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OUTLINE

Introduction to frustration and spin ice

1. How does spin ice freeze?

2. New class of materials:  Stuffed Spin Ice

3. New way to be frustrated:  Artificial Spin Ice



Frustration
AFM

FM

?

AFM

AFM
The common case of disordered 
magnets:

Random FM and AFM 
interactions

Generic definition of Frustration: A system's inability 
to simultaneously minimize all of the interaction 
energies between its components resulting in multiple 
ground states

Disorder and frustration cause 
spins to  freeze in random 
configuration at low T → “Spin Glass”



Spin Glasses: A few characteristics
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Geometrical magnetic frustration: not based on disorder

Competition of local interactions 
between spins on a regular lattice 

→ high degeneracy of states from 
geometry of lattice

AFM

AFM AF
M

?



What’s interesting about geometrically frustrated magnets?

New ground states theoretically expected 
Anderson, Villain, Chandra, Shender, Berlinsky, Moessner, 
Chalker, LaCroix, Henley, Gingras, Lhuillier…

New ground states seen experimentally
Spin liquids, Spin glasses without disorder, Spin ice…

Continuum of energetically equivalent states   
→ spins do not order at T ~ |ΘW|
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The “Spin Ice” Materials

Pyrochlore Lattice: 
corner-sharing 
tetrahedra of spins

Spin ices:  Ho2Ti2O7, Dy2Ti2O7 , Ho2Sn2O7…..      
Insulators with big rare-earth moments

M. J. Harris et al. (1997)



What makes a spin ice:  “Two-in/Two out”
• Crystal fields cause the rare-earth 
spins to be uniaxial along <111>  
directions  (200 K energy scale)

• FM and dipole interactions cause 
spins to align two-in/two-out on 
each tetrahedron  (2 K energy scale)

High degeneracy of possible states on 
pyrochlore lattice



Why call it a spin ice?
In frozen water (H2O), each oxygen is surrounded by four 
hydrogens.  Two are close to it, and two are closer to another 
oxygen ion.

Large degeneracy of states (Pauling 1945) invoked to explain 
the observed “ground state entropy” in ice



“Spin Ice” residual entropy seen in heat 
capacity experiments

Possibly spins are in metastable state (not in equilibrium) --
glassy ground state with onset  T ~ 3K
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Ground State has predicted 
residual entropy in zero 
field, same as ordinary ice 
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Part 1:  How does spin ice freeze?

Snyder et al. Nature 2001
similar work done by Matsuhira et al.
J. Phys. Cond. Mat. 2001

Snyder et al. Phys. Rev. Lett. 2003 
Snyder et al. Phys. Rev. B 2004 (two papers)

Measure a.c. and d.c. magnetic susceptibility
look for spin-glass-like freezing in  Dy2Ti2O7



Magnetization data: No sign of freezing above 1.8 K
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No difference between field-cooled and zero-field-cooled data



AC susceptibility – much more interesting
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Spin freezing at T ~ 16 K and second feature at T ~ 3K
Freezing is strongly frequency dependent (Arrhenius law)

Dy2Ti2O7



Lower temp. feature in χ(T) is another freezing
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Spin ice freezing involves very narrow 
range of relaxation times
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No broad range of time-scales typical of spin glasses:  
This freezing is something very different!
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Understand double-freezing in Dy2Ti2O7
from spin relaxation time

Maximum in χ"(freq) gives the relaxation time, τ

f = 1/τ



Crossover from thermal to quantum spin 
relaxation at T ~ 13 K 
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Two types of relaxation clearly seen in a field
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Thermal relaxation re-emerges at low temp.
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Re-entrant thermal spin relaxation explains 
double freezing in Dy2Ti2O7
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• Thermal fluctuations freeze out 
(single ion process, Ehlers et al.)

• Quantum fluctuations until spins get correlated
• Correlated spins relax very slowly



Part 2:  Stuffed Spin Ice

Lau et al. (Nature Physics, in press)  

What happens if we add more magnetic ions to 
the lattice?

Start with Ho2Ti2O7 and replace Ti with Ho ions
get Ho2(Ti2-xHox)O7-x/2

Ho lattice only 



Stuffing the lattice:  Ho2(Ti2-xHox)O7-x/2

Stuffing     
the 
lattice

Randomly replace some Ti4+ with Ho3+

Ho Ti



Stuffing changes the connectivity of spins

x = 0 x = 0.67

+ Ho
- Ti

corner sharing edge sharing



Magnetic entropy of the stuffed spin ice
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Total Entropy vs. Stuffing

Entropy is  
unchanged within 
measurement 
uncertainty

Open Questions:
• What macroscopic state exists as approach fcc lattice?
• How common is the “ground state” entropy?
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Part 3: Artificial Spin Ice

A major limitation in the study of magnetic frustration 
is that we are limited by the materials

• Cannot easily change lattice spacing/geometry

• Cannot control defects locally

• Cannot image individual spins

What if we use modern nanometer-scale lithography 
to create an artificial frustrated system?

Wang et al., Nature 2006



Artificial frustrated systems with superconductors
Superconducting rings or Josephson junction loops with 
flux trapped

Davidovic et al. 1996, 1997
Hilgenkamp, Kirtley, Tsuei et al. 2003, 2005



What if we make “artificial spins” using 
ferromagnetic material?

Etch islands out of a ferromagnetic film

If islands are small enough, they will be single-domain      
(like big spins)

Shape anisotropy results in Ising-like spins with                
direction given by island shape

Islands interact through local magnetic fields



Do ferromagnetic islands really 
behave like big spins?  Yes!

Choose shape such that islands are single-domain

Imre et al. 2006

AFM

MFM



Are island moments controlled by interaction?  Yes!

5 μm

AFM MFM



Making frustrated 2-D network out of 
ferromagnetic islands

Advantage of lithographically defined network:
• Fine control of island shape, size, and spacing 
• Direct investigation of individual islands by MFM 
• Flexibility in introducing defects
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Dipolar interactions in one vertex of the
perpendicular square lattice

Favorable pair 
configuration 

Unfavorable pair
configuration

The six pairs of dipole interactions 
cannot be minimized simultaneously:
FRUSTRATION!



Magnetization configurations on single vertex

Lowest 
energy states 
are two-in/ 
two-out:  
LIKE 
SPIN ICE!!

Expect certain distribution if orientations are random

Type I  (12.5%) 

Type II  (25%) 

Type III  (50%) 

Type IV  (12.5%) 



Sample details

AFM image

• Patterned with e-beam lithography and lift-off technique.

• Composition: Permalloy (80% Ni + 20% Fe)

• Island size: 80nm * 220nm, 25nm thick

• Lattice parameter of 320 – 880 nm (center to center)



Important energy scales of islands

• Island moment: ~ 3×107 Bohr 
magnetons

• Zeeman energy of single 
island: ~ 2 * 104 K  in external 
field of 10 Oe

• Shape anisotropy energy of 
each island: ~ 4 * 106 K

• Dipole-Dipole energy of two 
nearest neighbors: ~ 104 K 
depending on separation

• Island size: 80nm * 220nm, 25nm thick



Sample Preparation:  How prepare magnetic state

H

Sample

Cannot use thermal energy to randomize magnetic 
moments (would need > 104 K)

Instead rotate sample in a magnetic field which is stepped 
down in magnitude with switching polarity

H

time



Use MFM to scan the arrangement of island moments
Can clearly see individual islands and single domain moments



When islands are closely spaced, can clearly 
see disordered state



Use MFM to determine the arrangement of island 
moments

Can clearly see local moments and vertex types on the lattice

Figure 2.  Wang et al.Figure 2.  Wang et al.
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Distribution of vertices depends on island spacing
Count percentages of different vertex types
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More ice-like vertices seen for closely spaced islands
As spacing increases, the percentages of vertex types converge 

to those expected for random moments
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Define correlation as:
+1 if pair minimizes     

dipole energy

-1 if pair maximizes 
dipole energy

Pair correlations decrease with increasing lattice spacing
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Why correlations are stronger with transverse neighbors
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Technology from interacting arrays:  
recent work suggests device possibilities

Notre Dame group
Imre et al.
Science, 2006



Artificial frustrated systems: 
the fun is just beginning…

New control of frustrated lattices is possible

• make different lattices

• control strength of interactions

• put in defects

New measurements

• look at dynamics in magnetic field

• push to superparamagnetic limit

• measure entropy to compare to “real” spin ice

Perhaps relate to recording on patterned media…. 


