De-Orphanizing Olfaction

Hiroaki Matsunami
Duke University
Cliff and C. diff - Smelling the diagnosis
How can he do it?
A broad-, sensitive and fine-tuned chemical detector
The mammalian olfactory system

1. Odorants bind to receptors
2. Olfactory receptor cells are activated and send electric signals
3. The signals are relayed in glomeruli
4. The signals are transmitted to higher regions of the brain

Nasal Mucous

Olfactory Bulb

Olfactory Sensory Neurons

Olfactory Cilia
One olfactory neuron – one receptor rule

OR genes

Neuron I

Neuron II

Neuron III

Stochastic expression, negative feedback

Individual A

Individual B

Individual C
monophosphate (cAMP). Finally, this increase in cAMP opens cyclic nucleotide
gated cation (CNG) channels, causing ... single OR can
be activated by multiple odors (Fig. 1-4) (Firestein, 2001; B Malnic, et al., 1999;
Mombaerts, 2004a).
Number of ORs
Human 396
Mouse 1130
Rat 1207
Dog 811
A combinatorial odor coding

1. How many and which ORs are activated by a given odor?
2. How does each OR contribute odor perception?
Functional expression of ORs in heterologous cells: Importance of Receptor-Transporting Proteins (RTPs)

Cell Surface Expression

Saito et al., 04, Zhuang et al., 06
Large-scale in vitro screening with human and mouse ORs
OR functional variation affects odor perception in humans
Individual OR genes and odor perception

<table>
<thead>
<tr>
<th>OR</th>
<th>variant type</th>
<th>odor</th>
<th>natural source</th>
<th>reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>OR7D4</td>
<td>missense</td>
<td>androstenone, androstadienone</td>
<td>pork</td>
<td>Keller et al., 07, Lunde et al., 12</td>
</tr>
<tr>
<td>OR11H7P</td>
<td>segregated pseudogene</td>
<td>isovaleric acid</td>
<td></td>
<td>Menashe et al., 07</td>
</tr>
<tr>
<td>OR cluster</td>
<td></td>
<td>urine after eating asparagus</td>
<td></td>
<td>Eriksson et al., 10</td>
</tr>
<tr>
<td>OR cluster</td>
<td></td>
<td>soapy flavor of cilantro</td>
<td></td>
<td>Eriksson et al., 12</td>
</tr>
<tr>
<td>OR2J3</td>
<td>missense</td>
<td>cis-3-hexen-1-ol</td>
<td></td>
<td>McRae et al., 12</td>
</tr>
<tr>
<td>OR5A1</td>
<td>missense</td>
<td>beta-ionone</td>
<td>juice</td>
<td>Jaeger et al., 13</td>
</tr>
<tr>
<td>OR cluster</td>
<td></td>
<td>2-heptanone</td>
<td></td>
<td>McRae et al., 13</td>
</tr>
<tr>
<td>OR cluster</td>
<td></td>
<td>isobutyraldehyde</td>
<td></td>
<td>McRae et al., 13</td>
</tr>
<tr>
<td>OR cluster</td>
<td></td>
<td>beta-damascenone</td>
<td></td>
<td>McRae et al., 13</td>
</tr>
<tr>
<td>OR10G4</td>
<td>missense</td>
<td>guaiacol</td>
<td></td>
<td>Mainland et al.,</td>
</tr>
</tbody>
</table>
Each individual has a unique set of functional OR repertoire.
Acknowledgements:

Current and Former lab members

Yue Jiang
Natalie Gong
Neha Sharma
Ting Zhou
Jianghai Ho
Mingshan Chien
Jessica Ni
Elise Bruguera
Safa Kaleem

Joel Mainland
Kaylin Adipietro
Sandeepa Dey
Hanyi Zhuang
Rose Li
Peter Dong
Linda Liu
Mimi Zhan
Zoya Qureshy
Rich Roberts
Akemi Toyama
Yoshi Ishimaru
Momo Kubota
Qiuyi Chi
Felix Hsu
Harumi Saito
Aubrey Bonhivert

Collaborators

Leslie Vosshall
Andreas Keller
Kathrine Lunde
Bjørg Egelandsdal
Julia Walker
Eric Block
Minghong Ma
Ian Davison
Mike Ehlers

Reagents, Equipments,

Gilad Barnea
Richard Axel
Doug Marchuk
Hubi Amrein
Jorn Coers
Marc Caron
Joe Heitman
Raphael Valdivia
Debby Silver

IGSP Genome sequencing core
DCI DNA analysis facility
DCI Flow cytometry facility
Duke Neurotransgenic laboratory

Funding: NIH-NIDCD, HFSP, DARPA, Chancellor's Discovery Program