Large θ_{13} and a Novel Origin of CP Violation in SUSY SU(5) x \mathbf{T}^{\prime}

K.T. Mahanthappa, University of Colorado, Boulder
in collaboration with
M.-C. Chen, Jinrui Huang, Alex Wijangco, under preparation;
M.--C, Chen, Phys. Lett. B681 (2009) 444; Phys. Lett. B652 (2007) 34

Where Do We Stand?

- Exciting Time in v Physics: recent hints of large θ_{13} from T2K, MINOS, Double Chooz, and Daya Bay
- Latest 3 neutrino global analysis (including recent results from reactor experiments):

$$
P\left(\nu_{a} \rightarrow \nu_{b}\right)=\left|\left\langle\nu_{b} \mid \nu, t\right\rangle\right|^{2} \simeq \sin ^{2} 2 \theta \sin ^{2}\left(\frac{\Delta m^{2}}{4 E} L\right)
$$

Fogli, Lisi, Marrone, Montanino, Palazzo, Rotunno, 2012

Parameter	Best fit	1σ range	2σ range	3σ range
$\delta m^{2} / 10^{-5} \mathrm{eV}^{2}$ (NH or IH)	7.54	$7.32-7.80$	$7.15-8.00$	$6.99-8.18$
$\sin ^{2} \theta_{12} / 10^{-1}$ (NH or IH)	3.07	$2.91-3.25$	2.75-3.42	2.59-3.59
$\Delta m^{2} / 10^{-3} \mathrm{eV}^{2}$ (NH)	2.43	2.33-2.49	$2.27-2.55$	$2.19-2.62$
$\Delta m^{2} / 10^{-3} \mathrm{eV}^{2}$ (IH)	2.42	$2.31-2.49$	$2.26-2.53$	$2.17-2.61$
$\sin ^{2} \theta_{13} / 10^{-2}(\mathrm{NH})$	2.41	$2.16-2.66$	$1.93-2.90$	$1.699^{\circ}-3.13$
${\underline{\sin }{ }^{2} \theta_{13} / 10^{-2}(\mathrm{IH})}^{2}$	2.44	$2.19-2.67$	1.94-2.91	1.71-3.15
$\sin ^{2} \theta_{23} / 10^{-1}$ (NH)	3.86	$3.65-4.10$	$3.48-4.48$	$3.31-6.37$
$\sin ^{2} \theta_{23} / 10^{-1}(\mathrm{IH})$	3.92	$3.70-4.31$	$3.53-4.84 \oplus 5.43-6.41$	$3.35-6.63$
δ / π (NH)	1.08	0.77-1.36	-	-
δ / π (IH)	1.09	0.83-1.47	-	-

Origin of Mass Hierarchy and Mixing

- Several models have been constructed based on
- GUT Symmetry [SU(5), SO(10)] \oplus Family Symmetry GF
- Family Symmetries GF based on continuous groups:
- U(1)
- $\operatorname{SU}(2)$
- $\operatorname{SU}(3)$

GUT Symmetry SU(5), SO(I0), ...

- Recently, models based on discrete family symmetry groups have been constructed
- A_{4} (tetrahedron)
- T' (double tetrahedron)
- S_{3} (equilateral triangle)

Motivation: Tri-bimaximal
(TBM) neutrino mixing

- S_{4} (octahedron, cube)
- A5 (icosahedron, dodecahedron)
- Δ_{27}
- Q_{4}

Discrete gauge anomaly constraints:
Araki, Kobayashi, Kubo, Ramos-Sanchez,
Ratz, Vaudrevange (2008)

Tri-bimaximal Neutrino Mixing

- Neutrino Oscillation Parameters $\quad P\left(\nu_{a} \rightarrow \nu_{b}\right)=\left|\left\langle\nu_{b} \mid \nu, t\right\rangle\right|^{2} \simeq \sin ^{2} 2 \theta \sin ^{2}\left(\frac{\Delta m^{2}}{4 E} L\right)$

$$
U_{M N S}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & 0 & s_{13} e^{-i \delta} \\
0 & 1 & 0 \\
-s_{13} e^{i \delta} & 0 & c_{13}
\end{array}\right)\left(\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

- Latest Global Fit (3б)

Fogli, Lisi, Marrone, Montanino, Palazzo, Rotunno, 2012

$$
\begin{gathered}
\sin ^{2} \theta_{\text {atm }}=0.386(0.331-0.637) \quad \sin ^{2} \theta_{\odot}=0.307(0.259-0.359) \\
\sin ^{2} \theta_{13}=0.0241(0.0169-0.0313)
\end{gathered}
$$

- Tri-bimaximal Mixing Pattern

> Harrison, Perkins, Scott (1999)

$$
U_{T B M}=\left(\begin{array}{ccc}
\sqrt{2 / 3} & \sqrt{1 / 3} & 0 \\
-\sqrt{1 / 6} & \sqrt{1 / 3} & -\sqrt{1 / 2} \\
-\sqrt{1 / 6} & \sqrt{1 / 3} & \sqrt{1 / 2}
\end{array}\right) \quad \begin{array}{ll}
& \sin ^{2} \theta_{\mathrm{atm}, \mathrm{TBM}}=1 / 2 \\
\sin \theta_{13, \mathrm{TBM}}=0 .
\end{array}
$$

- Leading Order: TBM (from symmetry) + Corrections (dictated by symmetry)

Group Theory of T'

- Smallest Symmetry to realize TBM \Rightarrow Tetrahedral group A $_{4}$
- tetrahedral group A4: Ma, Rajasekaran (2001); Babu, Ma, Valle (2003)
- even permutations of four objects: S: (1234) \rightarrow (4321), T: (1234) \rightarrow (2314)
- geometrically -- invariant group of tetrahedron
- does NOT give rise to CKM mixing: $\mathrm{V}_{\mathrm{ckm}}=1$
- all CG coefficients real
- Double covering of tetrahedral group A_{4} :

Frampton \& Kephart, (1994)

- in-equivalent representations:

- generators:

$$
S^{2}=R, T^{3}=1,(S T)^{3}=1, R^{2}=1 \begin{aligned}
& \mathrm{R}=1: \quad 1,1^{\prime}, 1^{\prime \prime}, 3 \\
& \mathrm{R}=-1: 2,2^{\prime}, 2^{\prime \prime}
\end{aligned}
$$

Group Theory of T'

- generators: in 3-dim representations,T-diagonal basis

$$
S=\frac{1}{3}\left(\begin{array}{ccc}
-1 & 2 \omega & 2 \omega^{2} \\
2 \omega^{2} & -1 & 2 \omega \\
2 \omega & 2 \omega^{2} & -1
\end{array}\right) \quad T=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega & 0 \\
0 & 0 & \omega^{2}
\end{array}\right)
$$

- product rules:

$$
\begin{aligned}
& 1^{0} \equiv 1,1^{1} \equiv 1^{\prime}, 1^{-1} \equiv 1^{\prime \prime} \\
& 1^{a} \otimes r^{b}=r^{b} \otimes 1^{a}=r^{a+b} \quad \text { for } r=1,2 \quad a, b=0, \pm 1 \\
& 1^{a} \otimes 3=3 \otimes 1^{a}=3 \\
& 2^{a} \otimes 2^{b}=3 \oplus 1^{a+b} \\
& 2^{a} \otimes 3=3 \otimes 2^{a}=2 \oplus 2^{\prime} \oplus 2^{\prime \prime} \\
& 3 \otimes 3=3 \oplus 3 \oplus 1 \oplus 1^{\prime} \oplus 1^{\prime \prime}
\end{aligned}
$$

Group Theory of T'

- intrinsic complex CG coefficients in T^{\prime} (complexity independent of choice of basis for generators)
- spinorial x spinorial \supset vector:

$$
\begin{gathered}
2 \otimes 2=2^{\prime} \otimes 2^{\prime \prime}=2^{\prime \prime} \otimes 2^{\prime}=3 \oplus 1 \\
3=\left(\begin{array}{c}
\left(\frac{1-i}{2}\right)\left(\begin{array}{c}
\left.\alpha_{1} \beta_{2}+\alpha_{2} \beta_{1}\right) \\
i \alpha_{1} \beta_{1} \\
\alpha_{2} \beta_{2}
\end{array}\right)
\end{array}, ~\right.
\end{gathered}
$$

- spinorial x vector \supset spinorial:

$$
\begin{gathered}
2 \otimes 3=2 \oplus 2^{\prime} \oplus 2^{\prime \prime} \\
2=\binom{(1+i) \alpha_{2} \beta_{2}+\alpha_{1} \beta_{1}}{(1-i) \alpha_{1} \beta_{3}-\alpha_{2} \beta_{1}}
\end{gathered}
$$

A Novel Origin of CP Violation

- Conventionally:
- explicit CP violation: complex Yukawa couplings
- spontaneous CP violation: complex Higgs VEVs
- Complex CG coefficients in $\mathrm{T}^{\prime} \Rightarrow$ explicit CP violation
- real Yukawa couplings, real Higgs VEVs
- CP violation determined entirely by complex CG coefficients
- no additional parameters needed \Rightarrow extremely predictive model!

Tri-bimaximal Neutrino Mixing

- fermion charge assignments:

$$
\left(\begin{array}{l}
\ell_{1} \\
\ell_{2} \\
\ell_{3}
\end{array}\right)_{L} \sim 3, \quad e_{R} \sim 1, \quad \mu_{R} \sim 1^{\prime \prime}, \quad \tau_{R} \sim 1^{\prime}
$$

- SM Higgs ~ singlet under T^{\prime}
- operators for neutrino masses: $\frac{H H L L}{M}\left(\frac{\langle\xi\rangle}{\Lambda}+\frac{\langle\eta\rangle}{\Lambda}\right)$
- two scalar (flavon) fields for neutrino sector:
$\xi \sim 3, \quad \eta \sim 1$
$T^{\prime} \rightarrow G_{T S T^{2}}: \quad\langle\xi\rangle=\xi_{0} \Lambda\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right) \quad T^{\prime}-$ invariant: $\quad\langle\eta\rangle=u \Lambda$
- product rules:

$$
3 \otimes 3=3 \oplus 3 \oplus\left(1 \oplus 1^{\prime} \oplus 1^{\prime \prime}\right.
$$

Tri-bimaximal Neutrino Mixing

- Neutrino Masses: triplet flavon contribution

$$
3_{S}=\frac{1}{3}\left(\begin{array}{l}
2 \alpha_{1} \beta_{1}-\alpha_{2} \beta_{3}-\alpha_{3} \beta_{2} \\
2 \alpha_{3} \beta_{3}-\alpha_{1} \beta_{2}-\alpha_{2} \beta_{1} \\
2 \alpha_{2} \beta_{2}-\alpha_{1} \beta_{3}-\alpha_{3} \beta_{1}
\end{array}\right) \quad 1=\alpha_{1} \beta_{1}+\alpha_{2} \beta_{3}+\alpha_{3} \beta_{2}
$$

- Neutrino Masses: singlet flavon contribution $1=\alpha_{1} \beta_{1}+\alpha_{2} \beta_{3}+\alpha_{3} \beta_{2}$
- resulting mass matrix:

$$
\begin{aligned}
& M_{\nu}=\frac{\lambda v^{2}}{M_{x}}\left(\begin{array}{ccc}
2 \xi_{0}+u & -\xi_{0} & -\xi_{0} \\
-\xi_{0} & 2 \xi_{0} & u-\xi_{0} \\
-\xi_{0} & u-\xi_{0} & 2 \xi_{0}
\end{array}\right) \quad U_{\mathrm{TBM}}=\left(\begin{array}{ccc}
\sqrt{2 / 3} & 1 / \sqrt{3} & 0 \\
-\sqrt{1 / 6} & 1 / \sqrt{3} & -1 / \sqrt{2} \\
-\sqrt{1 / 6} & 1 / \sqrt{3} & 1 / \sqrt{2}
\end{array}\right) \\
& V_{\nu}^{\mathrm{T}} M_{\nu} V_{\nu}=\operatorname{diag}\left(u+3 \xi_{0}, u,-u+3 \xi_{0}\right) \frac{v_{u}^{2}}{M_{x}}
\end{aligned}
$$

Form diagonalizable:
-- no adjustable parameters
-- neutrino mixing from CG coefficients!

Tri-bimaximal Neutrino Mixing

- charged lepton sector -- without quarks
- operators for charged lepton masses

$$
(\ell \phi)_{1} e_{R}(1)+(\ell \phi)_{1^{\prime}} \mu_{R}\left(1^{\prime \prime}\right)+(\ell \phi)_{1^{\prime \prime}} \tau_{R}\left(1^{\prime}\right)
$$

- scalar sector: flavon triplet for charged lepton masses

$$
\begin{aligned}
& 1=\alpha_{1} \beta_{1}+\alpha_{2} \beta_{3}+\alpha_{3} \beta_{2} \\
& 1^{\prime}=\alpha_{3} \beta_{3}+\alpha_{1} \beta_{2} \alpha_{2} \beta_{1} \\
& 1^{\prime \prime}=\alpha_{2} \beta_{2}+\alpha_{1} \beta_{3}-\alpha_{3} \beta_{1}
\end{aligned} \quad T^{\prime} \rightarrow G_{T}: \quad\langle\phi\rangle=\phi_{0} \Lambda\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

- resulting charged lepton mass matrix = I
- leptonic mixing matrix = tri-bimaximal

$$
V_{M N S}=V_{e, L}^{\dagger} V_{\nu}=\mathcal{I} \cdot U_{T B M}=U_{T B M}
$$

- in our model: SU(5) GUT corrections from charged lepton sector

The Model

M.-C.Chen, K.T.M., under preparation;

Phys. Lett. B652, 34 (2007); Phys. Lett. B681, 444 (2009)

- Symmetry: SUSY SU(5) x T^{\prime}
- Particle Content

$$
10\left(Q, u^{c}, e^{c}\right)_{L} \quad \overline{5}\left(d^{c}, \ell\right)_{L}
$$

$$
\omega=e^{i \pi / 6}
$$

	T_{3}	T_{a}	\bar{F}	N	H_{5}	$H_{\overline{5}}^{\prime}$	Δ_{45}	ϕ	ϕ^{\prime}	ψ	ψ^{\prime}	ζ	ζ^{\prime}	ξ	η	$\eta^{\prime \prime}$	S
$\mathrm{SU}(5)$	10	10	$\overline{5}$	1	5	$\overline{5}$	45	1	1	1	1	1	1	1	1	1	1
T^{\prime}	1	2	3	3	1	1	1^{\prime}	3	3	2^{\prime}	2	$1^{\prime \prime}$	1^{\prime}	3	1	$1^{\prime \prime}$	1
Z_{12}	ω^{5}	ω^{2}	ω^{5}	ω^{7}	ω^{2}	ω^{2}	ω^{5}	ω^{3}	ω^{2}	ω^{6}	ω^{9}	ω^{9}	ω^{3}	ω^{10}	ω^{10}	ω^{10}	ω^{10}
Z_{12}^{\prime}	ω	ω^{4}	ω^{8}	ω^{5}	ω^{10}	ω^{10}	ω^{3}	ω^{3}	ω^{6}	ω^{7}	ω^{8}	ω^{2}	ω^{11}	1	1	1	ω^{2}

- additional $Z_{12} \times Z_{12}^{\prime}$ symmetry:
- predictive model: only 11 operators allowed up to at least dim-7
- vacuum misalignment: neutrino sector vs charged fermion sector
- mass hierarchy: lighter generation masses allowed only at higher dim
- forbids Higgsino mediated proton decay

The Model

- Superpotential: only 11 operators allowed

$$
\begin{aligned}
& \mathcal{W}_{\text {Yuk }}=\mathcal{W}_{T T}+\mathcal{W}_{T F}+\mathcal{W}_{\nu} \\
& \mathcal{W}_{T T}=y_{t} H_{5} T_{3} T_{3}+\frac{1}{\Lambda^{2}} H_{5}\left[y_{t s} T_{3} T_{a} \psi \zeta+y_{c} T_{a} T_{b} \phi^{2}\right]+\frac{1}{\Lambda^{3}} y_{u} H_{5} T_{a} T_{b} \phi^{\prime 3} \text { up type quarks } \\
& \mathcal{W}_{T F}=\frac{1}{\Lambda^{2}} y_{b} H_{\overline{5}}^{\prime} \bar{F} T_{3} \phi \zeta+\frac{1}{\Lambda^{3}}\left[y_{s} \Delta_{45} \bar{F} T_{a} \phi \psi \zeta^{\prime}+y_{d} H_{\overline{5}} \bar{F} T_{a} \phi^{2} \psi^{\prime}\right] \begin{array}{l}
\text { down type quarks } \\
\text { \& charged leptons }
\end{array} \\
& \mathcal{W}_{\nu}=\lambda_{1} N N S+\frac{1}{\Lambda^{3}}\left[H_{5} \bar{F} N \zeta \zeta^{\prime}\left(\lambda_{2} \xi+\lambda_{3} \eta+\lambda_{4} \eta^{\prime \prime}\right)\right] \text { neutrino masses }
\end{aligned}
$$

Λ : scale above which T^{\prime} is exact

Reality of Yukawa couplings: ensured by degrees of freedom in field redefinition

The Model

- Abelian subgroups of T'

$$
\begin{array}{lll}
G_{T} & T=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega & 0 \\
0 & 0 & \omega^{2}
\end{array}\right) & \omega=e^{2 \pi i / 3} \\
G_{S}, G_{T S T^{2}} & S=\frac{1}{3}\left(\begin{array}{ccc}
-1 & 2 \omega & 2 \omega^{2} \\
2 \omega^{2} & -1 & 2 \omega \\
2 \omega & 2 \omega^{2} & -1
\end{array}\right) & T S T^{2}=\frac{1}{3}\left(\begin{array}{ccc}
-1 & 2 & 2 \\
2 & -1 & 2 \\
2 & 2 & -1
\end{array}\right)
\end{array}
$$

- T'Breaking
- neutrino sector \longrightarrow exact tri-bimaximal mixing

$$
\begin{array}{cl}
T^{\prime} \rightarrow G_{\boldsymbol{T S T}}{ }^{2}: & \langle\xi\rangle=\xi_{0} \Lambda\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \\
T^{\prime}-\text { invariant: } & \langle\eta\rangle=u \Lambda \quad\langle S\rangle=S_{0} \\
T^{\prime} \rightarrow G_{S}: & \left\langle\eta^{\prime \prime}\right\rangle=\eta_{0}^{\prime \prime} \Lambda
\end{array}
$$

The Model

- charged fermion sector

$$
\begin{array}{cl}
T^{\prime} \rightarrow G_{\boldsymbol{T S T}}{ }^{2}: & \left\langle\phi^{\prime}\right\rangle=\phi_{0} \Lambda\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \\
T^{\prime} \rightarrow G_{\boldsymbol{T}}: & \langle\phi\rangle=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \phi_{0} \Lambda,\langle\psi\rangle=\binom{1}{0} \psi_{0} \Lambda \\
T^{\prime} \rightarrow \text { nothing: } & \left\langle\psi^{\prime}\right\rangle=\psi_{0}^{\prime} \Lambda\binom{1}{1} \\
T^{\prime} \rightarrow G_{S}: & \langle\zeta\rangle=\zeta_{0} \Lambda, \quad\left\langle\zeta^{\prime}\right\rangle=\zeta_{0}^{\prime} \Lambda
\end{array}
$$

Neutrino Sector

- Operators:

$$
\mathcal{W}_{\nu}=\lambda_{1} N N S+\frac{1}{\Lambda^{3}}\left[H_{5} \bar{F} N \zeta \zeta^{\prime}\left(\lambda_{2} \xi+\lambda_{3} \eta+\lambda_{4} \eta^{\prime \prime}\right)\right]
$$

- symmetry breaking

$$
T^{\prime} \rightarrow G_{T S T^{2}}: \quad\langle\xi\rangle=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \xi_{0} \Lambda \quad T^{\prime} \text { - invariant: } \quad\langle\eta\rangle=\eta_{0} \Lambda \quad\langle S\rangle=S_{0}
$$

- resulting mass matrices

$$
T^{\prime} \rightarrow G_{s}: \quad\left\langle\eta^{\prime \prime}\right\rangle=\eta_{0}^{\prime \prime} \Lambda
$$

$$
\begin{array}{ll}
M_{R R}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) s_{0} \Lambda & \begin{array}{l}
\text { only vector representations } \\
\Rightarrow \text { all CG are real }
\end{array} \\
M_{D}=\left(\begin{array}{ccc}
2 \xi_{0}+\eta_{0} & -\xi_{0} & -\xi_{0}+\eta_{0}^{\prime \prime} \\
-\xi_{0} & 2 \xi_{0}+\eta_{0}^{\prime \prime} & -\xi_{0}+\eta_{0} \\
-\xi_{0}+\eta_{0}^{\prime \prime} & -\xi_{0}+\eta_{0} & 2 \xi_{0}
\end{array}\right) \zeta_{0} \zeta_{0}^{\prime} v_{u} \\
& \begin{array}{ll}
\eta_{0}^{\prime \prime}=0 \quad: M_{\nu} \text { diagonalized by TBM; } \\
M_{\nu}=-M_{D} M_{R R}^{-1} M_{D}^{T} & \eta_{0}^{\prime \prime} \neq 0 \Rightarrow \text { deviation from TBM }
\end{array}
\end{array}
$$

[Note: m2 $\rightarrow(1,1,1)$ unchanged]

Up Quark Sector

- Operators: $\quad \mathcal{W}_{T T}=y_{t} H_{5} T_{3} T_{3}+\frac{1}{\Lambda^{2}} H_{5}\left[y_{t s} T_{3} T_{a} \psi \zeta+y_{c} T_{a} T_{b} \phi^{2}\right]+\frac{1}{\Lambda^{3}} y_{u} H_{5} T_{a} T_{b} \phi^{\prime 3}$
- top mass: allowed by T^{\prime}
- lighter family acquire masses thru operators with higher dimensionality
- dynamical origin of mass hierarchy
- symmetry breaking:

$$
\begin{aligned}
& T^{\prime} \rightarrow G_{T} \quad\langle\phi\rangle=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \phi_{0} \Lambda,\langle\psi\rangle=\binom{1}{0} \psi_{0} \Lambda \quad T^{\prime} \rightarrow G_{S}:\langle\zeta\rangle=\zeta_{0} \Lambda \quad \operatorname{dim}-6 \\
& T^{\prime} \rightarrow G_{T S T^{2}}: \\
& \left\langle\phi^{\prime}\right\rangle=\phi_{0}^{\prime} \Lambda\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
\end{aligned}
$$

no contributions to elements involving Ist family; true to all levels

- Mass matrix:

$$
M_{u}=\left(\begin{array}{ccc}
i \phi_{0}^{\prime 3} & \frac{1-i}{2} \phi_{0}^{\prime 3} & 0 \\
\frac{1-i}{2} \phi_{0}^{\prime 3} & \phi_{0}^{\prime 3}+\left(1-\frac{i}{2}\right) \phi_{0}^{2} & y^{\prime} \psi_{0} \zeta_{0} \\
0 & y^{\prime} \psi_{0} \zeta_{0} & 1
\end{array}\right) y_{t} v_{u}
$$

both vector and spinorial reps involved
\Rightarrow complex CG

Down Quark \& Charged Lepton Sectors

- operators: $\quad \mathcal{W}_{T F}=\frac{1}{\Lambda^{2}} y_{b} H_{\overline{5}}^{\prime} \bar{F} T_{3} \phi \zeta+\frac{1}{\Lambda^{3}}\left[y_{s} \Delta_{45} \bar{F} T_{a} \phi \psi \zeta^{\prime}+y_{d} H_{\overline{5}^{\prime}} \bar{F} T_{a} \phi^{2} \psi^{\prime}\right]$
- generation of b-quark mass: breaking of T^{\prime} : dynamical origin for hierarchy between m_{b} and m_{t}
- lighter family acquire masses thru operators with higher dimensionality
- symmetry breaking:

$$
\begin{array}{lll}
\text { breaking: } \\
\begin{array}{lll}
T^{\prime} \rightarrow G_{T}: & \langle\phi\rangle=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \phi_{0} \Lambda,\langle\psi\rangle=\binom{1}{0} \psi_{0} \Lambda & \\
& T^{\prime} \rightarrow G_{\mathcal{S}}: & \langle\zeta\rangle=\zeta_{0} \Lambda, \quad\left\langle\zeta^{\prime}\right\rangle=\zeta_{0}^{\prime} \Lambda
\end{array}
\end{array}
$$

- mass matrix:

$$
M_{d}=\left(\begin{array}{ccc}
0 & (1+i) \phi_{0} \psi_{0}^{\prime} & 0 \\
-(1-i) \phi_{0} \psi_{0}^{\prime} & \psi_{0} \zeta_{0} & 0 \\
\phi_{0} \psi_{0}^{\prime} & \phi_{0} \psi_{0}^{\prime} & \zeta_{0}
\end{array}\right) y_{b} v_{d} \phi_{0} \quad M_{e}=\left(\begin{array}{ccc}
0 & -(1-i) \phi_{0} \psi_{0}^{\prime} & \phi_{0} \psi_{0}^{\prime} \\
(1+i) \phi_{0} \psi_{0}^{\prime} & -3 \psi_{0} \zeta_{0}^{0} & \phi_{0} \psi_{0}^{\prime} \\
0 & 0 & \zeta_{0}
\end{array}\right) y_{b} v_{d} \phi_{0}
$$

- consider 2nd, 3rd families only: TBM exact
complex CG
- Georgi-Jarlskog relations:

$$
m_{d} \simeq 3 m_{e} \quad m_{\mu} \simeq 3 m_{s}
$$

$$
\begin{array}{|l|}
\hline \text { corrections to TBM } \\
\hline
\end{array}
$$

Model Predictions

M.-C.Chen, K.T.M.,

Phys. Lett. B652, 34 (2007); Phys. Lett. B681, 444 (2009)

- Charged Fermion Sector (7 parameters)

$$
\begin{aligned}
& M_{u}=\left(\begin{array}{ccc}
i g & \frac{1-i}{2} g & 0 \\
\frac{1-i}{2} g & g+\left(1-\frac{i}{2}\right) h & k \\
0 & k & 1
\end{array}\right) y_{y_{t} v_{u}}^{\left(V_{\mathrm{cb}}\right.} \\
& M_{d}, M_{e}^{T}=\left(\begin{array}{ccc}
0 & (1+i) b & 0 \\
-(1-i) b & (1,-3) c & 0 \\
b & 1
\end{array}\right) y_{b} v_{d} \phi_{0} \\
& \theta_{c} \simeq\left|\sqrt{m_{d} / m_{s}}-e^{i \alpha} \sqrt{m_{u} / m_{c}}\right| \sim \sqrt{m_{d} / m_{s}}, \longrightarrow \theta_{12}^{e} \simeq \sqrt{\frac{m_{e}}{m_{\mu}}} \simeq \frac{1}{3} \sqrt{\frac{m_{d}}{m_{s}}} \sim \frac{1}{3} \theta_{c} \\
& \text { Georgi-Jarlskog relations } \Rightarrow V_{\mathrm{d}, \mathrm{~L}} \neq \mathrm{I} \\
& S U(5) \Rightarrow M_{d}=\left(M_{e}\right)^{\top} \\
& \Rightarrow \text { corrections to TBM related to } \theta_{c}
\end{aligned}
$$

- model parameters:

7 parameters in charged fermion sector

$$
\begin{array}{rlrl}
b & \equiv \phi_{0} \psi_{0}^{\prime} / \zeta_{0}=0.00304 & & y_{t} / \sin \beta=1.25 \\
c & \equiv \psi_{0} \zeta_{0}^{\prime} / \zeta_{0}=-0.0172 & & y_{b} \phi_{0} \zeta_{0} / \cos \beta \simeq 0.011 \\
k & \equiv y^{\prime} \psi_{0} \zeta_{0}=-0.0266 & & \tan \beta=10 \\
h & \equiv \phi_{0}^{2}=0.00426 &
\end{array}
$$

Numerical Results

- Experimentally: $m_{u}: m_{c}: m_{t}=\theta_{c}^{7.5}: \theta_{c}^{3.7}: 1 \quad m_{d}: m_{s}: m_{b}=\theta_{c}^{4.6}: \theta_{c}^{2.7}: 1$
- CKM Matrix and Quark CPV measures:

$$
\begin{aligned}
& \left|V_{C K M}\right|=\left(\begin{array}{ccc}
0.974 & 0.227 & 0.00412 \\
0.227 & 0.973 & 0.0412 \\
0.00718 & 0.0408 & 0.999
\end{array}\right) \quad \begin{array}{c}
\text { predicting: } 9 \text { masses, } 3 \text { mixing angles, | CP } \\
\text { Phase; all agree with } \exp \text { within } 3 \sigma
\end{array} \\
& A=0.798 \quad \beta \equiv \arg \left(\frac{-V_{c d} V_{c b}^{*}}{V_{t d} V_{t b}^{*}}\right)=23.6^{\circ}, \sin 2 \beta=0.734, \\
& \bar{\rho}=0.299 \\
& \bar{\eta}=0.306 \\
& \alpha \equiv \arg \left(\frac{-V_{t d} V_{t b}^{*}}{V_{u d} V_{u b}^{*}}\right)=110^{\circ} \text {, } \\
& \gamma \equiv \arg \left(\frac{-V_{u d} V_{u b}^{*}}{V_{c d} V_{c b}^{*}}\right)=\delta_{q}=45.6^{o}, \\
& J \equiv \operatorname{Im}\left(V_{u d} V_{c b} V_{u b}^{*} V_{c s}^{*}\right)=2.69 \times 10^{-5}, \\
& \text { Recent LHCb result on } \\
& \text { gamma angle: } \\
& \text { Direct measurements @ 3o } \\
& \text { (CKMFitter, ICHEP2012) } \\
& \sin 2 \beta=0.691_{-0.047}^{+0.060} \\
& \gamma(\text { degree })=66_{-30}^{+36} \\
& \alpha \text { (degree) }=89_{-13}^{+21}
\end{aligned}
$$

Model Predictions

- Neutrino Sector (3 parameters)
- with $\eta_{0}^{\prime \prime}=0$

$$
\begin{aligned}
& \text { Georgi-Jarlskog relations } \Rightarrow V_{d, L} \neq \mathrm{I} \\
& \mathrm{SU}(5) \Rightarrow M_{d}=\left(M_{e}\right)^{\top} \\
& \Rightarrow \text { corrections to TBM related to } \theta_{\mathrm{c}}
\end{aligned}
$$

$$
\begin{aligned}
& \theta_{c} \simeq\left|\sqrt{m_{d} / m_{s}}-e^{i \alpha} \sqrt{m_{u} / m_{c}}\right| \sim \sqrt{m_{d} / m_{s}}, \longrightarrow \theta_{12}^{e} \simeq \sqrt{\frac{m_{e}}{m_{\mu}}} \simeq \frac{1}{3} \sqrt{\frac{m_{d}}{m_{s}}} \sim \frac{1}{3} \theta_{c} \\
& U_{\mathrm{MNS}}=V_{e, L}^{\dagger} U_{\mathrm{TBM}}=\left(\begin{array}{ccc}
1 & -\theta_{c} / 3 & * \\
\theta_{c} / 3 & 1 & * \\
* & * & 1
\end{array}\right)\left(\begin{array}{ccc}
\sqrt{2 / 3} & 1 / \sqrt{3} & 0 \\
-\sqrt{1 / 6} & 1 / \sqrt{3} & -1 / \sqrt{2} \\
-\sqrt{1 / 6} & 1 / \sqrt{3} & 1 / \sqrt{2}
\end{array}\right) \\
& \theta_{13} \simeq \theta_{c} / 3 \sqrt{2} \leftharpoonup \begin{array}{c}
\mathrm{CGs} \text { of } \\
\mathrm{SU}(5) \& \mathrm{~T}^{\prime}
\end{array}
\end{aligned}
$$

Model Predictions

- Neutrino Sector (3 parameters) $\quad \eta_{0}^{\prime \prime} \neq 0$
- with $\xi_{0}=-0.051, \eta_{0}=0.23, \eta_{0}^{\prime \prime}=-0.055 \quad S_{0}=10^{12} \mathrm{GeV}$

$$
\begin{aligned}
& U_{\mathrm{MNS}}=V_{e, L}^{\dagger} U_{V}=\left(\begin{array}{ccc}
1 & -\theta_{c} / 3 & * \\
\theta_{c} / 3 & 1 & * \\
* & * & 1
\end{array}\right)\left(\begin{array}{ccc}
0.808875 & -0.57735 & 0.111303 \\
-0.308046 & -0.57735 & -0.756158 \\
-0.500829 & -0.57735 & 0.644854
\end{array}\right) \\
& \text { - sum rules that exist in } \eta_{0}^{\prime \prime}=0 \text { case are modified } \begin{array}{c}
\text { new contribution does not } \\
\text { change the eigenvector } \\
\text { corresponds to m2 }
\end{array}
\end{aligned}
$$

$$
\sin \theta_{13}^{\mathrm{MNS}} \simeq \frac{\theta_{c}}{3 \sqrt{2}}+\theta_{13}^{\nu}+\kappa \frac{\theta_{c}}{3} \quad \tan ^{2} \theta_{\odot} \simeq \frac{1}{2}+\left(\frac{1}{2}+\kappa^{\prime}\right) \theta_{c} \cos \delta
$$

$$
\begin{aligned}
\theta_{13}^{\nu}, & \kappa, \\
\kappa^{\prime} & : \text { contributions from } \eta_{0}^{\prime \prime} \neq 0 \\
\kappa & : \text { related to deviation of } \theta_{23} \text { from } \pi / 4
\end{aligned}
$$

Numerical Results: Neutrino Sector

M.-C. Chen, K.T. M., J. Huang, A.Wijangco, under preparation

- Diagonalization matrix for charged leptons: $\left(\begin{array}{ccc}0.997 e^{i 177^{\circ}} & 0.0823 e^{i 131^{\circ}} & 1.31 \times 10^{-5} e^{-i 45^{\circ}} \\ 0.0823 e^{i 41.8^{\circ}} & 0.997 e^{1176^{\circ}} & 0.000149 e^{-i 3.58^{\circ}} \\ 1.14 \times 10^{-6} & 0.000149 & 1\end{array}\right)$
- MNS Matrix

$$
\left|U_{M N S}\right|=\left(\begin{array}{lll}
0.824259 & 0.542816 & 0.161084 \\
0.264063 & 0.609846 & 0.747234 \\
0.500867 & 0.577441 & 0.644743
\end{array}\right) \quad \begin{aligned}
& \sin ^{2} \theta_{12}=0.30 \\
& \sin ^{2} \theta_{23}=0.43 \\
& \sin ^{2} \theta_{13}=0.026
\end{aligned}
$$

- Neutrino Masses:

$$
\begin{aligned}
& m_{1}=0.0036 \mathrm{eV} \\
& m_{2}=0.0093 \mathrm{eV} \\
& m_{3}=0.051 \mathrm{eV}
\end{aligned}
$$

3 independent parameters in neutrino sector
predicted 3 masses and 3 angles:
all agree with \exp within $I \sigma$

- Leptonic CP violation from CG coefficients:
prediction for Dirac CP phase: $\delta=197$ degrees (in standard parametrization)
Two Majorana CPV measures:

$$
S_{1} \equiv \operatorname{Im}\left\{U_{\mathrm{MNS}, \text { e } 1} U_{\mathrm{MNS}, \text { e } 3}^{*}\right\}=0.034 \quad S_{2} \equiv \operatorname{Im}\left\{U_{\mathrm{MNS}, \text { e } 2} U_{\mathrm{MNS}, \text { e } 3}^{*}\right\}=-0.029
$$

Neutrinoless Double Beta Decay

- neutrino-less double beta decay

[Plot taken from C. Giunti, LIONeutrino2012]

Proton Decay in SUSY SU(5) x T'Model

- proton decay mediated by color triplet Higgsinos (dim-5 operators)
- generally gives too fast decay rate
- $Z_{12} \times Z_{12}$ forbid (vertices in circles)

- no Higgsino mediated proton decay
- Planck induced operators: Yukawa suppressed
- proton decay mediated by gauge boson (dim-6 operators)
- non-minimal Higgs content, model prediction is within current experimental limits

Summary

- SUSY SU(5) x T^{\prime} : near tri-bimaximal lepton mixing \& realistic CKM matrix
- complex CG coefficients in T^{\prime} : origin of CPV both in quark and lepton sectors
- $Z_{12} \times Z_{12}$ ': only 10 parameters in Yukawa sector
- dynamical origin of mass hierarchy (including m_{b} vs m_{t})
- forbid Higgsino-mediated proton decay
- realistic theta13: generated by $1^{\prime \prime}$ flavon in neutrino sector

$$
\sin \theta_{13}^{\mathrm{MNS}} \simeq \frac{\theta_{c}}{3 \sqrt{2}}+\theta_{13}^{\nu}+\kappa \frac{\theta_{c}}{3}
$$

- CP phases from CG:

```
quark CP phase: }\gamma=45.6\mathrm{ degrees
```

```
leptonic Dirac CP phase: }\delta=197\mathrm{ degrees
```

 (global fit: \(\sim 180\) degrees)

Vacuum Alignment

- $Z_{12} \times Z_{12}$ ' symmetry: too restrictive
- resort to extra dimensions (5D)
- in the bulk: $Z_{12} \times Z_{12}$ ' symmetric

- on the boundary branes: $Z_{12} \times Z_{12}{ }^{\prime}$ explicitly broken
- Neutrino sector:
- invariants: $B_{1}^{\nu}=\xi^{2}, B_{2}^{\nu}=\eta^{2}, T_{1}^{\nu}=\xi^{3}, T_{2}^{\nu}=\xi^{2} \eta, T_{3}^{\nu}=\eta^{3} \quad B_{3}^{\nu}=S^{2}$,
- superpotential: $T_{4}^{\nu}=S^{3}, T_{5}^{\nu}=\xi^{2} S, T_{6}^{\nu}=\eta^{2} S, T_{7}^{\nu}=\eta S^{2}, T_{8}=\eta^{\prime \prime} \xi^{2}$

$$
\mathcal{W}_{\nu}^{\text {flavon }}=\sum_{i} m_{i}^{\prime} B_{i}+\sum_{j} p_{j}^{\prime} T^{j}
$$

- supersymmetric minima:

$$
\begin{array}{rlrl}
F_{\xi_{1}} & =F_{\xi_{2}}=F_{\xi_{3}}=2\left(m_{1}^{\prime}+p_{5} s_{0}+p_{2} \eta_{0}+p_{8} \eta_{0}^{\prime \prime}\right)=0 & \langle\xi\rangle=\xi_{0} \Lambda\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) & \left\langle\eta^{\prime \prime}\right\rangle=\eta_{0}^{\prime \prime} \Lambda \\
F_{\eta}=p_{7} s_{0}^{2}+2 m_{2}^{\prime} \eta_{0}+2 p_{6} \eta_{0} s_{0}+3 p_{3} \eta_{0}^{2}+3 p_{2} \xi_{0}^{2}=0 & & \\
F_{s}=3 p_{4} s_{0}^{2}+2 p_{7} \eta_{0} s_{0}+p_{6} \eta_{0}^{2}+3 p_{5} \xi_{0}^{2}=0 & & \langle\eta\rangle=\eta_{0} \Lambda & \langle S\rangle=S_{0}
\end{array}
$$

Vacuum Alignment

- charged fermion sector:
- invariants

$$
\begin{aligned}
& B_{1}=\phi^{2}, \quad B_{2}=\phi^{\prime 2}, B_{3}=\phi \phi^{\prime}, B_{4}=\zeta N \\
& T_{1}=\phi^{3}, T_{2}=\phi^{\prime 3}, T_{3}=\phi^{2} \phi^{\prime}, T_{4}=\phi^{\prime 2} \phi, T_{5}=N^{3}, T_{6}=\zeta^{3}, T_{7}=\phi^{2} \zeta \\
& T_{8}=\phi^{\prime 2} \zeta, T_{9}=\phi \phi^{\prime} \zeta, T_{10}=\phi^{2} N, T_{11}=\phi^{\prime 2} N, T_{12}=\phi \phi^{\prime} N, T_{13}=\psi^{\prime 2} \phi \\
& T_{14}=\psi^{\prime 2} \phi^{\prime}, T_{15}=\psi^{\prime} \phi, T_{16}=\psi^{2} \phi^{\prime}, T_{17}=\psi^{\prime} \psi^{\prime} \phi, T_{18}=\psi \psi^{\prime} \phi^{\prime}, T_{19}=\psi \psi^{\prime} \zeta
\end{aligned}
$$

- superpotential

$$
W_{c}^{f l a v o n}=\sum_{i} m_{i}^{\prime \prime} B_{i}+\sum_{i} \mu_{j}^{\prime \prime} T^{j}
$$

- Supersymmetric minima: envision parameter space that satisfy minimization conditions ($\mathrm{F}=0$)

