Topological materials: from a catalogue to machine learning

N. Regnault

 $\frac{1}{\sqrt{2}}$ (Ecole Normale Supérieure Paris and CNRS) $+\frac{1}{\sqrt{2}}$ (Princeton University)

Symposium on Condensed Matter Physics KITP - November 2019

Acknowledgements

- Maia Vergniory (Donostia International Physics Center)
- Luis Elcoro (University of the Basque Country)
- Benjamin Wieder (Princeton University)
- Zhijun Wang (Beijing National Laboratory for Condensed Matter Physics and IOP)
- Claudia Felser (MPI for Chemical Physics of Solids)
- Andrei Bernevig (Princeton University)
- ullet Nikolas Claussen (ENS Paris o UCSB)

References:

- M. Vergniory et al. Nature 556 (2019).
- N. Claussen et al., arXiv:1910.10161.

How to get the band structure?

A space group (SG) is a set of symmetries that defines a crystal structure in 3D.

- Unit lattice translations (\mathbb{Z}_3) .
- Point group operations (rotations, reflections).
- Non-symmorphic (screw, glide)

Ingredients:

- one of the 230 SGs.
- Atoms at some lattice positions.
- Orbitals (s, p, d, ...).

How do we go from real space orbitals sitting at lattice sites to any electronic band structure (without a Hamiltonian)?

Elementary band representation (EBR)

One SG, many options

Several ways to arrange the atoms within the unit cell where all atoms are related by symmetry

One SG, many options

Several ways to possible choice for the electronic orbitals for a given arrangement (orbital arrangement must be consistent with SG symmetry)

Elementary band representation (EBR)

Can we build all the possible band structures for these cases (i.e. all the atomic limits)?

- Key Insight: Think of bands as representations! (Zak, Bacry, Michelle).
- Then ask questions of representation reducibility (Elementary band)
- Find all the irreps \rightarrow EBR.
- Single/double group, w/wo time reversal and each rep, Wyckoff:
 10398 such irreps, tabulated on the Bilbao Crystallographic server.
- The band representation also gives the Brillouin zone irreps at points and lines.
- By construction, a band representation has an atomic limit, and all atomic limits yield a band representation.

Topological Quantum Chemistry (TQC)

TQC provides a unified framework for the treatment of all topological phases arising from crystalline symmetries.

It relies on:

- EBRs which enumerate a basis for all electronic bands induced from atomic orbital (atomic limits)
- compatibility relations, constraining how bands can connect across the Brillouin zone.

"All sets of bands not induced from symmetric, localized orbitals, are topologically non-trivial by design."

B. Bradlyn et al., Nature 547 (2017)

Trivial and Topological Insulators (TIs)

* Fragile: EBR_F=EBR1-EBR2 EBR_F+EBR2=EBR1n: trivial

Topological Semi-Metals (TSM)

Topological "metalic" classes { EBR1 EBR2

- ESFD: high-symmetry point degeneracy at the Fermi level.
- ES: the degeneracy is away from the high-symmetry points.

The material search procedure

A massive search: more than 70k valid ICSDs, 20M CPU hours. Topology is not rare! Trivial (47%) TIs (16%) TSMs (37%)

The Topological Material Database

www.topologicalquantumchemistry.com

Links from and to materialsproject.org

Vergniory et al. Nature 556 (2019)

See also T. Zang et al. Nature 566 (2019), materiae.iphy.ac.cn and F. Tang et al. Nature 566 (2019)

Sneak peek of the new website

Imprint Privacy Policy

When using the data and information on this website in a publication, please cite the following three papers and two websites:

- Topological Quantum Chemistry
- Nature 547, 298-305 (2017)

 A Complete Catalogue of High-Quality Topological Materials
- Nature 566, 480-485 (2019)

 A Complete Catalogue of All Topological Materials
- In Preparation
- Topological Material Database
- Bilbao Crystallographic Server

Sneak peek of the new website

- Improved U.I..
- More than 38k unique materials (71k unique ICSDs).
- With and without SOC.
- Dynamical plots.
- Fragile phases.
- Wiki and more.

Sneak peek of the new website

Machine Learning: what it does

The only useful "French" mathematical function: \hat{F}

$$\hat{F}$$
 $\left[\begin{array}{c} \hat{F} \end{array}\right]$ = pain au chocolat

In a physicist language : find a variational ansatz F capturing \hat{F}

Machine Learning: how to train your network

Supervised learning:

- Train the network with a large amount of labeled data (input-output pairs): Reduce a cost function (distance measure between network output and labels) via e.g. gradient descent.
- Verify the network performance on a distinct test data set.

Unsupervised learning:

Use unlabeled data, the network learns to cluster data/find structure/learn probability distribution of features.

Reinforced learning:

Agents, reward : direct the action of software agents in an environment to maximize some cumulative reward (e.g. videogame score).

A large database? Overfitting?

- Crystallographic data: chemical elements, symmetry group, atom positions.
- Large wrt to chemistry (35k unique materials), small for machine learning.
- Unbalanced samples: Trivial (47%) vs Tls (16%) or TSMs (37%)

- Lots of information per compound (curse of high dimension).
- Not easy to encode: how to encode chemical structure, (basis-free) atom positions?

Using a NN architecture: more (parameters) is not better, how to prepare the data?

Which network architecture?

- Pick the right architecture depending on the data structure.
- Unstructured data (i.e., not pictures): decision tree classifiers

- Improved version: gradient boosted trees (GBT) training an ensemble of simple (weak) decision trees instead of unique but complex one (to avoid overfitting).
- Two libraries: sklearn and xgboost.

Which network architecture?

- Pick the right architecture depending on the data structure.
- Unstructured data (i.e., not pictures): decision tree classifiers

- Improved version: gradient boosted trees (GBT) training an ensemble of simple (weak) decision trees instead of unique but complex one (to avoid overfitting).
- Two libraries: sklearn and xgboost.

Our situation

Input:

- Nbr of electrons: encoded in binary (easy to detect parity effects, like ESFDs in some specific SGs).
- Symmetry group: number + frequencies of each class (fingerprint of each SG)
- Chemical structure: mean number of s,p,d,f valence electrons, number of atoms per column/row in the periodic table (to encode chemical similarity).
- (optional): atom position encoded as average and variance of distances between atoms and their nearest neighbors, coulomb matrix, ...

Output:

- Coarse grained label: Trivial/TI/TSM.
- Full label: Trivial/NLC/SEBR/ES/ESFD.

Training and testing:

- 32k materials for the training, 2.5k for the testing.
- Cross-validation (to estimate the error).

Results: coarse grained label

Model	d	Acc.	F_1 Triv.	F ₁ TI	F ₁ TSM
		[%]	[%]	[%]	[%]
Full model (FM)	49	89.7(5)	94.0(3)	70(1)	92.0(5)
FM + Non-SOC	50	92.0(3)	96.5(2)	77(1)	93.3(4)
Baseline model	94	86.0(5)	92.5(5)	67(1)	91.0(5)
spdf + model	10	87.7(5)	93.0(5)	69(1)	92.0(5)
FM + nearest-neighbor	184	89.0(5)	94.0(3)	69(3)	92.0(5)
FM without SG	48	84.0(5)	91.5(3)	57(2)	86(1)

- *d*: size of the input vector.
- Full model: SG, N_e , spdf+, number of atoms from each periodic table row and column.
- Baseline model: SG, N_e , baseline descriptor (nbr of atoms from each element in stoichiometric formula).

Results: coarse grained label

F_1 -score: choose your poison

•

- **Precision**: reliability of a binary classifier's positive predictions (i.e. how many *False Positive*).
- **Recall**: Ability to find all the true positive sample points (i.e. how many *False Negative*).

$$F_1 = 2 \cdot \frac{\text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}}$$

- You can always trade Precision for Recall (and vice versa).
- Much better than a random classifier only using the statistics per SG (F_1 -score around 1.2% vs 70% for TIs).
- Given the SG, the positions of the atoms within the crystal lattice are of limited importance for the material's topology. Rather, it is the "average orbital character" (spdf+).

Results: full label

Acc.	F_1 Triv.	F ₁ NLC	F ₁ SEBR	F ₁ ES	F ₁ ESFD
[%]	[%]	[%]	[%]	[%]	[%]
87.0(3)	94.0(4)	66(2)	59(3)	73(2)	95.5(3)
89.7(5)	94.0(3)	70(1)		92.0(5)	

- The sample size per label starts being small.
- Swapping e.g. NLC and SEBR for one material would only lead to a wrong prediction in the full label classification.
- ullet ES are harder to detect than ESFD: this latter can in many cases be detected from N_e and the SG alone.
- Our model correctly identifies the groups in which TIs are allowed according to TQC.
- NLCs are easier to predict than SEBRs. SEBR type depends on energetics, not fully captured by our model.

A simplified version

Overall accuracy (70%) does not match the GBT one but it already capture some of the important classification rules and relevant features.

Test your own material

https://www.topologicalquantumchemistry.com/mltqc

Conclusion

- TQC allows a massive search over more than 70k valid ICSDs.
- Topology is not rare! Trivial (47%) TIs (16%) TSMs (37%).
- www.topologicalquantumchemistry.com a database available to the community.
- Machine learning be applied to this trove of data.
- Decision trees/GBT with a clever encoding of the material data.
- Even with a reduced input (SG, $N_{\rm e}$ and chemical composition), we can get an accuracy close to 90%.

