Supersymmetry at the Frontiers

Jesse Thaler

Snowmass on the Pacific, KITP — May 31, 2013

Outline

An Unreasonable Wish List

Supersymmetry in 2013

Wish List for the Frontiers

(Disclaimer: I was asked to have an opinion.)

An Unreasonable Wish List

Supersymmetry in 2013

Wish List for the Frontiers

(Disclaimer: I was asked to have an opinion.)

(Disclaimer: Lately, I've been busy running a biology experiment.)

Taking the Broad View

Beyond the SUSY field content and spectrum...

MSSM, NMSSM, MRSSM, ... cMSSM, pMSSM, GMSB, ...

Beyond a description in terms of simplified models... $C_8 \rightarrow t t C_0, C_3 \rightarrow t C_0, ...$

Want to test SUSY as a (well-motivated) extension of space-time symmetry

Ideally: Use superpartners as probes of structural questions

If SUSY realized in nature...

...potentially relevant for understanding the holy trinity

Naturalness

Unification

Dark Matter

(more later...)

[see e.g. Craig, Englert, McCullough; Farina, Perelstein, Lorier]

(already probed?)

Ideally: want direct experimental probes of this

If SUSY realized in nature...

...likely to involve standard SUSY paradigm

Ideally: want direct experimental probes of this

If SUSY realized in nature...

...we'll all have to learn about SUSY in AdS space

Ideally: want direct experimental probes of this

An Unreasonable Wish List

(Save for Snowmass 2013+N)

Find superpartners of all standard model fields Verify cancellation of quadratic divergences in Higgs sector Verify SUSY (and unification) coupling relations Verify fine-tuning of AdS curvature against SUSY breaking Measure $m_{3/2}$ (and abundance $\Omega_{3/2}$) Extract messenger quantum numbers Extract hidden sector dynamics Test whether moduli are stabilized supersymmetrically

Determine which string vacuum we occupy

...

Not entirely pie-in-the-sky!

Decays of meta-stable charged particles to gravitinos

Not entirely pie-in-the-sky!

Decays of meta-stable charged particles to "goldstini"

$$m_{\zeta} \simeq 2m_{3/2} \qquad \frac{\Gamma_{\tilde{\ell} \to \ell\zeta}}{\Gamma_{\tilde{\ell} \to \ell\tilde{G}}} \simeq \left(\frac{F_{\rm us}}{F_{\rm total}}\right)$$

[Cheung, Nomura, JDT; [Cheung, Mardon, Nomura, JDT; ...]

Supersymmetry in 2013 No superpartners under the lamppost

Current task: Find any evidence for superpartners Squeezed Spectra? R-parity Violation? Third-Generation Rich? Other Blind Spots?

Current task: Find any evidence for superpartners Squeezed Spectra? R-parity Violation? Third-Generation Rich? Other Blind Spots?

Reason for Optimism: Natural SUSY

(though quite constrained by top-rich searches)

[many papers since mid-90s; figure adapted from Papucci, Ruderman, Weiler]

Flavor Mediation Delivers Natural SUSY

(anomaly-free) gauged $SU(3)_F$ as mediator of SUSY breaking

SU(3)/SU(2)

SU(2)

Broken SU(3)_F Gauge Group (Cartan Rank 2)

Desired Natural Superpartner Hierarchy

If true, expect flavor signals, e.g. B-meson mixing

[Craig, McCullough, JDT]

Standard Model Quark Hierarchy

Reason for Pessimism: SM-ish Higgs at 126 GeV

If MSSM, then at least we know where to look for stops

Circumstantial evidence for a mini-desert

(Of course, could be NMSSM, λ SUSY, non-decoupling D-terms, ... split-ish spectrum of heavy sfermions but light gauginos, ...)

SUSY right around the corner?

Find evidence for superpartners

- Upgrade LHC to 13/14 TeV
- Confront challenging kinematics/final states
- ✓ High Luminosity LHC, esp. for background-limited searches

SUSY right around the corner?

Find evidence for superpartners

- Upgrade LHC to 13/14 TeV
- Confront challenging kinematics/final states
- ✓ High Luminosity LHC, esp. for background-limited searches

SUSY right around the next corner?

- Search for (colored) superpartners
 - Build a 100 TeV proton-proton machine
 - Invest longterm in advanced accelerator technology

Consider less direct probes of SUSY

(I was asked to have an opinion. You should have one as well.)

??

Wish List for the Frontiers

a.k.a. three oases in the mini-desert?

If sfermions are quasi-decoupled...

Focus on ubiquitous elements of SUSY models that are accessible in near-term frontier experiments

Two Higgs Doublet (+ Singlet) Sectors High-Scale Symmetry Violation (esp. CP) (Thermal-Relic) Neutralino Dark Matter

Two Higgs Doublet (+ Singlet) Sectors

 $W = \mu H_u H_d + \lambda S H_u H_d + \dots$ (apologies to the wrong-Higgs/ inert-Higgs literature)

Logical Possibility:

Sfermions are quasi-decoupled Extra Higgs/singlets still at weak scale

[in MSSM, from Djouadi, Quevillon]

Questions:

- Direct searches for H⁰/A⁰/H[±]/S⁰ vs. Indirect tests through h⁰ properties? [e.g. Craig, Galloway, Thomas; ...]
- How fast do we hit decoupling regime (from e⁺e⁻ perspective)?
- Model building? (i.e. alignment without decoupling, RG stability?)

Symmetry-Violating Terms (esp. CP)

 $W = LH_u + QD^cL + U^cD^cD^c + LLE^c + QQQL + \cdots$

Logical Possibility:

Sfermions are quasi-decoupled Still remnant symmetry-violation

(B, L, lepton flavor, quark flavor, CP, ...)

Key Target: EDMs from SUSY CP

e.g. $\phi = \arg(M_i \mu)$

model-building challenge to make aligned!

Question:

Motivated targets for B/L/flavorviolation for e.g. 10 TeV sfermions?

(Thermal-Relic) Neutralino Dark Matter

Logical Possibility:

Sfermions are quasi-decoupled Still WIMP miracle for neutralinos

(of course, non-thermal/under-abundant also attractive)

Questions:

- Can indirect detection cover blind spots in direct detection?
- Ultimate LHC reach of mono-anything searches with decoupled sfermions?

Key Benchmark Dark Matter Scenarios

Plausible thermal relics

(Nearly) Pure Higgsino: 1.0 TeV (Nearly) Pure Wino: 2.7 TeV

(including Sommerfeld effect)

Direct Detection:

Z⁰ coupling absent (inelastic for Higgsino) h⁰ coupling suppressed by purity Loop-induced couplings suppressed by accident $[\sigma < 10^{-47} \text{ cm}^2; \text{ see e.g. Hisano, Ishiwata, Nagata, Takesako}]$

Indirect Detection: St

Stringent FERMI/HESS bound for non-thermal winos Prospects for thermal winos/higgsinos? CTA? Neutrino Telescopes?

Colliders: Can (futuristic) machine test 2.7 TeV winos? Even if tiny neutralino/chargino mass splittings?

Summary

An Unreasonable Wish List

Ideally, superpartners could be used as probes to answer structural questions

Supersymmetry in 2013

We are not in that ideal world; Higgs at 126 GeV suggestive of mini-desert

Wish List for the Frontiers

My high priority targets, given ubiquitous elements of SUSY:

Two Higgs Doublet (+ Singlet) Sectors Symmetry-Violating Terms (esp. CP) (Thermal-Relic) Neutralino Dark Matter

+ High Luminosity LHC, esp. for background-limited processes
+ Ambitious next-generation energy frontier machine (100 TeV pp?)