Subaru + HST SN searches **Andy Howell University of Toronto** Thanks to: Tony Spadafora (LBL) Nao Suzuki (LBL) Adam Riess (JHU/StSci)

IfA Deep Survey

Subaru Suprime-Cam + CFHT12k

■ Area: 2.5 □°

Gadence: 7-21d for 5 months

Barris & Tonry 2004 Survey 2001-2002

± 5σ limit: RIZ~25-26, over 9-17 visits

23 SNe, 15 at z>0.7

SCP Subaru

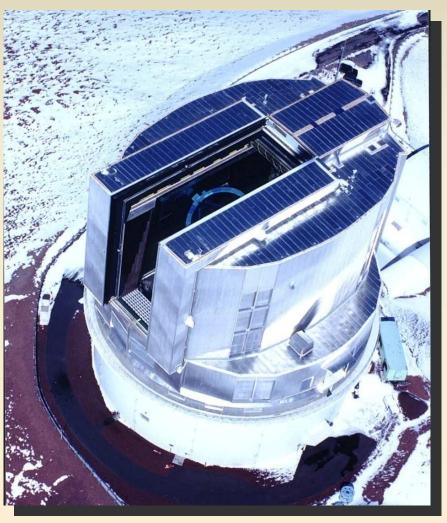
Spring 2002 (SDF+)

Area: 1.2 □° (7 SuprimeCam)

• Cadence: 2 visits

• 5σ limit: i'(AB)=26.5

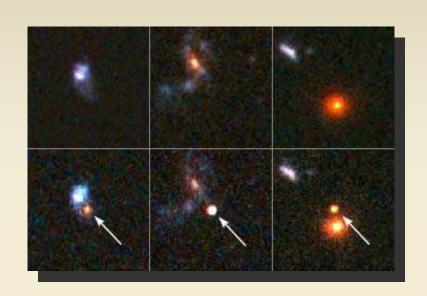
Fall 2002


Area: 0.92 □° (5
 SuprimeCam)

 Cadence: 2 ref, 7 search (3-14d)

• 5σ limit: i'(AB)=26.5

SCP Subaru yield


- 30 SNe reported in IAUC, followed spectroscopically (13 with some evidence for Ia)
- Detected SNe Ia to z=1.26
- Colors for z>1 Sne require ~8hr 8m IR observations per data point

Subaru Deep Field Search

- See Maoz KITP talk for details/collaborators
- 2 nights on Subaru/Suprime-Cam
- Re-imaged SDF
- Limit: r', i'~27, z'~26
- 40 SNe/epoch up to z=1.5
- First done 2 years ago, new run in Feb. 2007
- Run scheduled for May 2007
- One epoch each time: Cadence:0. Can only do probabilistic rates.

Typical ACS Search

See:
Riess et al. 2004,
2006
Strolger et al.
2004

■ Area: 0.05 □° (15 ACS)

(Cadence: 45d (5 epochs)

 \pm 5 σ limit: F850LP(Vega)=~26

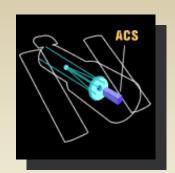
Additional I observations.

~5 z > 1 SNe la per run, up to z=1.5

Follow-up with ACS, NICMOS

ACS Searches

Higher-z


Cycle 11 (2002/3)

- ■: 0.05 □° (15 ACS)
- (5 epochs)
- ±: Z(Vega)=~26

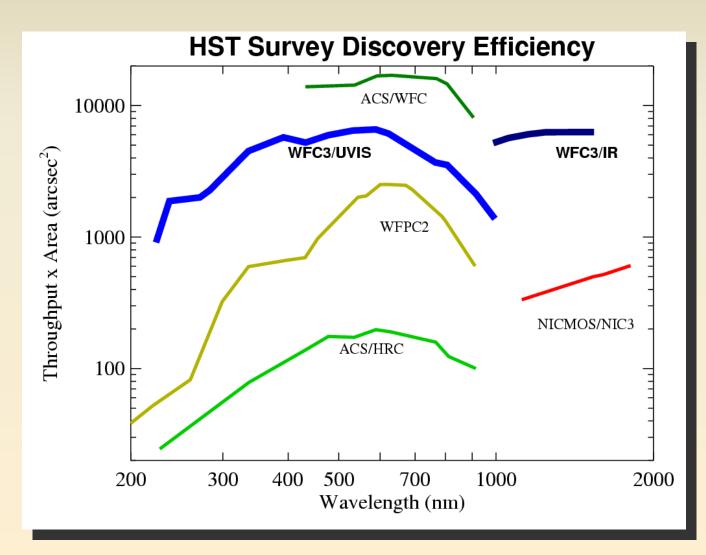
Higher-z

Cycle 13 (2004/5)

- ■: 0.05 □° (15 ACS)
- (5 epochs)
- \(\frac{1}{2}\): Z(Vega)=~26

Higher-z / SCP

Cycle 12 (2003/4)


- ■: 0.05 □° (15 ACS)
- (9: 45d (4 epochs)
- ±: Z(Vega)=~26

SCP Cluster

Cycle 14 (2005/6)

- ■: 0.08 □° (25 ACS)
- @: 23d, 8 visits/field
- ±: z'(Vega)=25.5

Future HST

- WFC3 worse than
 ACS for SNe
 - Lower optical throughput
 - Smaller area
- z>2 SNe la?
 - Not for cosmology
 - Could test systematics (Riess & Livio 2006)

Instruments

Source: Miyazaki

Instrument	A(m²)	Ω(□°)	ΑΩ	Year
SDSS	3.83	6.0	23	1998
Megacam	9.59	1.0	9.59	2003
Suprime-Cam	51.65	0.256	13.17	1999
Pan-STARRS 1			13	2009
DEC			37	
Hyper-Suprime			162 (91)	2012
LSST			329	

Conclusions

- Unless ACS is revived, the era of searching with HST at 1<z<1.5 is over
- Supernovae at z~1.2 can be found with Subaru, but ground-based IR follow-up and spectroscopy is heroic
- See Melbourne et al. (astro-ph/0703381) for SN at z=1.3 using Keck AO
- Might be able to get z>1 rates with Subaru if photometric typing can be made to work