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A Catalogue of Topological Materials




How to get the band structure?

A space group (SG) is a set of symmetries that defines a crystal structure in
3D.

e Unit lattice translations (Z3).
@ Point group operations (rotations, reflections).

e Non-symmorphic (screw, glide)

Ingredients:
@ one of the 230 SGs.
@ Atoms at some lattice positions.
e Orbitals (s, p, d, ...).

How do we go from real space orbitals sitting at lattice sites to any
electronic band structure (without a Hamiltonian)?

Elementary band representation (EBR)



One SG, many options

Several ways to arrange the atoms within the unit cell where all atoms are
related by symmetry
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One SG, many options

Several ways to possible choice for the electronic orbitals for a given
arrangement (orbital arrangement must be consistent with SG symmetry)

N

s (or p;) orbitals atoms/unit cell px and py orbitals



Elementary band representation (EBR)

Can we build all the possible band structures for these cases (i.e. all the
atomic limits)?
e Key Insight: Think of bands as representations! (Zak, Bacry,
Michelle).
@ Then ask questions of representation reducibility (Elementary band)
e Find all the irreps — EBR.

@ Single/double group, w/wo time reversal and each rep, Wyckoff:
10398 such irreps, tabulated on the Bilbao Crystallographic server.

@ The band representation also gives
the Brillouin zone irreps at points
and lines.

@ By construction, a band
representation has an atomic limit,
and all atomic limits yield a band r K
representation.




Topological Quantum Chemistry (TQC)

TQC provides a unified framework for the treatment of all topological
phases arising from crystalline symmetries.
It relies on:
@ EBRs which enumerate a basis for all electronic bands induced from
atomic orbital (atomic limits)
@ compatibility relations, constraining how bands can connect across the
Brillouin zone.

"All sets of bands not induced from symmetric, localized orbitals, are
topologically non-trivial by design.”

B. Bradlyn et al., Nature 547 (2017)



Trivial and Topological Insulators (Tls)
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Topological Semi-Metals (TSM)

EBR1
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Topological “metalic” classes | £BRY
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Enforced semimetals ES Fermi Degeneracy
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@ ESFD: high-symmetry point degeneracy at the Fermi level.
@ ES: the degeneracy is away from the high-symmetry points.



The material search procedure
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A massive search: more than 70k valid ICSDs, 20M CPU hours.
Topology is not rare! Trivial (47%) Tls (16%) TSMs (37%)



The Topological Material Database

www.topologicalquantumchemistry.com

Links from and to materialsproject.org

Vergniory et al. Nature 556 (2019)

See also T. Zang et al. Nature 566 (2019), materiae.iphy.ac.cn and F. Tang et al. Nature 566 (2019)



Sneak peek of the new website

Topological Materials — Compound Contains Only these elements (. Exclude 105D Number
BiTe eg. 01N or eg
v Show Advano
H
U e B c N
Predict
About Na Mg Al si 4
Wiki
K G se M v o o e co N ‘ez e e As
SETTIN
Ul Mode R se \ 2 Nb Mo Tc Ru R Pd Ag € W sn O Sb
G Ba la W Ta W Re ' 0s Ir Pt ‘A Hg T R
Fr Ra Ac Rf Db Sy Bh Hs Mt Ds  Rg  Cn Nb o F Mc
¢ pr Nd Pm Sm Eu  ed Tb by Ho B Tm
T P u Np  Pu Am Cm Bk Cf Es Fm M

When using the data and information on this website in a publication, please cite the
following three papers and two websites:

« Topological Quantum Chemistry
Nature 547, 208305 (2017)

o AComplete Catalogue of High-Quality Topologic
Nature 566, 480-485 (2019)

« A Complete Catalogue of All Topological Materials
In Preparation

« Topological Materia se

« Bilbao Crystallographic Server

al Materials

No

and

He

found



Sneak peek of the new website
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Sneak peek of the new website
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Machine Learning and Topological Materials




Machine Learning: what it does

The only useful " French” mathematical function: F

2 [ ﬁ ] = croissant F [%] = pain au chocolat

In a physicist language : find a variational ansatz F capturing F

Input Output

F(2) .
croissant

data,
classification



Machine Learning : how to train your network

Supervised learning: Input Output

@ Train the network with a large amount

of labeled data (input-output pairs): g
Reduce a cost function (distance 2 — ki
measure between network output and — ‘%
labels) via e.g. gradient descent. %‘3 — =
@ Verify the network performance on a B &0
distinct test data set. _J ¢

Unsupervised learning:

Use unlabeled data, the network learns to cluster data/find structure/learn
probability distribution of features.

Reinforced learning:

Agents, reward : direct the action of software agents in an environment to
maximize some cumulative reward (e.g. videogame score).



A large database? Overfitting?

o Crystallographic data: chemical elements, symmetry group, atom
positions.

@ Large wrt to chemistry (35k unique materials), small for machine
learning.

@ Unbalanced samples: Trivial (47%) vs Tls (16%) or TSMs (37%)

- LCEBR
-
—TSM

# of materials

172 3456 7 8 9 10111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Point group

e Lots of information per compound (curse of high dimension).
@ Not easy to encode: how to encode chemical structure, (basis-free)
atom positions?
Using a NN architecture: more (parameters) is not better, how to prepare
the data?



Which network architecture?

@ Pick the right architecture depending on the data structure.

@ Unstructured data (i.e., not pictures): decision tree classifiers
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@ Improved version: gradient boosted trees (GBT) - training an ensemble
of simple (weak) decision trees instead of unique but complex one (to
avoid overfitting).

@ Two libraries: sklearn and xgboost.



Which network architecture?

@ Pick the right architecture depending on the data structure.

@ Unstructured data (i.e., not pictures): decision tree classifiers
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@ Improved version: gradient boosted trees (GBT) - training an ensemble
of simple (weak) decision trees instead of unique but complex one (to
avoid overfitting).

@ Two libraries: sklearn and xgboost.



o Input:

o Nbr of electrons: encoded in binary (easy to detect parity effects, like
ESFDs in some specific SGs).

e Symmetry group: number + frequencies of each class (fingerprint of
each SG)

o Chemical structure: mean number of s,p,d,f valence electrons, number
of atoms per column/row in the periodic table (to encode chemical
similarity).

o (optional): atom position encoded as average and variance of distances
between atoms and their nearest neighbors, coulomb matrix, ...

@ QOutput:
o Coarse grained label. Trivial/TI/TSM.
o Full label: Trivial/NLC/SEBR/ES/ESFD.

o Training and testing;:
e 32k materials for the training, 2.5k for the testing.
o Cross-validation (to estimate the error).



Results: coarse grained label

Model d Acc. Fy Triv. | L TI| FL TSM
[%] [%] [%] | [%]

Full model (FM) 49 | 89.7(5) | 94.0(3) | 70(1) | 92.0(5)
FM + Non-SOC 50 | 92.0(3) | 96.5(2) | 77(1) | 93.3(4)
Baseline model 94 | 86.0(5) | 92.5(5) | 67(1) | 91.0(5)
spdf+ model 10 | 87.7(5) | 93.0(5) | 69(1) | 92.0(5)
FM + nearest—neighbor | 184 | 89.0(5) | 94.0(3) | 69(3) | 92.0(5)
FM without SG 48 | 84.0(5) | 91.5(3) | 57(2) | 86(1)

@ d: size of the input vector.

o Full model: SG, N, spdf+, number of atoms from each periodic table
row and column.

@ Baseline model: SG, N,, baseline descriptor (nbr of atoms from each
element in stoichiometric formula).



Results: coarse grained label

Fi-score: choose your poison

Precision: reliability of a binary classifier's positive predictions (i.e.
how many False Positive).

Recall: Ability to find all the true positive sample points (i.e. how
many False Negative).

Precision - Recall

F=2.
1 Precision 4+ Recall

You can always trade Precision for Recall (and vice versa).

Much better than a random classifier only using the statistics per SG
(F1-score around 1.2% vs 70% for Tls).

Given the SG, the positions of the atoms within the crystal lattice are
of limited importance for the material's topology. Rather, it is the
“average orbital character” (spdf+).



Results: full label

Acc. Fy Triv. | L NLC [ F, SEBR | F{ ES | F; ESFD
[%] [%] [%] [%] [%] [%]
87.0(3) [ 94.0(4) | 66(2) [ 59(3) 73(2) ] 95.5(3)
89.7(5) | 94.0(3) 70(1) 92.0(5)

@ The sample size per label starts being small.

@ Swapping e.g. NLC and SEBR for one material would only lead to a
wrong prediction in the full label classification.

@ ES are harder to detect than ESFD: this latter can in many cases be
detected from N, and the SG alone.

@ Our model correctly identifies the groups in which Tls are allowed
according to TQC.

@ NLGCs are easier to predict than SEBRs. SEBR type depends on
energetics, not fully captured by our model.



simplified version

samples = 100 0%
proba = [Trivial: 0.48,
class = Tnvual

\\Filse

Are <= 62.4 % of compounds
in the same SG as the material trivial?
samples = 78.9%
proba =[0.63, 0.17, 0.2]
class = Trivial

4, TSM: 0.37]

Material must be TSM due to # electrons?]

True

Mean[#d elemrons] <_ 0.92?

samples =

proba = [0.45, 0. 24 031]
class = Trivial

samples = 21.9%
proba = [0.67, 0.16, 0.18]
class = Trivial

samples = 25.4%
proba = [0.25, 0.32, 0.42]
class = TSM

Mean([#f electrons] <= 0.128’?} Material can't be TSM due to # electrons?\J

samples = 17.5% samples = 4.5% samples = 18.4% samples = 7.9%
proba = [0.77,0.11, 0.12] proba [026 035 0.39] proba = [03 0.39,0.31] | | proba= [021 0.12,0.67]
class = Trivial class =TI class = TSM

Overall accuracy (70%) does not match the GBT one but it already capture
some of the important classification rules and relevant features.



Test your own material

https://www.topologicalquantumchemistry.com /mltqc

Detection of Topological Materials with Machine Learning

“This online tool predicts the topological classification of materials. It is based on gradient boosted trees trained with the
abeinitio resultsfrom the topological quantum chemisiry database. A full description of this method is available in
anv:1910.10161

Provide your material information

1. Upload your VASP input fle (POSCAR) @) | Browse... | No file selected.

2,01 provide the chemical composition of the primitive unit cell @) : | use either Bi Te OR Bi2 Te OR Bi2 Te3

3. Choose your symmetry group: | 1 (P1) v

4. Add the topologica classification without spin-orbit coupling: | Unknown v

Submit compound

‘Topological Quantum Chemistry
Nature 298, 547305 (2017)

A Complete Catalogue of High-Quality Topological
Nature 566, 480-465 (2019)

Detection of Topological Materials with Machine
Learning

arav1910.10161

Vihen using the information on this website in a publcation, lease cite the following
three papers:




Conclusion

@ TQC allows a massive search over more
than 70k valid ICSDs.

@ Topology is not rare! Trivial (47%) Tls
(16%) TSMs (37%).

o www.topologicalquantumchemistry.com a
database available to the community.

@ Machine learning be applied to this trove
of data.

@ Decision trees/GBT with a clever
encoding of the material data.

@ Even with a reduced input (SG, N, and
chemical composition), we can get an
accuracy close to 90%.




