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Motivation

* Big surveys SNFactory, SNLS, SNAP ...

* Pskovsky-Phillips relations = Cosmology

* Links: host galaxy < progenitors < ignition
conditions < explosion models < light
curves and spectra

The computation loop is now closed




Path to the supernova:
initial conditions

Single Degenerate Channel :

e a C/O White Dwarf of mass MWDis born as the warm heart of an
AGB star

* it has a metallicity Z, so has its companion

* the companion Roche-Lobe overtlows at time T which

corresponds to the Main sequence life time of its mass ;
it also determines the WD cooling time

o the WD accretes C/O at a rate f(MWD) given by the Hachisu (1996)

wind model and the efficiency of conversion H -> He -> C/O



Path to the supernova:
accretion phase

Neutrino cooling time : t
Convective turnover time : t
Carbon fusion time : t .

« t <t <t C burns mildly ; neutrino cooling gets rid of energy

generation

 t <t<t Cflash : convection sets in ; convective core grows fast

due to temperature sensitivity of fusion and electron degeneracy

e t <t <t Cignition : a tlame front builds up



Stellar evolution code :
FLASH THE TORTOISE

e STAR (Eggleton 1971) with a new moving mesh
algorithm (Dorfi&Drury 1986)

* A staggered mesh for small steps stability

* Special treatment of Chemical fluxes for extremely
low gradients : allows physical mixing

* A front tracking algorithm for the interfaces

between radiative and convective regions : allows to
compute the ultimate phases 0.01 s before 1gnition



Central temperature (K)

Initial M effect
WD

Lesafire, Han, Tout, Podsiadlowski, Martin (2006) MNRAS
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Higher M start with higher
density and lead to higher
ignition density

Small MWD: thermal diffusion is
faster than accretion, all have
the same evolution

High density : electron
screening effects in the burning
rates fix ignition density



Age effect

Lesafire et al (2006)

. i Age effect : : o
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Younger systems start at
higher temperature and ignite
at smaller density

For old age and high initial
mass, Coulomb screening
effects yield same ignition
density



Ignition conditions:
Central Density
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Ignition conditions
Distributions

Distribution of ignition densities
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Population synthesis by
Z.Han

Bimodal distribution

Young systems ignite at
higher density

Density <& Luminosity ?
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Suggests that density
increases luminosity ?

But quantitatively incorrect:

— ages ratio incorrect
— number ratio inverted

— bimodal distribution
shows up at intermediate
ages

Work in progress...



Ignition Conditions
Partial summary

* Age and WD mass determine p

* All parameters at ignition (but Z, C/O)
are correlated to p

* => Two Independent parameters:

- central density p at ignition (1% ?)

- metallicity Z of the progenitor stars (2" ? cf.
Mazzali & Podsiadlowski 2006)

* Distribution of p <=> luminosity
function of SNia ?



The convective Urca process

A convective | PreUrea:
LM\ 5D
Urca core
exemple :
3 Na \2*Ne
White Dwarf
L @ Convective
CITI1SSION M
D—Miet® \ Lot N core
e
capture Urca shell
M+e—D+y)

C burning
(produces Urca pairs)

At high densities, electron
captures enter into play

The neutrino losses associated
to them plays a complex réle as
we shall see..



The convective Urca process
through the litterature
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Convection

Two-streams formalism
(Lesaffre, Podsiadlowski, Tout, 2005)

- spherical RHD

- NO VISCOSIity

- an MLT model for horizontal
exchanges

Outputs:

Correct Energy and Chemical
budget

Differential reactivity

Ledoux criterion and convective
velocities depend on chemistry

Time-dependent model

Handles convective velocity
asymetries, hence potentially
overshooting

Handles interactions with mean flow



To the 1-stream limit:
a Self-consistent MLT

Energy equation:

[}E n [} ( 1 :| f_.;L tot I.I-
— Y — — : E — - ) -
Dt ' 'Dt Ji dim -
Chemistry equation:
DN 5.
— =R - —F
Dt om
with
1'1"-13-:::11': = _Ua }1
Ltot = Lrad + =S pu[—e—(V = V.}
= — I Iy — N al —
tot rad B 2 u+ ug " ;

and

Ftot = Fdiﬁ — .E'p’u, }.I?N

where the convective velocity:

w e eay/ oV —V,) —

,u.”.?m.

[TAY N]

Additional features (to MLT):
* Convective work

* Chemical dependence of the
convective luminosity

* Chemical dependence of the
convective velocity

However, numerical difficulties are
extreme...



Buoyancy Forces

* |ce cubes sink in classical stellar
evolution codes...

* Density is what matters

* In degenerate matter, density
depends little on T and a lot on
electron fraction

 => Urca reactions slow down
convective motions (Lesaffre,
Podsiadlowski, Tout 2005)

* arough estimate shows that C
burning wins over electron
captures when :

Ice cubes floating on Umeshu SRR >~1




1D simulations

2 snapshots of a 1D simulation
by FLASH THE TORTOISE
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2D simulations

Stein & Wheeler (2006)
Code DWARF
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Entropy & velocity field

* Code Features:

- 2D implicit-pressure scheme
— Chemical rates rescaled

 Results:

- Urca reactions slow down
convective motions

- Convective core confined
yields higher rate of increase
for the entropy

* C burning rates eventually should
win ?



A simple model
& Cosmological implications
Podsiadlowski, Mazzali, Lesafire, Wolf, Forster (astro-ph/0608324)

Budget of electron captures on the path to explosion

- H burning: the CNO cycle converts C,N and O to "N via (B+)
- He burning: “N(a,y)"°F(B+)'°O(a,y)**Ne
= C burning: *’Ne(p,y)*Na(p.y)**Mg(p.y)*>Al(B+)>°Mg(p.y)*°Al(B+)*Mg

- total: from 2 to 4 captures depending on the convecive Urca
efficiency and completeness of “Ne burning (Férster confirms)

| then deduce the neutron excess at ignition = f(Z)

Assuming fast combusion as in Timmes, Brown & Truran (2003),
| deduce from explosive nucleosynthesis X(°*°Ni) = f(Z)

We finally use the simple light curve models from Mazzali &
Podsiadlowski 2006 to deduce the drift of luminosity-width
relations with respect to the metallicity Z.



Conclusions

* Urca processes yield complex interactions
between convection and chemistry

* A simple model illustrates the potential
sensitivity of cosmological measures

* The convective Urca process must be
Included in our models...

* End of the loop: explosion models,
nucleosynthesis, light curves




Prospects

* Models FLASH with electron captures
(F. Forster)

* 2D-3D Explosions (lapichino, Répke)
* Nucleosynthesis (C. Travaglio)
* Light curves (S. Blinnikov)



