First Flames:

Burning, Turbulence and Buoyancy

Jonathan Dursi (CITA), Frank Timmes (LANL), Mike Zingale (SUNY SB)

Flame Ignition

- Highly nonlinear, transient phenomenon
- Interaction of nuclear reactions, conductivity, hydrodynamics
- Difficult to model

Ignition

- Turbulent conditions
- Many potential ‘flashpoints’
- Important to understand where/ when points do ignite

Early Burning

- Ignition can occur on $\sim \mathrm{cm}$ scales
- Not resolved by large-scale simulation
- For initial conditions in largescale simulations, need to map
- turbulence \rightarrow ignition points
- ignition \rightarrow early flame bubbles

Outline

- Some notes on ignition
- One-zone
- Flame (ongoing)
- Detonation
- Early burning: what happens next?
- Characteristic size of flame bubbles
- Flame model?

Our contributions

- Dursi \& Timmes 2006:
- One-zone ignition times
- Very hard to ignite det ${ }^{n}$ at low densities: need much more than local supersonic flow. Geometric constraint.

Our contributions

- Zingale \& Dursi 2007:
- Under given conditions, there is a characteristic size of a flame bubble larger is shredded by motions, turbulence
- This characteristic size may lead to new flame model

One-zone ignition

- Ignition: interaction of:
- ‘chemistry’
- hydrodynamics
- conduction
- Even in one-zone model (no hydro,
 cond ${ }^{\text {n }}$) not trivial

One-zone ignition

- `map out’ ignition times for various conditions
- Density, temp, comp.
- Measurement of a 'burning time’

One-zone ignition

- ~7000 calculations
- Can build ignition time fitting function
- Quite good over ~15 orders of magnitude in ignition time
- Surprising dependence on composition - eg, even
 modest amount of Ne

One-zone ignition time

- Necessary input into ignition models
- Ignition time τ_{i} must be compared to flow (τ_{h}) and conduction (τ_{c}) time scales
- Also directly gives detonation thickness distance behind shock
 where burning occurs

Flame ignition

- Only a small part of the question we really want answer to:
- Given a particular turbulent hotspot, can that point ignite before eddies/conduction diffuse it away?

Flame ignition

- Simplified setup:
- Spherical gaussian hotspot, quiescent flow
- Even still, huge parameter space
- Work with undergraduate students Doucette, Hiratsuka, ongoing

Hotspot temperature

Detonation Ignition

- Ignition at a point -drives hot shock
- Shock must slow down to detonation speed for detonation to ignite
- How big a region? Naively, about a shock thickness $\left(D \tau_{i}\right)$

- About a factor of 5000 too small!

Detonation Ignition

- Curvature strongly modifies detonation
- Speed drops with curvature
- Beyond certain point, no steady detonation.
- Size of region must be ~5000 detonation thicknesses

Detonation Ignition

- Corresponding physical size of region grows rapidly with decreasing density
- By 5×10^{7}, already $\sim \mathrm{km}$ for low carbon fraction
- Hard for purely local process to ignite detonation

- But very easy to spuriously numerically ignite detonation

Outline

- Some notes on ignition
- One-zone
- Flame (ongoing)
- Detonation
- Early burning: what happens next?
- Characteristic size of flame bubbles
- Flame model?

First Burning

- Once a point ignites, what can happen?

First Burning

- Once a point ignites, what can happen?
- Spherical flame burning outwards

First Burning

- Once a point ignites, what can happen?
- Buoyant rise

First Burning

- Once a point ignites, what can happen?
- Distortion by turbulence

First Burning

- Each has characteristic velocity
- Flame speed fixed at given dens
- Others bubble-size dependent
- Flame speed always wins until grows

Size where flame speed stops dominating

What happens then?

Buoyant rise

- Vortical motions of bubbles own rise tear it apart
- Unless flame speed is faster
- Balance sets characteristic flame bubble size

Balance between two

sets bubble size

Characteristic bubble

Size

- Sets initial condition
‘flame bubble’ size for large-scale simulation ($\sim 0.5 \mathrm{~km}$)

Compared against simulations

- Semi-analytic calculations comparisons of velocities checked with `real’ flame code developed at LBNL (Zingale, Bell, Day, Rendleman)
- Note non-constant
 flame properties!
- Simple semianalytic model for this case: flame speed ~ rise speed between 30-50 flame thicknesses in size
$R=8.8 I_{\text {, }}$
$t=5.45 \times 10^{-5} \mathrm{~s}$
$R=30 I_{\text {t }}$
$\mathrm{t}=2.13 \times 10^{-4} \mathrm{~s}$
$R=22 I_{t}$

$$
\mathrm{t}=1.24 \times 10^{-4} \mathrm{~s}
$$

$$
\mathrm{R}=50 \mathrm{I},
$$

$\mathrm{t}=2.67 \times 10^{-4} \mathrm{~s}$

Flame modeling

- Flame modeling based on planar picture of flame
- Simulations w/ ~50 flame thicknesses
- Turbulent, RT corrugation
- But much larger range of scales

Zingale et al, (2005)

`Fragmenting Bubbles’ Flame Model

- Volume V burning outwards, fragmenting into characteristic volumes

$$
\frac{d \mathcal{V}}{d t}=\left(\frac{3 \mathcal{V}}{R_{f}}\right) \dot{R} .
$$

Conclusions

- Flames burn out significantly ($\sim \mathrm{km}$) before they start to rise
- Initial conditions need roughly this res
- Found typical burning bubble size
- Rapid decrease in size - increased burning?
- Is planar flame model appropriate?

Characteristic Bubble

 Size- Can also predict if burns through centre
- If ignites within ~ 25 km will certainly burn through centre
- No remaining pool of fuel

