Short History of Supernova Research

Ken Nomoto (Univ. of Tokyo)

Progress of Theoretical Physics, Vol. 48, No. 1, July 1972

Mixing between Stellar Envelope and Core in Advanced Phases of Evolution. IV

-Effect of Super-Adiabaticity in Convective Envelope-----

Ken-ichi NOMOTO* and Daiichiro SUGIMOTO College of General Education, University c 150 Meguro, Komaba, Tokyo *Department of Astronomy, University of To

(Received December 28, 1971)

Dredge-up of the He Layer in AGB Stars

Fig. 8. Entropy distribution in the enve-

Thermonuclear Explosion Models for 3-8M_☉ AGB Stars

Carbon Detonation (Arnett 1971)

1976 Astrophys Space Sci

CARBON DEFLAGRATION SUPERNOVA, AN ALTERNATIVE TO CARBON DETONATION (Letter to the Editor)

KEN'ICHI NOMOTO and DAIICHIRO SUGIMOTO

Dept. of Earth Science and Astronomy, College of General Education, University of Tokyo, Tokyo, Japan

and

SADAYUKI NEO

Dept. of Physics, Kyoto University, Kyoto, Japan

(Received 16 October, 1975)

Nomoto et al.(1976)

From AGB Stars to Close Binaries

Approximation : Core ~ Single star - C+O Core growth ~ Accretion onto C+O WDs

$$M_{WD} \longrightarrow M_{ch}$$

Accreting WD evolution (M, dM/dt) Accretion of H, He, C+O (separately) Novae Thermonuclear Supernovae

Observations in Japan

- Little observational information on Type I SN was available in Japan.
- no SN observational group
- Abundance:
 - Si feature (Mustel & Chugai 1975)

Observations vs. Models

NASA/GSFC (1980-81) Meetings @ La Jolla, Austin, Santa Cruz Los Alamos, Kyoto

Type I Supernova

Light Curves Spectra

— Consistent with Deflagration Models

"Reality" -W7: parameter: $\ell/H_p=0.7$ AIP Conference Proceedings Series Editor: Hugh C. Wolfe Number 63

Supernovae Spectra (La Jolla Institute, 1980)

Editors Roland Meyerott and George H. Gillespie La Jolla Institute

American Institute of Physics New York 1980

La Jolla Workshop on Supernovae Spectra

TABLE OF CONTENTS	DIELECTRONIC RECOMBINATION, IONIZATION EQUILIBRIE, ADD RADIATIVE EMISSION FOR ASTROPHYSICALLY ABUNDANT E ENOTROO V.L. Jacobs & J. Davis
DENSITY, VELOCITY, AND TEMPERATURE PROFILES FOR THE EXTENDED ENVELOPE MODEL OF TYPE I SUPERNOVAE Gordon Lasher	PHOTOIONIZATION CROSS SECTIONS CALCULATED BY MANY BODY THEORY Hugh P. Kelly
THE LIGHT CURVE OF TYPE I SUPERNOVAE S.A. Colgate, Albert G. Petschek, & Colgate 7	SEMIEMPRICAL CALCULATION OF gf VALUES Robert L. Kurucz
SUDEDNOVA MODELS AND LIGHT CURVES	REPORTS OF WORKSHOP WORKING GROUPS - INTRODUCTION 167
TYPE I SUPERNOVAE: AN OBSERVER'S VIEW Robert P. Kirshner	REQUIREMENTS FOR FUTURE SN OBSERVATIONS: Y-RAY, X-RAY, UV, VISIBLE, IR (Workshop A) E. Margaret Burbidge Burbidge 168
SYNTHETIC SPECTRA OF SUPERNOVAE David Branch	SPECTROSCOPIC DATA NEEDS FOR THE FIRST FIVE SPECTRA OF Fe, Co, AND Ni (Workshop B) W.L. Wiese
THE EXCITATION OF SPECTRA IN THE ENVELOPES OF SUPERNOVAE AT LATE TIMES BY THE DEPOSITION OF POSITRONS AND Y-RAYS Roland E. Meyerott	RECOMBINATION RATES AND RECOMBINATION SPECTRA (Workshop C) V.L. Jacobs
RECENT ADVANCES IN CHARGED PARTICLE ENERGY DEPOSITION AND APPLICATIONS TO SUPERNOVA SPECTRA A.E.S. Green	ATOMIC PHYSICS AND SPECTROCOPIC DATA NEEDS FOR IMPROVED HYDRO- DYNAMIC PREDICTIONS OF COMPOSITION, TEMPERATURES, AND DENSITIES OF SN ENVELOPES (Workshop D) Roger A. Chevalier
ENERGY LEVELS, WAVELENGTHS AND TRANSITION PROBABILITIES FOR THE FIRST FIVE SPECTRA OF Fe, Co AND Ni W.L. Wiese	
EXCITATION AND IONIZATION OF MODERATELY HEAVY IONS R.H. Garstang 119	
THE OPACITY OF AN EXPANDING MEDIUM Alan H. Karp	

SN I Workshop (1980 March, Austin)

Austin 1981

Supernovae in Accreting White Dwarfs

Table 1. Supernovae in Accreting White Dwarfs

Nomoto (1980: Austin Proceedings)

dM/dt (M_☉ yr⁻¹)

Erice (1983) W7

Carbon Deflagration

Kippenhahn & Weigert

Log T

(stage 6 in Fig. 34.4) all of the core mass is at a temperature of about 5×10^9 K. Then the iron peak elements are formed in statistical equilibrium.

The corresponding evolution of the core in the case of a deflagration front is shown in Fig. 34.5. One can see that the layers ahead expand long before the front arrives, a sign of the subsonic motion of the deflagration front. The increase of Tin the front is accompanied by a decrease of ρ . A basic difference to the result of a detonation front is that only the innermost part of the core is heated to $T \approx 5 \times 10^9$ K, where iron peak elements can be formed. Because of the expansion these high temperatures are no longer reached when the front has moved a bit further outwards.

$$v_{\rm D} = \alpha \, \left(\frac{Gm}{4r^2} \, \ell_{\rm m} \Delta \lg \varrho \right) \quad .$$

where α is a free parameter and ℓ_m the mixing length difference in density ahead and behind the deflagration

Calculations by NOMOTO et al. (1984) used the mode dependent convection. Their results are displayed in Fig the core for 8 consecutive stages of evolution. Note that hurning) and the last only 3.22 s have alarsed. One are

Massive Star Evolution (NASA, MPA)

• $8-10M_{\odot}$ stars \rightarrow degenerate ONeMg cores

Evolution of He-cores (Approximation)

- Electron Capture Core Collapse
- NASA : IUE observations of the Crab Nebula

Crab SN \leftarrow 9M $_{\odot}$ star explosion?

MPA 1983

Electron Capture

 ²⁴Mg(e⁻,ν)²⁴Na (e⁻,ν)²⁴Ne
 ρ>4.0 × 10⁹gcm⁻³

→collapse

Contraction of a Neon Star

() T (K)

SN 1987A

- Observations: (Japanese Contribution)
 - Neutrinos (Kamiokande)
 - X-rays (Ginga Satellite) \rightarrow Mixing !
- Models
 - Progenitor (why Blue Supergiant?)
 - Rings (formation, Collision)
 - Nucleosynthesis
 - Light curves (Optical, X-ray, γ -ray)
 - Mixing (multi-D hydrodynamics)

Dust formation

Big Collaboration !!

IAU Colloq. 108 (Sep. 1987, Univ of Tokyo)

SN 1987A @Tokyo (1987) Small house

Type Ib SN 1993J: Circumstellar Interaction

GRB-associated Supernovae

SNe I c	
SN	GRB
1998bw	980425
1997ef	(971115)
2002ap	
2003dh	030329
2003lw	031203

Hypernova in Prague

First Stars & Extremely (Hyper) Metal-Poor Stars

[Fe/H]<-2.5 Zn/Fe / ↔Hypernovae

- Mixing & Fallback with low E
 (Approximation, Parameters)
- Jet-induced Nucleosynthesis & Explosion with high E

Iwamoto et al. (Science 2005)

Jet-induced Nucleosythesis

Small Workshop vs. Big Enterprise

Approximate Models

 One Zone Models: Analytic Solutions, Linear Stability, Basic Physics

- -1D Models for Evolution, Explosions
- Structure, Non-equilibrium
- **Parameters** for Convection, etc.

2D Models3D Models

Higher Resolution

Circumstellar Interaction: SNe 2002ic, 2005ke

Candidates of the SN Ia Progenitors

Main-Sequence (MS): Slightly Evolved 2-3M_☉ stars ⇒Young, Spiral (t 0.5Gyr) →Supersoft X-ray Source →Recurrent Nova (USCo)

•Red Giant (RG):

 1-2M_☉ stars
 ⇒Old, Spiral & Elliptical (t 3Gyr)
 →Symbiotic Stars?
 →Recurrent Novae (TCrB)

Remnant?

Double Degenerate ?

Search; Hydrodynamics of Merging

Sub-Chandrasekhar Mass SN Ia? He ?

Circumstellar matter ?

Rotation of accreting WDs \rightarrow Fate, Diversity ?

SN rate (z)

Ellipticals vs. Spirals

M⁽⁰⁾wr

 $\Delta N \simeq + M + {}^{(0)}w_D = 1.4 M_{\odot}$

M(⁵⁶Ni) ↑

Ellipticals

- Red Giant Companion
- $-M^{(0)}_{WD} \sim 1.0-1.1 M_{\odot}$; $\Delta M_{acc} \sim 0.3-0.4 M_{\odot}$
 - Smaller C/O ratio
 - Smaller Angular Momentum M(⁵⁶Ni)↓

• Spirals

– RG&MS Companion

 $-\,{\rm M^{(0)}}_{\rm WD}{\color{black}\sim}0.6{\color{black}-}1.1\,M_{\,\odot}\,$; $\Delta M_{acc}{\color{black}\sim}0.3{\color{black}-}0.8\,M_{\,\odot}$

- Larger C/O ratio
- Larger Angular Momentum

Circumstellar Medium of SN Ia White Dwarf Steady Wind Recurrent Nova Wind

v_W ~ 4,000 km s⁻¹

$$\dot{M} \sim 10^{-6} - 10^{-7} M_{\odot} yr^{-1}$$

 $\dot{M} \sim 10^{-8} M_{\odot} yr^{-1}$
 v_{10}

→ Nova Cavity

(Wood-Vasey & Sokoloski)

Companion Star Wind

- Radio
- High velocity H

 $\left\{\begin{array}{l} H\alpha, \dots \\ \underline{He} \text{ lines (e.g., Lundqvist et al.)} \end{array}\right.$

Circumstellar Interaction in SNe la

Discovery of H-lines in SN2002ic

Turatto, Rigon, Hamuy, Deng, Wood-Vasey

SN 2002ic: Circumstellar Interaction Model

Circumstellar Medium of SN la

WD+RG? WD+MS? WD wind (fast) Companion star wind (slow)

Collaboration !

Norman 1985

Exploring Culture !

Kyoto 1990

Fun !

Santa Barbara 1997

Tokyo Nov 30/Dec 1, 2006

Welcome to Japan: 21st Century COE, Tokyo Think Tank