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Overview of SNfactory Search
Changes for 2007
Better object selection methods

Advice for future projects




SNfactory Search Goals

1. Not targeted at known galaxies
Match sample selection of
high-z surveys

2. Redshift 0.03 to 0.08
maximize power of sample
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Sea,rch Data Flow
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Basic Info (2005 - 2006)

Palomar Oschin 1.2-m telescope

e 2”-3” typical seeing

> 112 CCDs, 2400 x 598 pixels, 0.878” / pixel

NEAT: RG610 filter (long pass redward of 610 nm)

> 3 x 60 second exposures spread over ~1 hour

QUEST: (UB)RI or ri(z) in driftscan
Typical subtraction depth 19.5 to 20.5




Coverage
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350 - 850 deg? per night
2500 - 3000 deg? monitored per month (more on cadence later)

~20,000 deg? over course of survey




Discoveries
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Redshift Distribution
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Phase
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Discovery vs. Followup

SNtactory is Discovery + Followup
But our Followup facilities # Discovery facilities

Advantages:

» Search optimized for searching
(area, cadence, filter, exposure time, etc.)

» Followup optimized for followup
Disadvantages:

» Must find things early; search data less useful for lightcurve

® Coordination of Discovery — Followup resources




Cadence (sub)Optimization
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» Historic NEAT pointings were less than optimal for SN search

> We're working to improve cadence and pointings for SNe




' 2007: Rolling Trigger Search

ﬁ

Now optimize QUEST time for ~45% SN program
interleaved with TNO program

» Previously NEAT and QUEST picked their own pointings,
driven by NEO and TNO programs

Point-and-track RG610 only, April - November

® SN: 5-7 day cadence, 2 x 60 sec exposures, away from moon

» TNO: single 1 day cadence, 2 x 240 sec exp., near opposition

Optimization is a work in progress

Benefits: earlier discoveries, higher purity, better
distribution in time, away from moon




Many Timescales

Timescale Comments

100 - 300 sec Interleaved TNO pairs'

1-2 hour Nightly pairs/ triplets

1-2 nights TNO survey

3-4 nights Interleaved SN pairs?

5-7 nights SN survey

up to 7 years Historical data

Y5% of survey; from overlap in exposures interleaving columns of camera




The Problem of False Positives

B Lixtreme Case: SD5S5 | *
o 2005: 190,020 scans for 129 SNe Ia a a ’

saturation

» 2006: 2 epochs before scanning
. -
o 14,441 scans for 193 SNe Ia Readout glitch

® SNfactory pre-Aug 2006:
» ~1000 scans per day, save ~10 objects Ghost

® < 60% eftficiency for SNe 3 '. : ‘_
o We needed a better method of PSF, photo mismatch
distinguishing good candidates

from junk
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Threshold Cuts

Traditional, easy, straight-forward

Doesn’t handle correlations

No subtlety — barely fai

ng one cut 1s

same as badly failing al!

of them

Outliers are problematic

® every cut must be very efficient

o (1-e)N<<1




Decision Trees

o Make a tree of cut decisions

» Automated procedure picks branch points

® Naturally accommodates correlations

o e.g. treat high S/N candidates differently
than low S/N ones

® Single trees are powerful but  eion<s®
unstably dependent upon
specific training dataset

yes

Supernova




Boosted Decision Trees

Train a tree using events of known type (sig / bkg)
Increase the weight of misclassified events
Train another tree with the altered weights

Repeat many times

This makes a series of progressively better trees,

focusing on events which are difficult to classify

Final answer is weighted average of individual trees




Separating Junk from SNe

Classification method comparison
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~36,200 scans for 30 Ia (May-Jul) = ~4,300 scans for 51 Ia (Sep-Nov)

Similar to SDSS 2006 scan rate but with single night scan trigger



Advice for the Future

® Scaling issues matter

® Buying N times as many computers won’t automatically let you

process N times as

o Do mock data chal

much data

enges before you ever get real data

o Inheritideas and a

gorithms, but not code

o Realistic simulations are important

® Optimize tradeoffs

o Understand effects

» Use something be

between NEO, TNO, and SN programs

of search output vs. followup resources

tter than cuts

® Boosted Decision Trees work great for us




