Supernova Factory Search

Stephen Bailey, LBNL SN/Transient Search Workshop KITP, 27 April 2007

- Overview of SNfactory Search
- Changes for 2007
- Better object selection methods
- Advice for future projects

SNfactory Search Goals

1. Not targeted at known galaxies

Match sample selection of high-z surveys

2. Redshift 0.03 to 0.08 maximize power of sample

Search Data Flow

Oschin

Per night:

~30,000 images ~50 GB compressed

 $350-850 \text{ deg}^2$

Basic Info (2005 - 2006)

- Palomar Oschin 1.2-m telescope
 - 2"-3" typical seeing
 - 112 CCDs, 2400 x 598 pixels, 0.878"/pixel
- NEAT: RG610 filter (long pass redward of 610 nm)
 - 3 x 60 second exposures spread over ~1 hour
- QUEST: (UB)RI or ri(z) in driftscan
- Typical subtraction depth 19.5 to 20.5

Coverage

- 350 850 deg² per night
- 2500 3000 deg² monitored per month (more on cadence later)
- ~20,000 deg² over course of survey

Discoveries

Redshift Distribution

(2005 - 2007; 80% of type II sample)

Redshift vs. Phase

Discovery vs. Followup

- SNfactory is Discovery + Followup
- But our Followup facilities ≠ Discovery facilities
- Advantages:
 - Search optimized for searching (area, cadence, filter, exposure time, etc.)
 - Followup optimized for followup
- Disadvantages:
 - Must find things early; search data less useful for lightcurve
 - Coordination of Discovery → Followup resources

Cadence (sub)Optimization

- Historic NEAT pointings were less than optimal for SN search
- We're working to improve cadence and pointings for SNe

2007: Rolling Trigger Search

- Now optimize QUEST time for ~45% SN program interleaved with TNO program
 - Previously NEAT and QUEST picked their own pointings, driven by NEO and TNO programs
- Point-and-track RG610 only, April November
 - SN: 5-7 day cadence, 2 x 60 sec exposures, away from moon
 - TNO: single 1 day cadence, 2 x 240 sec exp., near opposition
- Optimization is a work in progress
- Benefits: earlier discoveries, higher purity, better distribution in time, away from moon

Many Timescales

Timescale	Comments
100 - 300 sec	Interleaved TNO pairs [†]
1-2 hour	Nightly pairs/triplets
1-2 nights	TNO survey
3-4 nights	Interleaved SN pairs [†]
5-7 nights	SN survey
up to 7 years	Historical data

[†]5% of survey; from overlap in exposures interleaving columns of camera

The Problem of False Positives

- Extreme Case: SDSS
 - 2005: 190,020 scans for 129 SNe Ia
 - 2006: 2 epochs before scanning
 - 14,441 scans for 193 SNe Ia
- SNfactory pre-Aug 2006:
 - ~1000 scans per day, save ~10 objects
 - < 60% efficiency for SNe</p>
- We needed a better method of distinguishing good candidates from junk

Threshold Cuts

- Traditional, easy, straight-forward
- Doesn't handle correlations
- No subtlety barely failing one cut is same as badly failing all of them
- Outliers are problematic
 - every cut must be very efficient
 - $(1-\epsilon)^N << 1$

Decision Trees

yes

Supernova

- Make a tree of cut decisions
 - Automated procedure picks branch points

Naturally accommodates correlations

• e.g. treat high S/N candidates differently than low S/N ones

 Single trees are powerful but unstably dependent upon specific training dataset

Boosted Decision Trees

- Train a tree using events of known type (sig / bkg)
- Increase the weight of misclassified events
- Train another tree with the altered weights
- Repeat many times

- This makes a series of progressively better trees, focusing on events which are difficult to classify
- Final answer is weighted average of individual trees

Separating Junk from SNe

~36,200 scans for 30 Ia (May-Jul) \rightarrow ~4,300 scans for 51 Ia (Sep-Nov)

Similar to SDSS 2006 scan rate but with single night scan trigger

Advice for the Future

- Scaling issues matter
 - Buying N times as many computers won't automatically let you process N times as much data
 - Do mock data challenges before you ever get real data
 - Inherit ideas and algorithms, but not code
- Realistic simulations are important
 - Optimize tradeoffs between NEO, TNO, and SN programs
 - Understand effects of search output vs. followup resources
- Use something better than cuts
 - Boosted Decision Trees work great for us