and py; = w?— K?*(cosfsech(azx) + sinf tanh(az))?v?.

In general, g is a function of x, so are the coefficients pg, p1, and po. At the critical points only, where
po vanishes, ¢ is independent of x, given by (18) and (19).

11



B Coefficients pg, p1, p2

The coefficients of the wave equation py(z)&," (z) + p1(2)&' (z) + p2(z)és(z) = 0 are
po(z) = {sech(aw)2 [uﬂcosh(am)2 — (k + hsinh(az))? UA2:|
(chosh(am)ZvA2 + cs? [uﬂcosh(aaz)2 — (k + hsinh(az))? ’UAQ] )} X

~1
{chosh(cwc)2 [w2 - (h2 + k2) UAQ] + (h? + k?)cs? [—chosh(cwc)2 + (k 4 hsinh(az))? UAQ] } ,

pi(z) = —{a sech(az)? [—3hk + hk cosh(2ax) — 2 (h2 - k2) sinh(ax)]

4> [—w4cosh(ax)4vA2 (w2 —(h? + k'Q)UAQ) —

2w? cosh(az)?c,> (w2 — (R + k2)vA2) (w%osh(am)2 — (k+ hsinh(ax))QvAQ) +

(h? 4 k?)c,! (cchosh(a:E)2 — (k + hsinh(az))? vAQ)Z] } X
-2
{wQ(:osh(m:)2 [w2 —(h? + kZ)UAZ] + (h? + E?)cs? [—wQ cosh(az)? + (k + hsinh(ax))ZvAQ] } ,

and po(z) = w? —wva? (k sech(az) + htanh(az))? .

Parametrizing the wavenumbers £ = K cos @ in the y-direction and A = K sin @ in the z-direction as in
Section 7, and writing x-dependences in the form of the critical point conditions g = cos # sech(ax) +
sin f tanh(ax) wherever possible, these can be expressed more conveniently as:

po = { [WQ(Q)E‘ +¢2) — K%c2v% (cos O sech(azx) + sin0tanh(ax))2}
[w2 — K%v%(cos O sech(ax) + sin9tanh(ax))2] } X

-1
{w4 — W K% (04 + 2) + K*c2v? (cos O sech(ax) + Sin0tanh(a:1:))2} ,

Ay _ Adg(2)
dz 2 dx

pi(z) =

—2av 4% K> { [cos @ tanh(az) — sin 6 sech(ax)] [(cos f sech(az) + sin @ tanh(az))]
2
[—w4v,42 (w2 — KZUAQ) — 2w?es? (w2 — KZUAZ) (w2 — H? vAz) + K2%¢,t (w2 — H? UAZ) ] } X
-2
{w4 — WK (v} + ) + K*v% (cos O sech(az) + sin0tanh(ax))2} ,

10



A Functions in wave equations (11) - (13)

Qcox(z) = iasech(az)® (h — k sinh(ax)) ¢,
Qcia(z) = —iasech(az)” (k+ h sinh(az)) (2 +03)
Qu(z) = w? —v4? (k sech(az) + h tanh(az))?
Proz(z) =i sech(az) (k+ h sinh(ax)) cs?
P1z(x) =i sech(ax) (h— k sinh(az)) (e, +v4?)
d(z) = c;® + va?

Qcoy(x) = sech(a z) (w2 —k (k + h sinh(a z)) 052)

Qeiy(w) = k sech(aw) (—h+ k sinh(az)) ¢, + tanh(az) (—w? + (B + k) v4?)
Py(z) =i (k: ¢s? + sech(az) (—h + k sinh(a2)) v42 tanh(a x))
Qco:(7) = —h sech(az) (k + h sinh(az)) ¢s® + w? tanh(az)
Qq12(x) = sech(az) (w? = h (b~ k sinh(az)) ¢;® = (h* + k) v4?)

P,(z) =i sech(ax) [h cosh(az) ¢;® +v4? (h sech(ax) — k tanh(a x))]



9 Limits of £

Analytically solve for £ in the limits of high and low beta, near the origin and at plus minus infinity, in
terms of non-constant coefficients. Due to the complexity of the coefficients, we may need to change
our method above in two ways to make the problem tractable:

o Write the wavenumbers i and % as quantities rotating with the magnetic field, as we did for the
displacements. By casting the wavenumbers into the rotating basis natural to this sheared field,
we can remove all explicit dependence on 8 and may simplify the form of the coefficients in the
wave equation and in the Frobenius expansion.

e If a general analytic solution for arbitrary displacements remains intractable, then solve the
wave equation for special cases by initializing the displacement at the —z boundary, e.g. for
pure sound waves and pure Alfven waves. This will permit us to track the evolution of each type
of MHD wave as it propagates through the shear layer.

10 Numerical solutions

Numerically solve for £ in high and low beta limits, for all positions x, if necessary.



where
p2n = (1+5%)2w? — K?0%(25cos0 4 (—1 4 s%)sin® 0

Cancelling common factors, these coefficients can be rewritten without denominators to facilitate
a series expansion in s:

p0,s = pOn p0d(1 + s?) (35)
pls =pln (36)
p2s = p2n p0d?(1 + s%) (37)

8.2 Frobenius method

Using the Frobenius method, we will expand about a regular singularity s,.. We assume a solution of
the form

Er = i bu(s — s,) 1™, (38)
n=0

Substituting this trial solution into (30), using pOs, pls, and p2s above, and writing (s — s4) = s1
everywhere, we find:

o0
$1S by [tos? st p sttt tMS?Hﬂ =0 (39)
n=0

where the coefficients ¢ are very involved polynomial functions of s which also depend on 6.
Assuming that by # 0, the indicial equation tg =0 at n =0 is

0 = (w? - K%?%sin?0) [wZ(—KZ(cz +v%) + w?) + K1c20v? sin? 0}
{w2 [(a21/2 — K?)(c? + %) + w2] + K220% (K? — a®v?) sin® 0}
with roots
K2w?( +v%) — K*c2v? sin? § — w?
a2w?(c2 +v4) — a2?K2c2v? sin? 0

UV =

(40)

These can be evaluated for each critical point, in theory. While this work remains to be finished,
here is the plan:

8.3 Solutions at critical points

8.3.1 Case a.

When g = Ku'l)fa then po = 0 and

+,/K2v% —w? — Kvacosf
s — A (41)

Fw+ Kvgsinf

8.3.2 Case b.

2,2
w vy

>4 and
CS

20, .2 22
When g = 2204+ thep py =

Kcsva

:l:\/K%gvzl — (2 +v4)w? — Kcgva cos

Fwy/c2 + 04 + Kcsvasinb

5 (42)



8 Solutions near critical points

We first transform the independent variable of the differential equation (14) from z to s. Then we
apply the Frobenius method to find solutions near critical points such as those given by (26), where
x; = 0, z, satisfies (18) and s, = e*. Later, we will match the solutions at critical points to solutions
&z () throughout z.

8.1 Transformed differential equation

We transform equation (14) using s = e | g—; =as, % = as% , and % = GZSQ% + a%% to find
aQSZPO% + (a®s%po + a82p1)& + P28 =0 (30)
s ds
and rewrite the coefficients in terms of s.
p0(s) = % (31)
where
pOn = [(1 + 52)2w? — K*0%(25cos 0 + (=1 + s°) Sin0)2]
{(1 + s?)20%w? + [(1 + 5%)2w? — K%0%(25cos 0 + (=1 + s?) sin 9)2}}
and
p0d = (1+ %) %W (—K?*0% +w?)
+ AK? [—(1 + 5%)2w? + K204 (25 cos @ + (—1 + s%) SinH)Q} .
The second coeflicient of the differential equation becomes:
pl(s) = asdpgis) = a +iigl3 old (32)
where
pln = 4asK?v%(cosf — s% cosf 4 2ssin0) (25 cos § + (=1 + s?) sin 6)

{(1 + s2) 4wt (K% — w?) — 22 (1 + %) 2w (K20 — w?)
[—(1 + 53)2w? 4+ 45’ K?v% cos® 0 + 4s(—1 + s%) K?v% cos 0sin @ + (—1 + s%)2K?v? sin? 0}
2
+ cIK? [—(1 + 53)2w? + 452 K?v% cos? 0 + 4s(—1 + s*) K?v% cos 0sin @ + (—1 + s%)2K?v? sin? 9] }
and
pld = p0d? (33)
and the third coefficient of the differential equation becomes:

p2n

p2(s) = 1+



The real and imaginary components of this equation are, respectively:

2 cosh(az,) [cos 6 cos(az;) + sinf sinh(az,)]
9= (21)
cos(2ax;) + cosh(2az,)

2sin(ax;) [sin @ cos(ax;) + cos @ sinh(az,)]
=
cos(2ax;) + cosh(2ax,)

(22)

We solve these two equations simultaneously for the two unknowns z, and z;. The imaginary
equation has solutions where z; = 0 and where cos(ax;) tanf = — sinh(az,). For nonzero z; we find
one set of solutions:

tanh(az,) = :l:@ where b(#) = sinf (sin2 6 — cos® 9) (23)

cos?(ax;) = *() =

c0820[ b%(9) ] (24)

7~ 7(0)

Substituting z; = 0 into (22), we find a second solution for z,, which simply recovers the definition

sin? 6

g = cos O sech(az,) + sinf tanh(az,) . (25)

Graphical analysis (Figs.3,4) shows that any angle 0 satisfies these critical point relations if g > 1,
but the angle is restricted at lower frequencies or shorter wavelengths.

Fig.3: Since |tanh(az,)| < 1, there are critical points z, at all # as long as g > 1. Caption:
sin @ (sin 02 — cos 6?) vs 0

Fig.4: Since |cos(az;)] < 1, there are critical points z; at all § as long as g > 1. Caption:
cos @ [ b2 ] vs 0

sin 0 g2—b2

7.1 Critical points in terms of transformed variable

We seek solutions to the displacement &,(x) near the critical points where 2; = 0 and g is a constant

given by (18). To this end we rewrite (25) using s = e, tanhz = Zi—_ﬁ , and sechz = %, which
yields (cf [a.74)
— 0+ +/1-—g2
gy = 0 g (26)

sinf F g

For reference, another set of critical points comprises ax, = In s, and ax; = Ins; where, from (23)
and (24),

_ Fg+b(0)
"= T 00) &
and
52 =c(0) £ /c2(0) + 1. (28)

We may also expand &,(r) about this s, when z; = 0 , or cos(z;) = ¢() = 1. In that case, b*(0) =
g?sin? §. Substituting this condition into (28) yields
+¢(1 + sin#)
2
= . 29
Sr +g(1 — sin#) (29)
Whether we expand about an s, given by (26) or (29), we need to first write the coefficients of the
wave equation (14) in terms of s = e®*.



i) = 2

po(z) = w? — K%g(x)*v4? and

g(z) = cos@sech(az) + sinf tanh(ax) .

We have parametrized the wavenumbers in terms of an amplitude K and the angle 6 between k£ and
h. In the y-direction, kK = K cosf, and in the z-direction, h = K sinf. The differential equation is
self-adjoint:

[ o)1} + pal)] () = 0. (15)

Notice that (14) is singular where either py(x) or the denominator of p;(x) vanishes.
Once &, (z) is determined, it can then be used to find the amplitudes of the two rotating displace-

—

ment vectors ((z) and Co ().

Py(z) Qqu:(2) = Po(x) Qqoy(2) )
QCOy(x)QCIZ(x)—Qggz(x)QCly(x)> d (16)

o) — - (Qam G(#) + Pu(2) (sx>'(m>> | -

Ci(z) = &' (2) (

Q(Oz (:E)

This completely specifies the displacement vector. Most of the rest of this work is devoted to
finding &, (z).
7 Critical points

We find three sets of critical points z for the differential equation (14). Each critical point condition
determines a value of the function g(x) = cosf sech(ax) + sinf tanh(az). po(z) vanishes where

92 _ (U:JK)Q or 92 _ (v:JK)Q(U?qC"g C?) (18)

and the denominator of p;(x) vanishes where

w )Q[KQ(Cg —I-U?q) —UJQ]‘

vaK K2¢,2

g(z)? = ( (19)

This second value of ¢ is not of interest, since the denominator of py(z) vanishes at the same point. The
critical points may be real or imaginary, so g(x, +iz;) = cos 0 sech(ax, +iax;) +sin 0 tanh(az, +iaz;).
Using the identities

cos(y) cosh(x) + i sin(y) sinh(x)

h ' d
sech(z +iy) cosh(z)? — sin(y)? an
, sinh(2z) 4 i sin(2y)
tanh =
anh(z + iy) cosh(2z) + cos(2y)
the critical point conditions become
B Cosg[cos(axi) cosh(az,) + isin(az;) Sinh(axr)] ) e[sinh(Qamr) +1 Sin(2a:1:z-)] (20)
9= cosh(az,)? — sin(az;)? cosh(2az,) + cos(2az;) 1



—

¢1(z) = Ci(z) [0, — tanh(a z),sech(a x)]. (7)

Both §i| (z) and (| () rotate with the same handedness as the field. We seek solutions {(z,y, z) which
satisfy the wave equation below.

5 The wave equation

Momentum conservation and Maxwell’s equations yield the wave equation

d*¢ -
poW:V('yPV-C)%-JxB (8)
Assuming perturbations of the form e (kyt+hz=wt) the linearized wave equation is
2
w2<+c£v(v-g)+%[(VXB)xb1+(va1)xB]:0 (9)
where the Alfvén speed vy = \/lonp , the sound speed c; = %, the mean magnetic field é(x) is

given by (1), and the perturbations to the mean field are

gl(ac,y,z) =V x (5(ac,y,z) X é(x)) . (10)

The x, y, and z components of the wave equation are, respectively:

Qcox(2) Co(2) + Qc1z(2) (1 (@) + Qu() &x (%) + Prow(®) (o' (%) + Prig(z) ' (2) + d(z) &" (z) =0 (11)

Qcoy(@) Co(@) + Qc1y(#) Ci(x) + Py(2) &'(2) =0 (12)

Qcoz (%) Co(@) + Qc12(w) Ci (@) + Pi(2) &' (x) = 0. (13)

The wave equation thus depends on three displacements and their derivatives, and on functions of
x listed in Appendix A. It is not tractable in this form.

6 Differential equation

By combining the three components of the wave equation, we are able to find a single ordinary second-
order differential equation for the displacement along the magnetic axis,

po(2)&:" (x) + p1(2)& (%) + po(x)u(z) =0, (14)

where
po(z) = { [wZ(vzl +c?) — KZCgvzlg(w)Q] [w2 — K%ﬁg(x)ﬂ} X

-1
{w4 — K2 (v} 4 2) + K4c§1)1249($)2} ,
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Figure 2: Sheared current sheet of width 1/a: the x axis is horizontal, and the current is purely in the
negative y direction in the middle, at x=0.

3 Outline of approach

-

e Write the displacement vector ((z,y, z) in terms of displacements &, (z) along the z—axis and
two orthogonal rotating displacement vectors (j(x) and () (x) in the plane of the field.

e Write the wave equation for Low’s sheared force-free field, assuming constant pressure and
density and negligible gravity and rotation.

e Combine the three components of the resultant wave equation to get an ordinary second-order
differential equation in terms of &, (z) and its derivatives.

e Characterize critical points in the &, (z) differential equation.

-

e Solve for &, (x) and ((z,y, z) near the critical points in the limits of high and low beta.

—

e Match solutions for &, (x) and ((x,y, z) at the origin and +oo with solutions at critical points,
to find displacements for all positions x.

4 The displacement vector

We write the displacement vector
((w,y,2) = e EvH=9D (¢ (@)i + () + (1L (2)) (5)
in terms of two orthogonal rotating displacement vectors, one parallel to the magnetic field

¢j(z) = Co(x) [0,sech(az), tanh(az)] (6)

and one perpendicular to the field



1 Introduction

How do MHD waves change as they propagate into a sheared magnetic field? We attempt to find the
general analytic solution for displacements in a sheared force-free magnetic field. We are able to write
the MHD wave equation as an ordinary differential equation. By analyzing solutions at the critical
points, we hope to be able to characterize changes to incoming waves as they travel along the sheared
field, including transformations between sonic and Alfvenic waves, reflections and transmissions near
critical points, and other effects.

2 The Magnetic Field

We will consider wave propagation in the presence of a constant-amplitude, sheared magnetic field.
B.C. Low showed (1988) that the magnetic field in Cartesian coordinates

B(z) = By [0,sech(az), tanh(a z)] (1)

is force-free and stable. The field amplitude By is fixed and its orientation in the y — z plane rotates
along the x axis, as in Fig.1.
The force free parameter «, defined by

V x B=aB, (2)
is non-constant:
a(z) = —a sech(ax). (3)

The current J = V x B is antiparallel and concentrated in the shear layer of thickness 1/a, as in
Fig.2.
J = —a |0, sech(az)?, sech(az) tanh(az)] (4)

e
o &
e e e
e e
e e

Figure 1: Sheared, force-free magnetic field: the x axis is horizontal, and the field is purely in the
positive y direction in the middle, at x=0.



