DARK SECTORS

KATHRYN M. ZUREK UNIVERSITY OF MICHIGAN

Tuesday, June 4, 13

DARK SECTORS

Our thinking has shifted

From a single, stable very weakly interacting particle (WIMP, axion)

 $M_p \sim 1 \text{ GeV}$

Standard Model

...to a hidden world with multiple states, new interactions

INTERVENTION OF DATA

DAMA, PAMELA, Fermi, CoGeNT

Data has helped us think about the dark sector in a fundamentally new way

 $M_p \sim 1 \text{ GeV}$

Standard Model

Complex!

STRUCTURE!

$M_p \sim 1 \,\,{\rm GeV}$

Standard Model

Inaccessibility

Multiple resonances

Could be complex!

Dark forces and dark Higgs mechanism

ACCESS

HiggsEnergy, cosmicNew electroweak statesEnergy, intensity, cosmicNew light, weakly coupled mediatorsIntensity, cosmicHeavier than electroweak statesIntensity, cosmicPerhaps we should make manyfishing expeditions?

FISHING EXPEDITIONS

- Of course, they should be *well-motivated*
- Well-motivated physics need not lie along the line of a few ideas
- What are the top few priorities in each frontier for fishing expedition type explorations?

WHAT IS MEANT BY A FISHING EXPEDITION?

- Not simply going to higher energies, more intense beams, bigger DM detectors (though these existing projects can have some fishing sub-expeditions)
- Many smaller scale experiments designed to improve sensitivity by many orders of magnitude on qualitatively different types of physics, with a clear discovery capability

FISHING EXPEDITIONS

- Characterized by creativity and entrepreneurial emphasis
- Such expeditions exist, and I will review *a few* of the efforts in each frontier
- Often lost by focus on large programs
- Is this a important piece of revitalizing the US program?

FISHING EXPEDITIONS

- Note that dividing things into "energy, cosmic, and intensity" frontiers can be antithetical to this way of thinking if we focus only on a couple of big programs
- Nevertheless, some things manage to survive
- More should be supported
- Examples from "the frontiers"

 $M_p \sim 1 \,\,{\rm GeV}$

Standard Model

Only worry about Production rates

Dark Sectors complicate life at a collider

 $M_p \sim 1 \text{ GeV}$

Standard Model

Dark Sectors make life rich at a collider!

Multiple resonances

Hidden Valley Could be complex!

Targeted searches with simplified topologies

High multiplicities Low mass resonances

CDF: "Search for Dark Photons from SUSY Hidden Valleys"

Specialized techniques: displaced

vertices

Decays in EM calo Decays in hadronic calo Decays in muon spect

Search for long-lived neutral particles

BUT SOMETIMES IT'S NOT EFFECTIVE

 Monojet searches assume an EFT and don't consider direct constraints

2. INTENSITY

Light, weakly coupled objects

Bjorken, Essig, Schuster, Toro

2. INTENSITY

Light, weakly coupled objects

Tuesday, June 4, 13

3. DIRECT DETECTION IS COSMIC INTENSITY FRONTIER

Scattering through the Z boson: ruled out

 $\sigma_n \sim 10^{-45-46} \ {\rm cm}^2$

Next important benchmark: Scattering through the Higgs

COSMIC INTENSITY FRONTIER FOR NEUTRALINO

- Make the Neutralino a pure state -- coupling to Higgs vanishes
- However, Wino and Higgsino pure states can be probed by indirect detection

Hisano, Matsumoto, Nojiri, Saito

ALWAYS A WAY AROUND

- Tune away the coupling to the Higgs
- Smaller cross-sections correspond to more tuning in the neutralino components
 10⁻⁴²
 10⁻⁴³
 10⁻⁴⁴
 10⁻⁴⁴

	\mathbf{m}_{χ}	condition
	M_1	$M_1 + \mu \sin 2\beta = 0$
	M_2	$M_2 + \mu \sin 2\beta = 0$
	$-\mu$	$\tan\beta = 1$
100.00	M_2	$M_1 = M_2$

Cheung, Hall, Pinner, Ruderman

3. DIRECT DETECTION IS COSMIC INTENSITY FRONTIER

- Light, weakly coupled hidden sectors
- Applies to both mass of DM particle and the nature of the scattering process

LIGHT WIMPS: ASYMMETRIC DARK MATTER

- Standard picture: freeze-out of annihilation; baryon and DM number unrelated
- Accidental, or dynamically related?

LIGHT WIMPS: GOOD AND BAD FOR DIRECT DETECTION

- Good: definite mass predictions
- Bad: prediction for scattering cross-section in direct detection model dependent
- For very light DM, scattering off electrons is most important process

3. COSMIC FRONTIER AND LIGHT DM

- CDMSLite •
- CDMS Low Threshold •
- Modified configurations of Xenon detectors for more light collection?
- CoGeNT
- COUPP

- DAMIC
- DM Ice
- Helium Targets
- DNA Detectors

•

 How do we get to lower thresholds?

Let many flowers bloom!

3. COSMIC

- Simplest case: non-standard momentum dependence in scattering cross-section due to light mediator
- Dynamics in direct detection

3. COSMIC

- Dynamics in astrophysical objects
- Self-interacting DM

Tuesday, June 4, 13

QUESTIONS?

- How much of the domestic program should be invested here?
- Is this a (partial) solution to investing all resources in large international collaborations on the energy frontier?
- What is the suite of small to medium scale experiments that can have a big impact on "crazy" physics?