

Spin Current:

A Probe of Quantum Materials

KITP UCSB 11/12/2019

Wei Han

- I. Introduction to Spin current and Quantum materials
- II. Spin current as a probe of quantum materials
 - Spin dynamics in FM/superconductors
 - Spin superfluidity in canted AFM:
 Cr₂O₃ (Yes), Fe₂O₃ and MnPS₃ (No)

III. Summary and outlook

Albert Fert

Peter Grunberg

Stuart Parkin

Introduction to quantum materials

Quantum materials:

Quantum properties stem from a complex interplay between factors such as *reduced dimensionality, quantum confinement, quantum fluctuations, topology of wavefunctions,* etc.

Quantum Materials

Keimer, B. & Moore, J. E. Nat. Phys. (2017) Basov, D. N., Averitt, R. D. & Hsieh, D. Nat. Mater. (2017) Tokura, Y., Kawasaki, M. & Nagaosa, N. Nat. Phys. (2017)

New-types of spin current in quantum materials

	Materials	Illustration of spin current
Electron (hole) (S = 1/2)	Metals, semiconductors, and topological insulators, etc	Spin C C C C
Spin-triplet pair (S = 1)	Superconductors	
Quasiparticle (S = 1/2)	Superconductors	
Spinon (S = 1/2)	Quantum spin liquids	
Magnon (S = 1)	Magnetic insulators	
Electron-hole pair or magnon (S = 1)	Spin superfluids	

8

Spin current in Quantum materials

Angular momentum:

Spin dynamics in FM/superconductors

> Spin superfluidity in canted AFM: Cr_2O_3

Spin current of quantum materials

Angular momentum:

Quasiparticles in SC

Spin susceptibility in s-SC

Masuda & Redfield, Phys. Rev. (1962) Tinkham, Introduction to superconductivity Curro, et al, Nature (2005)

Spin susceptibility in s-SC

NMR → Ferromagnetic FMR in FM/SC

SC films

 $\delta \alpha \propto J_{sd}^2 \sum \operatorname{Im} x_q^R(\boldsymbol{\sigma})$

Introduction of spin pumping

FM NM Js $\vec{m}(t)$

 $\vec{J}_{S} = \frac{\hbar g_{r}^{\uparrow\downarrow}}{4\pi M^{2}} \left(\vec{M} \times \frac{\partial \vec{M}}{\partial t} \right)$

Precessing magnetization in FM layer pump spin current into NM layer (Angular momentum conservatoin)

Tserkovnyak, et al, PRB (2002) Tserkovnyak, et al, Rev. Mod. Phys. (2005)

Recent development of spin pumping theory

14

Ohnuma, et al, Phys. Rev. B (2014) Inoue, et al, Phys. Rev. B (2017)

$$\delta \alpha = (\frac{J_{sd}}{\hbar})^2 S_0 \frac{N_{int}}{N_{FM}} \frac{1}{\omega_0} \int_{q} I_m \chi_q^{+-}(\omega_0),$$

Enhanced
Gilbert Damping Dynamic Spin
Susceptibility

Dynamic Spin susceptibility in s- wave SC

NbN/GdN/NbN trilayer

Samples from MIT (Yota Takamura, Prof. J. Moodera)

Dynamic Spin susceptibility in s- wave SC

NbN/GdN/NbN trilayer 1.20 $\begin{matrix} R_{4p} & / R_{4p} \\ 0.00 & 0.00 \\ 0.00 & 0.00 \\ 0.00$ NbN(t)/GdN(5)/NbN(t). ► t = 2 nm – t = 10 nm 0.00 b NbN(t)/GdN(5)/NbN(t) 0.12 **----** t = 2 nm **♀**− t = 10 nm 0.10 ຽ 0.08 0.06 0.04 10 12 14 16 18 6 8 Δ T (K)

¹⁶ Y. Yao, et al, Phys. Rev. B 97, 224414 (2018)

Inoue, et al, Phys. Rev. B (2017)

Yunyan Yao

Spin current as a probe

1) Interface SC gap at the FM/SC interface

Bell, et al, Phys. Rev. Lett. (2008)

non-Abelian Majorana fermions using $(p_x + ip_y)$

Sau, et al, Phys. Rev. Lett. (2010)

Skalski, et al, Phys. Rev. (1964)

17

Spin current as a probe

2) Spin dynamics in d-wave superconductor films

Y. Yao, et al, preliminary data.

Spin current of quantum materials

Angular momentum:

Spin superfluidity

Spin superfluidity:

Spin analogue of superconductivity

Spin superfluidity: Zero spin resistance

Sonin, JETP (1978) Q. Sun and X. C. Xie, PRB (2011), PRB (2012), Nature Comm. (2014)

Charge superconductivity: Meissner effect (B)

Spin superfluidity: Meissner effect (E)

Q. Sun and X. C. Xie, PRB (2011), PRB (2012), Nature Comm. (2014)

Charge superconductivity: Josephson effect

Spin superfluidity: Spin-Josephson effect

Sun and Xie, PRB (2011), PRB (2012) Liu, et al, PRB (2014) Chen, Kent, MacDonald, PRB (2014).

Analogs of superfluid currents for spins and electron-hole pairs

É. B. Sonin

A. F. Ioffe Physico-technical Institute, USSR Academy of Sciences (Submitted 20 October 1977) Zh. Eksp. Teor. Fiz. 74, 2097–2111 (June 1978)

States analogous to those with superfluid currents in an ordinary superfluid can exist in a Bose-condensed electron-hole liquid as well as an easy-plane antiferromagnet. For easy-plane antiferromagnets these states are metastable helicoidal structures with an antiferromagnetic vector that rotates inside the easy plane. These structures are investigated with the aid of the usual phenomenological theory based on the Landau-Lifshitz equations to which some dissipative terms are added. The metastable helicoidal structures can be produced by injecting spins into the antiferromagnet. This gives rise to magnetization far from the point of injection, a manifestation of a real spin transport in these states. For a band, antiferromagnet, the stationary phenomenological equations are the Ginzburg-Landau equations, which are derived by using an excitonic-state model with extrema that do not coincide in k-space.

PACS numbers: 75.10.-b

Charge superconductivity:

ie, Wang, et al, Science (2011)

Spin superfluidity:

e-h BEC Charge: 0 Spin pairs: (1/2 + 1/2)

Magnon BEC Charge: 0 Magnon: Spin-1

> Sonin, JETP (1978) Q. Sun and X. C. Xie, PRB (2011), PRB (2012), Nature Comm. (2014) Takei, et al, PRB (2014)

Material candidates

1) Spin superfluidity in FM graphene

e-h BEC

Charge: 0 Spin pairs: (1/2 + 1/2)

Q. Sun and X. C. Xie, PRB (2011)

v = 0 quantum state of graphene

Novoselov et al., Nature (2005) Zhang et al., Nature (2005)

Q. Sun and X. C. Xie, PRB (2013) Takei, et al, PRL (2016)

Material candidates

2) Spin superfluidity in canted AFM

Magnon

Charge: 0 Magnon: Spin-1 boson

Spin current as a probe for spin superfluidity

Takei, et al, PRL (2015)

Our experimental approach

Cr₂O₃ AFM insulator

(0001)-oriented Cr₂O₃

Atomic flat (0001)-Cr₂O₃ AFM films

Pulsed Laser deposition

Nonlocal spin transport

Field induced Canted AFM

Nonlocal technique previously used to study Magnon diffusion in ferromagnetic insulator YIG: Cornelissen, et al, Nat. Phys. (2015)

Saturation of the nonlocal spin signal

Long distance spin transport

Comparison with incoherent magnons

Similar to incoherent magnons in YIG: Cornelissen, et al, Nat. Phys. (2015)

Critical current density

Wei Yuan

Tang Su

- Saturation of the nonlocal spin signal at LT
- Spacing dependence of the spin transport
- Critical current for spin superfluidity
- Edge scattering

Wenyu Xing

W. Yuan, Q. Zhu, T. Su, Y. Yao, W. Xing, Y. Chen, Y. Ma, X. Lin, J. Shi*, R. Shindou, X. C. Xie*, and <u>Wei Han</u>*, *Science Advances*, 4: eaat1098 (2018).

Spin superfluidity in canted AFM

Question: Does spin superfluidity exist in all canted AFM?

Spin superfluidity in canted AFM

Question: Does spin superfluidity exist in all canted AFM?

Spin transport in Fe₂O₃

LETTER

https://doi.org/10.1038/s41586-018-0490-7

Tunable long-distance spin transport in a crystalline antiferromagnetic iron oxide

R. Lebrun^{1,6}*, A. Ross^{1,2,6}, S. A. Bender³, A. Qaiumzadeh⁴, L. Baldrati¹, J. Cramer^{1,2}, A. Brataas⁴, R. A. Duine^{3,4,5} & M. Kläui^{1,2,4}*

Klaui Group @Mainz, et al, Nature (2018)

Spin transport in Fe₂O₃ Al₂O₃ (11-20) (11-20) Fe₂O₃ (50 nm) on Al₂O₃ Fe₂O₃ (11-20) Intensity 32 34 36 38 40 42 2Theta (Degree) 0.16 0.12 80.0 K^N (V/A²) 80.0 K^N (V/A²) **Incoherent magnon** 0.00 Fe₂O₃ 50 100 150 200 250 0 *T* (K)

Magnon transport in 2D MnPS₃

Wenyu Xing

W. Xing, L. Qiu, X. Wang, Y. Yao, Y. Ma, R. Cai, S. Jia,X. C. Xie, and Wei Han*, Physical Review X 9, 011026 (2019)

- I. Introduction to spin current and quantum materials
- II. Spin current as a probe for quantum materials
 - Spin dynamics in FM/superconductors
 - Spin superfluidity in canted AFM:
 Cr₂O₃ (Yes), Fe₂O₃ and MnPS₃ (No)

III.Summary and outlook

Spin current: a novel probe for Quantum Materials

> Spin dynamics in FM/SC

Signatures for Spin Superfluidity Ground State

 Cr_2O_3 (Yes), Fe_2O_3 and $MnPS_3$ (No)

Outlook: Spin current as a probe of Quantum Materials

Outlook: Spin current as a probe of Quantum Materials

<u>W Han*</u>, S. Maekawa, and X. C. Xie, Nature Materials (2019) https://doi.org/10.1038/s41563-019-0456-7

Acknowledgement—Collaborators

Massachusetts Institute of Technology, USA

Prof. Jagadeesh S. Moodera, Prof. Yota Takamura (TIT, Japan)

Nanjing University, China

Prof. Di Wu, Ms. Siyu Yao

University of California, Riverside, USA

Prof. Jing Shi

RIKEN, Japan

Prof. Sadamichi Maekawa (KITS, Beijing)

ICQM@Peking University, China

Theory: Prof. Xin-Cheng Xie, Prof. Ryuichi Shindou **Experiment:** Prof. Shuang Jia, Prof. Xi Lin, Prof. Yuan Li

Acknowledgement—Students and funding

47 Funding: NSF of China, MOST (973)

Acknowledgement-audience

Email: weihan@pku.edu.cn

Group: http://www.phy.pku.edu.cn/~LabSpin/home.html