Theories and observations of surface dynamo

Thierry Emonet (U of C)
Fausto Cattaneo (U of C)

http://flash.uchicago.edu/~mhd

Plan

- Surface dynamo?
- Theory
- Observations
- Challenges

Dynamo process

- Ingredients:
 - highly conducting plasma (magnetic field lines are frozen)
 - chaotic flow: any pair of neighboring points separate at exponential rate
 - Seed magnetic field \rightarrow deformed at an exponential rate
- Competition between two exponentially growing processes:
 - Stretching of field lines \rightarrow magnetic amplification
 - Increase of gradients and twisting-packing → increase of magnetic diffusion
- Vainshtain & Kichatinov 1986:
 - any turbulent (chaotic) flow is very likely to be a dynamo

Surface dynamo

Hints:

- Solar plasma is highly conducting and the convective flows are expected to be turbulent:
 - Close to the surface: Rm = O(10^6) and $\eta / v = O(10^7)$.
- Correspondence between scales of convection and magnetic features
 - Granules min ~1000 km → inner network fields
 - Supergranules day ~20,000 -- 50,000 km → network fields

Ansatz:

- Part of the surface magnetic field could be generated locally by the thermally driven convective flow:
 - Meneguzzi & Pouquet 1989, direct simulation
 - Durney, De Young & Roxburgh 1993, low order closure
 - Petrovay & Szakaly 1993, observations and transport model
 - Schrijver et al. 1997, observations and statistical model
 - Cattaneo 1999, direct simulation
 - Emonet & Cattaneo 2001, direct simulation

Equations Boussinesq convection plus induction equation $(\partial_t - \nabla^2)\theta = -\partial_i(u_i\theta) + u_3$ $(\partial_t - \sigma\nabla^2)u_i = \partial_j(B_iB_j - u_iu - p\delta_{ij}) + Ra\sigma\theta\delta_{i3}$ $(\partial_t - \sigma/\zeta\nabla^2)B_i = \partial_j(u_iB_j - u_jB_i)$ $\theta, u_3, B_1, B_2, \partial_3u_1, \partial_3u_2, \partial_3B_3 = 0 \text{ at } z = 0, 1$

Related observations

Magnetic flux in Quiet Sun does NOT vary with solar cycle (Harvey+White)

High resolution G-band observations (Berger & Title)

- Timescale for magnetic flux evolution in plage is ~ 6-8 min., morphological changes occur
 on timescales as short as 100 sec.
- No evidence of stable isolated subarcsecond flux tubes.

High resolution IR observations (Lin & Rimmele)

- Quiet Sun contains weak magnetic field (~ 1 G over 1 arcsec^2), mixed polarities.
- Evolves with the granular velocity field.

MDI/SOHO magnetograms (Hagenar, Schrijver, Title, ...)

- Ephemeral regions are generated by convection; are not recycled cancelled flux.
- Quiet, mixed-polarity network is generated locally.

Hanle effect (Landi Degl'Innocenti, Stenflo, Trujillo Bueno, ...)

– In the quiet photosphere there is a 5-15 G randomly oriented magnetic field.

MicroStructured Magnetic Atmospheres, MISMA model (Sánchez Almeida)

- Consistent and unified reproduction of asymmetries in Stokes V profiles

Challenges for the theory

- Saturation of the dynamo process
- More realistic modeling
 - In our model $v / \eta = 5$, but in the convection zone $v / \eta << 1$
 - Effect of compressibility: SEE POSTER BY NORDLUND & STEIN
 - Compressible dynamo calculation in closed box, i.e. without influx of magnetic field.
 - Add radiative cooling
- Unified theory: put in a unique framework:
 - Large-scale, rotationally constrained solar dynamo
 - Small-scale, non-rotationally constraint fast dynamo
 - The difficulty: enormous ranges of spatial and temporal scales
- Direct comparison with observations

Challenges for the observation

- Angular Resolution
 - Today the best angular resolution achieved are 0.2 arc sec ≈ 150 km:
 - Order estimates for Rm near the surface give Rm ≈ $O(10^4 10^6)$
 - Magnetic diffusive scales ≈ size of granule / Rm^(1/2) ≈ 10 km 1km
 - Understand better what information is lost: use numerical result to test inversion methods?
- · Resolution along the line of sight
 - Mean free path of a photon ≈ 100 km, i.e. Bigger than the magnetic diffusive
 - MISMA and non-MISMA approaches
- Comparison with theory: use PDF from simulations?

Conclusion

- Theoretical challenges
 - Saturation of the dynamo process
 - More realistic modeling
 - Unique framework for large- and small-scale dynamo: who is doing what?
 - More direct comparison with observations
- Observational challenges
 - Angular resolution
 - Understanding the effects of limited resolution along the line of sight
 - Comparison with theory: use PDF from simulations?

Saturation by suppression of chaos? • Cattaneo, Hughes and Kim (1996). Forcing + inertia neglected: - Forcing with: U = (|y∇, - |x∇, ∇) and ∇ = [sin(x+cos t)+cos(y+sin t)] sqrt(3/2) - Kinematic regime: large regions of chaos - Saturation: most regions of chaos are suppressed - Lim log(x(t) / x0) / t t • Using the fully non-linear 3D Boussinesq Eqs. - Compare the finite time Lyapunov exponents in the saturated dynamo: Re=200, Rm=1000, Ra=500,000, |/|=1, |/|=5 - with the non-magnetized case: Re=250, Ra=510/5, f = |/|=1 - 128 x 128 particles followed during 6 to 10 overturning times

