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A Catalogue of Topological Materials



How to get the band structure?

A space group (SG) is a set of symmetries that defines a crystal structure in
3D.

Unit lattice translations (Z3).

Point group operations (rotations, reflections).

Non-symmorphic (screw, glide)

Ingredients:

one of the 230 SGs.

Atoms at some lattice positions.

Orbitals (s, p, d, ...).

How do we go from real space orbitals sitting at lattice sites to any
electronic band structure (without a Hamiltonian)?

Elementary band representation (EBR)



One SG, many options

Several ways to arrange the atoms within the unit cell where all atoms are
related by symmetry



One SG, many options

Several ways to possible choice for the electronic orbitals for a given
arrangement (orbital arrangement must be consistent with SG symmetry)



Elementary band representation (EBR)

Can we build all the possible band structures for these cases (i.e. all the
atomic limits)?

Key Insight: Think of bands as representations! (Zak, Bacry,
Michelle).

Then ask questions of representation reducibility (Elementary band)

Find all the irreps → EBR.

Single/double group, w/wo time reversal and each rep, Wyckoff:
10398 such irreps, tabulated on the Bilbao Crystallographic server.

The band representation also gives
the Brillouin zone irreps at points
and lines.

By construction, a band
representation has an atomic limit,
and all atomic limits yield a band
representation.



Topological Quantum Chemistry (TQC)

TQC provides a unified framework for the treatment of all topological
phases arising from crystalline symmetries.
It relies on:

EBRs which enumerate a basis for all electronic bands induced from
atomic orbital (atomic limits)
compatibility relations, constraining how bands can connect across the
Brillouin zone.

“All sets of bands not induced from symmetric, localized orbitals, are
topologically non-trivial by design.”

B. Bradlyn et al., Nature 547 (2017)



Trivial and Topological Insulators (TIs)



Topological Semi-Metals (TSM)

ESFD: high-symmetry point degeneracy at the Fermi level.

ES: the degeneracy is away from the high-symmetry points.



The material search procedure

A massive search: more than 70k valid ICSDs, 20M CPU hours.
Topology is not rare! Trivial (47%) TIs (16%) TSMs (37%)



The Topological Material Database

www.topologicalquantumchemistry.com

Links from and to materialsproject.org

Vergniory et al. Nature 556 (2019)

See also T. Zang et al. Nature 566 (2019), materiae.iphy.ac.cn and F. Tang et al. Nature 566 (2019)



Sneak peek of the new website



Sneak peek of the new website

Improved U.I..

More than 38k unique
materials (71k unique
ICSDs).

With and without
SOC.

Dynamical plots.

Fragile phases.

Wiki and more.



Sneak peek of the new website



Machine Learning and Topological Materials



Machine Learning: what it does

The only useful ”French” mathematical function: F̂

In a physicist language : find a variational ansatz F capturing F̂



Machine Learning : how to train your network

Supervised learning:

Train the network with a large amount
of labeled data (input-output pairs):
Reduce a cost function (distance
measure between network output and
labels) via e.g. gradient descent.

Verify the network performance on a
distinct test data set.

Unsupervised learning:
Use unlabeled data, the network learns to cluster data/find structure/learn
probability distribution of features.
Reinforced learning:
Agents, reward : direct the action of software agents in an environment to
maximize some cumulative reward (e.g. videogame score).



A large database? Overfitting?

Crystallographic data: chemical elements, symmetry group, atom
positions.

Large wrt to chemistry (35k unique materials), small for machine
learning.

Unbalanced samples: Trivial (47%) vs TIs (16%) or TSMs (37%)
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Lots of information per compound (curse of high dimension).

Not easy to encode: how to encode chemical structure, (basis-free)
atom positions?

Using a NN architecture: more (parameters) is not better, how to prepare
the data?



Which network architecture?

Pick the right architecture depending on the data structure.

Unstructured data (i.e., not pictures): decision tree classifiers

Improved version: gradient boosted trees (GBT) - training an ensemble
of simple (weak) decision trees instead of unique but complex one (to
avoid overfitting).

Two libraries: sklearn and xgboost.
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Our situation

Input:
Nbr of electrons: encoded in binary (easy to detect parity effects, like
ESFDs in some specific SGs).
Symmetry group: number + frequencies of each class (fingerprint of
each SG)
Chemical structure: mean number of s,p,d,f valence electrons, number
of atoms per column/row in the periodic table (to encode chemical
similarity).
(optional): atom position encoded as average and variance of distances
between atoms and their nearest neighbors, coulomb matrix, ...

Output:
Coarse grained label: Trivial/TI/TSM.
Full label: Trivial/NLC/SEBR/ES/ESFD.

Training and testing:
32k materials for the training, 2.5k for the testing.
Cross-validation (to estimate the error).



Results: coarse grained label

Model d Acc. F1 Triv. F1 TI F1 TSM
[%] [%] [%] [%]

Full model (FM) 49 89.7(5) 94.0(3) 70(1) 92.0(5)

FM + Non-SOC 50 92.0(3) 96.5(2) 77(1) 93.3(4)

Baseline model 94 86.0(5) 92.5(5) 67(1) 91.0(5)

spdf + model 10 87.7(5) 93.0(5) 69(1) 92.0(5)

FM + nearest–neighbor 184 89.0(5) 94.0(3) 69(3) 92.0(5)

FM without SG 48 84.0(5) 91.5(3) 57(2) 86(1)

d : size of the input vector.

Full model: SG, Ne , spdf +, number of atoms from each periodic table
row and column.

Baseline model: SG, Ne , baseline descriptor (nbr of atoms from each
element in stoichiometric formula).



Results: coarse grained label

F1-score: choose your poison

Precision: reliability of a binary classifier’s positive predictions (i.e.
how many False Positive).

Recall: Ability to find all the true positive sample points (i.e. how
many False Negative).

F1 = 2 · Precision · Recall

Precision + Recall

You can always trade Precision for Recall (and vice versa).

Much better than a random classifier only using the statistics per SG
(F1-score around 1.2% vs 70% for TIs).

Given the SG, the positions of the atoms within the crystal lattice are
of limited importance for the material’s topology. Rather, it is the
“average orbital character” (spdf +).



Results: full label

Acc. F1 Triv. F1 NLC F1 SEBR F1 ES F1 ESFD
[%] [%] [%] [%] [%] [%]

87.0(3) 94.0(4) 66(2) 59(3) 73(2) 95.5(3)

89.7(5) 94.0(3) 70(1) 92.0(5)

The sample size per label starts being small.

Swapping e.g. NLC and SEBR for one material would only lead to a
wrong prediction in the full label classification.

ES are harder to detect than ESFD: this latter can in many cases be
detected from Ne and the SG alone.

Our model correctly identifies the groups in which TIs are allowed
according to TQC.

NLCs are easier to predict than SEBRs. SEBR type depends on
energetics, not fully captured by our model.



A simplified version

Material must be TSM due to # electrons? 
samples = 100.0%

proba = [Trivial: 0.48, TI: 0.14, TSM: 0.37]
class = Trivial

samples = 21.1%
proba = [0.0, 0.0, 1.0]

class = TSM

True

Are <= 62.4 % of compounds 
 in the same SG as the material trivial?

samples = 78.9%
proba = [0.63, 0.17, 0.2]

class = Trivial

False

Mean[#d electrons] <= 0.92? 
samples = 48.1%

proba = [0.45, 0.24, 0.31]
class = Trivial

samples = 30.7%
proba = [0.9, 0.06, 0.04]

class = Trivial

Mean[#f electrons] <= 0.128? 
samples = 21.9%

proba = [0.67, 0.16, 0.18]
class = Trivial

Material can't be TSM due to # electrons? 
samples = 25.4%

proba = [0.25, 0.32, 0.42]
class = TSM

samples = 17.5%
proba = [0.77, 0.11, 0.12]

class = Trivial

samples = 4.5%
proba = [0.26, 0.35, 0.39]

class = TSM

samples = 18.4%
proba = [0.3, 0.39, 0.31]

class = TI

samples = 7.9%
proba = [0.21, 0.12, 0.67]

class = TSM

Overall accuracy (70%) does not match the GBT one but it already capture
some of the important classification rules and relevant features.



Test your own material

https://www.topologicalquantumchemistry.com/mltqc



Conclusion

TQC allows a massive search over more
than 70k valid ICSDs.

Topology is not rare! Trivial (47%) TIs
(16%) TSMs (37%).

www.topologicalquantumchemistry.com a
database available to the community.

Machine learning be applied to this trove
of data.

Decision trees/GBT with a clever
encoding of the material data.

Even with a reduced input (SG, Ne and
chemical composition), we can get an
accuracy close to 90%.


