To Bounce or Not to Bounce

KITP

January 2007

Thomas Hertog

w/ Gary Horowitz, Ben Craps and Neil Turok

The AdS/CFT correspondence

String theory with anti-de Sitter boundary conditions is equivalent to certain gauge theories living on the boundary of the AdS cylinder.

Strong/weak coupling duality,

$l_{AdS}^4/l_s^4 \sim g_s N \sim \lambda$

The finite N gauge theory is viewed as a *nonperturbative definition* of string theory with AdS boundary conditions.

Holographic (AdS) Cosmology

Generalization: SUGRA solutions where smooth asymptotically AdS initial data emerge from a big bang in the past and evolve to a big crunch in the future. [T.H & G. Horowitz '04]

Does the dual finite N gauge theory evolution give a fully quantum gravity description of the singularities?

Outline

- Cosmology with AdS_4 boundary conditions
- Dual CFT Evolution
- AdS_5 cosmology and its dual description

Setup

We consider the following action,

 $S = \int d^4x \sqrt{-g} \left[\frac{1}{2}R - \frac{1}{2}(\nabla\phi)^2 + 2 + \cosh(\sqrt{2}\phi) \right]$

 \rightarrow consistent truncation of M-theory with $AdS_4\times S^7$ boundary conditions.

Scalar, $m^2 = -2 > m_{BF}^2 = -9/4$

AdS in global coordinates,

$$ds^{2} = -(1+r^{2})dt^{2} + \frac{dr^{2}}{1+r^{2}} + r^{2}d\Omega_{2}$$

In all asymptotically AdS solutions, ϕ decays as

$$\phi(t,r,\Omega) = \frac{\alpha(t,\Omega)}{r} + \frac{\beta(t,\Omega)}{r^2}$$

Boundary Conditions

Standard (susy) boundary conditions on ϕ : $\beta = 0$

$$\phi = \frac{\alpha(t,\Omega)}{r} + \mathcal{O}(1/r^3)$$

$$g_{rr} = \frac{1}{r^2} - \frac{(1 + \alpha^2/2)}{r^4} + O(1/r^5)$$

More generally: $\beta(\alpha) \neq 0$

$$\phi = \frac{\alpha(t,\Omega)}{r} + \frac{\beta(\alpha)}{r^2}$$

Conserved charges remain finite, but acquire explicit contribution from ϕ .

e.g. mass of spherical symmetric solutions,

$$M = 4\pi (M_0 + \alpha\beta + \int_0^\alpha \beta(\tilde{\alpha})d\tilde{\alpha})$$

AdS-invariant boundary conditions

One-parameter class of functions $\beta_k(\alpha)$ that define AdS-invariant boundary conditions,

 $\beta_k = k\alpha^2$

$$M = 4\pi (M_0 + \frac{4}{3}k\alpha^3)$$

Claim: For all $k \neq 0$, there exist smooth asymptotically AdS initial data that evolve to a singularity which extends to the boundary of AdS in finite global time.

Examples:

1. Evolution of rescaled soliton initial data

2. FRW cosmologies from analytic continuation of Euclidean instantons.

AdS Cosmology

O(4) symmetric Euclidean instanton,

Lorentzian cosmology from analytic continuation:

- Inside lightcone from $\phi(0)$: FRW evolution to big crunch that hits boundary as $t \to \pi/2$.
- Asymptotically (at large r) one has

$$\phi = \frac{\alpha(t)}{r} + \frac{k\alpha^2(t)}{r^2} + O(r^{-3}), \qquad \alpha(t) = \frac{\alpha(0)}{\cos t}$$

Dual Field Theory

M Theory with $AdS_4 \times S^7$ boundary conditions is dual to the 2+1 CFT on a stack of M2 branes.

• With $\beta = 0$, $\phi \sim \alpha/r$ is dual to $\Delta = 1$ operator \mathcal{O} ,

$$\mathcal{O} = \frac{1}{N} Tr T_{ij} \varphi^i \varphi^j$$

and

$$\alpha \leftrightarrow \langle \mathcal{O} \rangle$$

• Taking $\beta(\alpha) \neq 0$ corresponds to adding a multitrace interaction $\int W(\mathcal{O})$ to the CFT, such that [Witten '02, Berkooz et al. '02]

$$\beta = \frac{\delta W}{\delta \alpha}$$

Dual Field Theory

With $\beta_k = k \alpha^2$,

$S = S_0 + \frac{k}{3} \int \mathcal{O}^3$

The dual description of AdS cosmologies involves field theories that at first sight always contain at least one operator \mathcal{O} with a potential that is unbounded from below.

What is the CFT evolution dual to AdS cosmologies?

To leading order in 1/N, $< \mathcal{O} > \rightarrow \infty$

Toy Model Field Theory

Neglecting the nonabelian structure ($\mathcal{O} \leftrightarrow \varphi^2$), the potential becomes

This admits an exact homogeneous classical (zero energy) solution,

$$\varphi(t) \sim \frac{1}{k^{1/4} \cos^{1/2} t}$$

which reproduces time evolution of SUGRA solutions.

 \rightarrow semiclassically and at large N, the CFT evolution ends in finite time.

Regularization

Regularize by adding quartic interaction $\epsilon \mathcal{O}^4$,

This changes bulk boundary conditions to

 $eta_{k,\epsilon} = -k lpha^2 + \epsilon lpha^3$,

- small change instanton initial data, $M_i \sim \epsilon$
- potentially significant change bulk evolution in regime $\alpha^2 > k/\epsilon$, i.e. near the singularities

Black Holes with Scalar Hair

Static spherical solutions

$$ds_4^2 = -h(r)e^{-2\delta(r)}dt^2 + h^{-1}(r)dr^2 + r^2d\Omega_2^2$$

of Einstein eqs,

$$\begin{split} h\phi_{,rr} + \left(\frac{2h}{r} + \frac{r}{2}\phi_{,r}^2h + h_{,r}\right)\phi_{,r} &= V_{,\phi}\\ \\ 1 - h - rh_{,r} - \frac{r^2}{2}\phi_{,r}^2h &= r^2V(\phi)\\ \\ \delta_{,r} &= -\frac{1}{2}\phi_{,r}^2 \end{split}$$

Asymptotically:

$$\phi(r) = \frac{\alpha}{r} + \frac{\beta}{r^2}$$

Regularity at horizon R_e determines $\phi_{,r}(R_e)$.

Integrating field equations outward yields a point in (α, β) plane for each pair (R_e, ϕ_e) .

Repeating for all ϕ_e gives curve $\beta_{R_e}(\alpha)$.

Black Holes with Scalar Hair

Some curves $\beta_{R_e}(\alpha)$:

For given boundary conditions $\beta(\alpha)$, the hairy black hole solutions are given by the intersection points,

 $\beta_{R_e}(a) = \beta(\alpha)$

In particular, with $\beta_{k,\epsilon} = -k\alpha^2 + \epsilon \alpha^3$,

 \rightarrow two branches of hairy black holes, corresponding to typical excitations about the $\alpha \neq 0$ vacua of $V(\phi)$.

Hairy Black Hole Mass

Mass of hairy black holes:

 \rightarrow the large $M \sim \epsilon$ hairy black hole is the natural endstate of evolution if the instanton initial data are evolved with $\beta_{k,e} = -k\alpha^2 + \epsilon\alpha^3$ boundary conditions.

• As $\epsilon \to 0$, one has for the $M \sim \epsilon$ black hole

$$R_e o \infty$$
, $\phi_e o \phi_i(0)$

• Bulk evolution independent of ϵ for a while.

Back to Cosmology

If the field theory is regular, then AdS/CFT suggests evolution to a big crunch can be viewed as evolving to an equilibrium state in the dual theory.

What corrections are sufficient?

Bulk: black hole forms when $\beta(\alpha) \rightarrow -C$ for large α .

Hence it is sufficient that at large ϕ ,

 $V(\phi) \ge -C\phi^2$

 \rightarrow V can be unbounded from below, as long as a wave packet does not reach infinity in finite time. (i.e. *H* is automatically self-adjoint)

Equilibration can happen because inhomogeneities first grow when V" decreases and then become dynamically important when V" increases again to -C.

AdS_5 cosmology

Consider now the following action,

 $S = \int d^5x \sqrt{-g} \left[\frac{1}{2}R - \frac{1}{2}(\nabla\phi)^2 + 2e^{2\phi/\sqrt{3}} + 4e^{-\phi/\sqrt{3}} \right]$

 \rightarrow consistent truncation of string theory with $AdS_5 \times S^5$ boundary conditions.

Scalar, $m^2 = -4 = m_{BF}^2$

In all asymptotically AdS solutions, ϕ decays as

$$\phi(t, r, \Omega) = \frac{\beta(t, \Omega) \ln r}{r^2} + \frac{\alpha(t, \Omega)}{r^2}$$

For boundary conditions

$$\beta_{\lambda} = -\lambda \alpha$$

there are instanton initial data that 'probably' produce a big crunch.

Dual Field Theory

String theory with $AdS_5 \times S^5$ boundary conditions is dual to $\mathcal{N}=4$ super Yang-Mills theory in D=4.

• For $\beta=0,~\phi\sim\alpha/r^2$ is dual to $\Delta=2$ operator \mathcal{O} ,

$$\mathcal{O} = Tr(\varphi_1^2 - \varphi_2^2)$$

and $\alpha \leftrightarrow \langle \mathcal{O} \rangle$

• Taking $\beta(\alpha) = -\lambda \alpha$ corresponds to adding a potential term

$$S = S_{YM} - \frac{\lambda}{2} \int \mathcal{O}^2$$

But this is essentially $\lambda \varphi^4$ in D = 4, which is renormalizable with only logarithmic corrections to the classical (unbounded) potential. [Witten '02]

Unstable Field Theories

The dual description of AdS cosmologies involves field theories that are genuinely unstable.

What are the principles?

Possible simplification since V'' continues to decrease.

 \rightarrow consider homogeneous mode $\varphi(t) = x(t)$.

"Quantum mechanics with unbounded potentials."

Quantum Mechanics

A right-moving wave packet in $V(\boldsymbol{x})$ reaches infinity in finite time.

To ensure probability is not lost at infinity one can construct a self-adjoint extension of the Hamiltonian, by carefully specifying its domain. [Carreau et al. '90]

 \rightarrow unitary evolution for all time.

What happens?

The center of a wave packet follows essentially the classical trajectory. When it reaches infinity, however, it bounces back.

 \rightarrow The AdS/CFT correspondence indicates that evolution continues, with an immediate transition from a big crunch to a big bang.