
- A configuration - an embedding $\phi: \tilde{\mathcal{M}} \rightarrow \mathbb{R}^{2}$.
- The configuration induces actual metric \mathfrak{g}

Geometric formulation of elasticity - 2D

- An elastic body - a manifold $(\tilde{\mathcal{M}}, \overline{\mathfrak{g}})$.
- A configuration - an embedding $\phi: \tilde{\mathcal{M}} \rightarrow \mathbb{R}^{2}$.
- The configuration induces actual metric \mathfrak{g}
- The strain tensor

$$
u_{i j}=\frac{1}{2}\left(\mathfrak{g}_{i j}-\overline{\mathfrak{g}}_{i j}\right)
$$

Geometric formulation of elasticity - 2D

- An elastic body - a manifold $(\tilde{\mathcal{M}}, \overline{\mathfrak{g}})$.
- A configuration - an embedding $\phi: \tilde{\mathcal{M}} \rightarrow \mathbb{R}^{2}$.
- The configuration induces actual metric \mathfrak{g}
- The strain tensor

$$
u_{i j}=\frac{1}{2}\left(\mathfrak{g}_{i j}-\overline{\mathfrak{g}}_{i j}\right)
$$

- The elastic energy - penalty for local metric discrepancies

$$
E=\int \mathcal{W}(\mathfrak{g}, \overline{\mathfrak{g}}) \mathrm{d} V
$$

Geometric formulation of elasticity - 2D

- An elastic body - a manifold $(\tilde{\mathcal{M}}, \overline{\mathfrak{g}})$.
- A configuration - an embedding $\phi: \tilde{\mathcal{M}} \rightarrow \mathbb{R}^{2}$.
- The configuration induces actual metric \mathfrak{g}
- The strain tensor

$$
u_{i j}=\frac{1}{2}\left(\mathfrak{g}_{i j}-\overline{\mathfrak{g}}_{i j}\right)
$$

- The elastic energy - penalty for local metric discrepancies

$$
E=\int \mathcal{W}(\mathfrak{g}, \overline{\mathfrak{g}}) \mathrm{d} V
$$

For example - a Hookean constitutive law

$$
\mathcal{W}(\mathfrak{g}, \overline{\mathfrak{g}})=\frac{1}{2} A^{i j k l} u_{i j} u_{k l}
$$

A is the elastic tensor.

Geometric formulation of elasticity - 2D

- An elastic body - a manifold $(\tilde{\mathcal{M}}, \overline{\mathfrak{g}})$.
- A configuration - an embedding $\phi: \tilde{\mathcal{M}} \rightarrow \mathbb{R}^{2}$.
- The configuration induces actual metric \mathfrak{g}
- The strain tensor

$$
u_{i j}=\frac{1}{2}\left(\mathfrak{g}_{i j}-\overline{\mathfrak{g}}_{i j}\right)
$$

- The elastic energy - penalty for local metric discrepancies

$$
E=\int \mathcal{W}(\mathfrak{g}, \overline{\mathfrak{g}}) \mathrm{d} V
$$

Intuition

Intuition

Intuition

Intuition

$$
\overline{d l}{ }^{2}=\overline{\mathfrak{g}}_{11} d u^{2}+2 \overline{\mathfrak{g}}_{12} d u d v+\overline{\mathfrak{g}}_{22} d v^{2}
$$

Intuition

Intuition

Intuition

Intuition

Intuition

Intuition

$$
d l^{2}=\mathfrak{g}_{11} d u^{2}+2 \mathfrak{g}_{12} d u d v+\mathfrak{g}_{22} d v^{2}
$$

Intuition

$$
\mathfrak{g}=\overline{\mathfrak{g}} ?
$$

Incompatibility and residual stresses

- Two manifolds are isometric iff their curvatures are identical

Incompatibility and residual stresses

- Two manifolds are isometric iff their curvatures are identical
- Planar configuration $\quad \Rightarrow \quad K_{G}=0$

Incompatibility and residual stresses

- Two manifolds are isometric iff their curvatures are identical
- Planar configuration $\quad \Rightarrow \quad K_{G}=0$

Euclidean $\overline{\mathfrak{g}} \quad \Rightarrow \quad \bar{K}_{G}=0 \quad \Rightarrow \quad$ Compatibility

Incompatibility and residual stresses

- Two manifolds are isometric iff their curvatures are identical
- Planar configuration $\quad \Rightarrow \quad K_{G}=0$

Euclidean $\overline{\mathfrak{g}} \quad \Rightarrow \quad \bar{K}_{G}=0 \quad \Rightarrow \quad$ Compatibility
Non-Euclidean $\overline{\mathfrak{g}} \Rightarrow \bar{K}_{G} \neq 0 \quad \Rightarrow \quad$ Incompatibility

Incompatibility and residual stresses

- Two manifolds are isometric iff their curvatures are identical
- Planar configuration $\quad \Rightarrow \quad K_{G}=0$

Euclidean $\overline{\mathfrak{g}} \quad \Rightarrow \quad \bar{K}_{G}=0 \quad \Rightarrow \quad$ Compatibility Non-Euclidean $\overline{\mathfrak{g}} \Rightarrow \bar{K}_{G} \neq 0 \Rightarrow$ Incompatibility
\bar{K}_{G} is the source for residual stresses

The elastic problem

$$
E=\int \mathcal{W}(\mathfrak{g}, \overline{\mathfrak{g}}) \mathrm{d} V
$$

The elastic problem

$$
E=\int \mathcal{W}(\mathfrak{g}, \overline{\mathfrak{g}}) \mathrm{d} V
$$

What is the reference metric of an elastic charge? (Geometry)

The elastic problem

$$
E=\int \mathcal{W}(\mathfrak{g}, \overline{\mathfrak{g}}) \mathrm{d} V
$$

What is the reference metric of an elastic charge? (Geometry)
How this functional can be minimized in practice? (Mechanics)

Geometric description of elastic charges ${ }^{2}$

The solution

Multipoles of curvature

$$
\begin{gathered}
\bar{K}=\mathrm{D}^{n} \delta(\vec{x}) \\
\mathrm{D}^{0}=q, \quad \mathrm{D}^{1}=\vec{b} \cdot \vec{\nabla}, \quad \mathrm{D}^{2}=\vec{\nabla} \cdot \mathbf{Q} \cdot \vec{\nabla}, \quad \ldots
\end{gathered}
$$

The solution

Multipoles of curvature

$$
\begin{gathered}
\bar{K}=\mathrm{D}^{n} \delta(\vec{x}) \\
\mathrm{D}^{0}=q, \quad \mathrm{D}^{1}=\vec{b} \cdot \vec{\nabla}, \quad \mathrm{D}^{2}=\vec{\nabla} \cdot \mathbf{Q} \cdot \vec{\nabla}, \quad \ldots
\end{gathered}
$$

A conformal representation of the reference metric

$$
\overline{\mathfrak{g}}=e^{2 \phi(r, \theta)}\left(\begin{array}{cc}
1 & 0 \\
0 & r^{2}
\end{array}\right)
$$

$$
\phi(r, \theta)=\beta+\alpha \ln (r)+\sum_{n=1}^{\infty} r^{-n}\left(\alpha_{n} \sin (n \theta)+\beta_{n} \cos (n \theta)\right)
$$

The monopole $\phi=\frac{\alpha}{2 \pi} \ln r$

The monopole $\phi=\frac{\alpha}{2 \pi} \ln r$

The dipole $\phi=\frac{b \cos \theta}{2 \pi r}$

The monopole $\phi=\frac{\alpha}{2 \pi} \ln r$

The dipole
$\phi=\frac{b \cos \theta}{2 \pi r}$

The quadrupole
$\phi=\frac{Q \cos 2 \theta}{2 \pi r^{2}}$

The monopole $\phi=\frac{\alpha}{2 \pi} \ln r$

The dipole
$\phi=\frac{b \cos \theta}{2 \pi r}$

The quadrupole
$\phi=\frac{Q \cos 2 \theta}{2 \pi r^{2}}$

Why is it good?

Localized plastic deformation

Defects in amorphous solids

Localized plastic deformation

Defects in amorphous solids

Elastic charge at least of quadrupolar order

Displacement field of a localized plastic deformation ${ }^{3}$

The description of several elastic charges ${ }^{4}$

[^1]
The description of several elastic charges ${ }^{4}$

Additivity of the conformal factor

$$
\overline{\mathfrak{g}}=e^{2 \varphi}\left(\begin{array}{cc}
1 & 0 \\
0 & r^{2}
\end{array}\right) \quad \varphi=\sum \varphi_{i}
$$

${ }^{4}$ Livne et al. 2014 Nature Communications

Mechanics of elastic charges ${ }^{5}$

[^2]
The equilibrium equation

$$
\text { Define the stress tensor: } \sigma^{\mu \nu}=\frac{\partial \mathcal{W}(\mathfrak{g}, \overline{\mathrm{g}})}{\partial u_{\mu \nu}}
$$

The equilibrium equation

$$
\left(\nabla_{\mu}+\bar{\Gamma}_{\lambda \mu}^{\lambda}-\Gamma_{\lambda \mu}^{\lambda}\right) \sigma^{\mu \nu}=0 \quad \sigma^{\mu \nu} n_{\nu}=0
$$

The equilibrium equation

$$
\text { Define the stress tensor: } \sigma^{\mu \nu}=\frac{\partial \mathcal{W}(\mathfrak{g}, \overline{\mathrm{g}})}{\partial u_{\mu \nu}}
$$

The equilibrium equation

$$
\left(\nabla_{\mu}+\bar{\Gamma}_{\lambda \mu}^{\lambda}-\Gamma_{\lambda \mu}^{\lambda}\right) \sigma^{\mu \nu}=0 \quad \sigma^{\mu \nu} n_{\nu}=0
$$

A nonlinear equation for \mathfrak{g} !

The equilibrium equation

$$
\text { Define the stress tensor: } \sigma^{\mu \nu}=\frac{\partial \mathcal{W}(\mathfrak{g}, \overline{\mathrm{g}})}{\partial u_{\mu \nu}}
$$

The equilibrium equation

$$
\left(\nabla_{\mu}+\bar{\Gamma}_{\lambda \mu}^{\lambda}-\Gamma_{\lambda \mu}^{\lambda}\right) \sigma^{\mu \nu}=0 \quad \sigma^{\mu \nu} n_{\nu}=0
$$

A nonlinear equation for \mathfrak{g} !

Representation if the solution

$$
\sigma^{\mu \nu}=\sqrt{\frac{1}{|\mathfrak{g}|}} \sqrt{\frac{1}{\mid \overline{\mathfrak{g}}} \varepsilon^{\mu \alpha}} \varepsilon^{\nu \beta} \nabla_{\alpha} \bar{\nabla}_{\beta} \psi
$$

Solving the equilibrium equation

$$
\begin{gathered}
\mathfrak{g}=\overline{\mathfrak{g}}+\eta \mathfrak{g}^{(1)}+\eta^{2} \mathfrak{g}^{(2)}+O\left(\eta^{3}\right) \\
\psi=\eta \psi^{(1)}+\eta^{2} \psi^{(2)}+O\left(\eta^{3}\right)
\end{gathered}
$$

Solving the equilibrium equation

$$
\begin{gathered}
\mathfrak{g}=\overline{\mathfrak{g}}+\eta \mathfrak{g}^{(1)}+\eta^{2} \mathfrak{g}^{(2)}+O\left(\eta^{3}\right) \\
\psi=\eta \psi^{(1)}+\eta^{2} \psi^{(2)}+O\left(\eta^{3}\right) \\
\frac{1}{Y} \bar{\Delta} \bar{\Delta} \psi^{(1)}+\frac{2 \bar{K}_{G}}{Y} \bar{\Delta} \psi^{(1)}+\frac{1}{Y}\left(1+\nu_{p}\right) \overline{\mathfrak{g}}^{\mu \nu}\left(\partial_{\mu} \bar{K}_{G}\right)\left(\partial_{\nu} \psi^{(1)}\right)=\bar{K}_{G}
\end{gathered}
$$

Solving the equilibrium equation

$$
\begin{gathered}
\mathfrak{g}=\overline{\mathfrak{g}}+\eta \mathfrak{g}^{(1)}+\eta^{2} \mathfrak{g}^{(2)}+O\left(\eta^{3}\right) \\
\psi=\eta \psi^{(1)}+\eta^{2} \psi^{(2)}+O\left(\eta^{3}\right) \\
\frac{1}{Y} \bar{\Delta} \bar{\Delta} \psi^{(1)}+\frac{2 \bar{K}_{G}}{Y} \bar{\Delta} \psi^{(1)}+\frac{1}{Y}\left(1+\nu_{p}\right) \overline{\mathfrak{g}}^{\mu \nu}\left(\partial_{\mu} \bar{K}_{G}\right)\left(\partial_{\nu} \psi^{(1)}\right)=\bar{K}_{G} \\
\bar{K}_{G} \sim \eta \rightarrow \frac{1}{Y} \bar{\Delta} \bar{\Delta} \psi^{(1)}=\bar{K}_{G}
\end{gathered}
$$

Solving the equilibrium equation

$$
\begin{gathered}
\mathfrak{g}=\overline{\mathfrak{g}}+\eta \mathfrak{g}^{(1)}+\eta^{2} \mathfrak{g}^{(2)}+O\left(\eta^{3}\right) \\
\psi=\eta \psi^{(1)}+\eta^{2} \psi^{(2)}+O\left(\eta^{3}\right) \\
\frac{1}{Y} \bar{\Delta} \bar{\Delta} \psi^{(1)}+\frac{2 \bar{K}_{G}}{Y} \bar{\Delta} \psi^{(1)}+\frac{1}{Y}\left(1+\nu_{p}\right) \overline{\mathfrak{g}}^{\mu \nu}\left(\partial_{\mu} \bar{K}_{G}\right)\left(\partial_{\nu} \psi^{(1)}\right)=\bar{K}_{G} \\
\bar{K}_{G} \sim \eta \rightarrow \frac{1}{Y} \bar{\Delta} \bar{\Delta} \psi^{(1)}=\bar{K}_{G} \\
E=\frac{1}{2} \int \psi^{(1)} \bar{K}_{G} d S
\end{gathered}
$$

Interacting elastic multipoles

$$
U_{12}=\int \psi_{1} \bar{K}_{2} d S
$$

Defect type

ψ
\bar{K}_{G}
Monopole $\quad \frac{Y}{8 \pi} q|\mathbf{x}|^{2}(\ln |\mathbf{x}|-1)$

$$
q \delta(\mathbf{x})
$$

Dipole

$$
\frac{Y}{4 \pi}(\mathbf{p} \cdot \mathbf{x}) \ln |\mathbf{x}|
$$

$$
(\mathbf{p} \cdot \nabla) \delta(\mathbf{x})
$$

Quadrupole

$$
\frac{Y}{16 \pi}\left(\hat{\mathbf{x}}^{T} \cdot \mathbf{Q} \cdot \hat{\mathbf{x}}\right)
$$

$$
\frac{1}{4}\left(\nabla^{T} \cdot \mathbf{Q} \cdot \nabla\right) \delta(\mathbf{x})
$$

Point
$\frac{Y}{16 \pi}\left(\hat{\mathbf{x}}^{T} \cdot \mathbf{C} \cdot \hat{\mathbf{x}}\right)$
$\frac{1}{4}\left(\nabla^{T} \cdot \mathbf{C} \cdot \nabla\right) \delta(\mathbf{x})$
External
$\frac{1}{2} \mathbf{x}^{T} \cdot \operatorname{Cof}(\sigma) \cdot \mathbf{x}$

Challenges related with singular sources in elasticity

Collective behavior of cells

Failure of amorphous solids

Mechanics of complex defects

Interactions between holes

Challenges related with singular sources in elasticity

Collective behavior of cells

Failure of amorphous solids

Mechanics of complex defects

Kirigami

Mechanics of Kirigami

A small taste from a work in progress

Array of frames

Array of frames

Fictitious elastic charges

Fictitious elastic charges

Fictitious elastic charges

The lowest order of the fictitious charge is always the quadrupole

Screening defects (Seung \& Nelson 88')

$$
\frac{1}{Y} \Delta \Delta \chi=\bar{K}-K
$$

Screening the quadrupole

Effective mechanics of pulled frames

Screening the quadrupole

Effective mechanics of pulled frames

Array of fictitious quadrupoles

Array of fictitious quadrupoles

Neighboring frames are compatible

Array of fictitious quadrupoles

Neighboring frames are compatible

Frames are frustrated

Array of fictitious quadrupoles

Array of fictitious quadrupoles

Collective excitation of screening quadrupoles

Thank you

[^0]: ${ }^{1}$ Livne et al. 2014 Nature Communications

[^1]: ${ }^{4}$ Livne et al. 2014 Nature Communications

[^2]: ${ }^{5}$ M.M., et al. 2015 PRE

