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What makes young 

star clusters round?

How do orbits affect

radiation exposure?
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Density profile implied by Larson’s Law:



What is the total 

mass of a galaxy?

Why do dark matter

halos have a nearly

universal form? 
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Phase Space of Dark Matter

Halo

a=1

a=100
(M. Busha

et al. 2005)



Dark matter halos approach

a well-defined asymptotic form

with unambiguous total mass,

outer radius, density profile
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WHY THESE

ORBITS?
Most of the mass is in dark matter

Most dark matter resides in these

halos

Halos have the universal form found

here for most of their lives

Most orbital motion that will EVER

occur will be THIS orbital motion

factor of 1074
 

 
 

 

 
 



Spherical Limit: 

Orbits look like Spirographs



Orbits in Spherical Potential
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(effective semi-major axis)

(angular momentum

  of the circular orbit)

(circular orbits do not close)
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These results determine the radiation 

exposure of a star, averaged over its orbit, 

as a function of energy, where the result is 

nearly independent of angular momentum:



Spirograph Pattern (Epicycloid)
given by circle turning on a circle:  

= radius of big circle

= radius of small circle

= length of drawing radius
Epicycloids are 

NOT epicycles…



(Adams & Bloch 2005)
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 Spirographic 

Orbital Elements



Basic Spirographic Results
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Conservation of Energy gives transformation 

between physical time and parametric time:

vx = ( )sin t p + ( 1)sin
( )t p 
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Triaxial Density Distributions

Relevant density profiles include NFW and Hernquist

Isodensity surfaces in triaxial geometry

In the inner limit both profiles scale as 1/r
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Triaxial Potential

In the inner limit the above integral can be simplified to

where       is the depth of the potential well and

the effective potential is given by
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, , x,y,z,a,b,care polynomial functions of
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G u( ) = 2u4 u2 +

2 = x 2 + y 2 + z2

= b2 + c 2( )x 2 + a2 + c 2( )y 2 + a2 + b2( )z2

= b2c 2x 2 + a2c 2y 2 + a2b2z2

    Triaxial Forces

(Adams et al. 2007)



Orbit Gallery



INSTABILITIES
Orbits in any of the principal 

planes are unstable to motion 

perpendicular to the plane. 

Unstable motion shows:

(1) exponential growth,

(2) quasi-periodicity,

(3) chaotic variations, & 

(4) eventual saturation.



Perpendicular Perturbations

Force equations in limit of small x, y, or z become

Equations of motion perpendicular to plane have the

   form of Hill’s equation

Displacements perpendicular to the plane are unstable
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Hill’s equation

d2y

dt 2
+
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c 2x 2 + a2z2 + b y 2 + z2
y = 0
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dt 2
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Floquet’s Theorem
For standard Hill’s equations (including Mathieu equation)

the condition for instability is given by Floquet’s Theorem

(e.g., Arfken & Weber 2005; Abramowitz & Stegun 1970):

| | 2 required for instability

where y1( ) + dy2 /dt( )

Need analogous condition(s) for the

case of stochastic Hill’s equation…



CONSTRUCTION OF DISCRETE MAP

To match solutions from cycle to cycle, the coefficients

are mapped via the 2x2 matrix:
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where h = y1( ), g = dy1/dt( )

M (N )
= Mk (qk, k )

k=1

N
The dynamics reduced 

 to matrix products:

and where yk (t) = k y1k (t) + k y2k (t)



GROWTH RATES
The growth rates for the matrix products can be

broken down into two separate components, the

asymptotic growth rate and the anomalous rate:

= lim
N

1

N
(qk, k )

k=1

N

= lim
N

1
N

ln(1+xk1 / xk2)
ln2

k=1

N

where xk hk /gk

[where individual growth rates given by Floquet’s Theorem]

Next: take the limit of large q, i.e., unstable limit: h >>1



Anomalous Growth Rate as function of 

the variance of the composite variable 

log[xk1 / xk2]



For asymptotic limits, the Anomalous

Growth Rate has simple analytic forms
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Basic Theorems
Theorem 1: Generalized Hill’s equation that is non-periodic

can be transformed to the periodic case with rescaling of the

parameters:

Theorem 2: Gives anomalous growth rate for unstable limit:

Theorem 3: Anomalous growth rate bounded by:

Theorem 4: Gives anomalous growth rate for unstable limit

for forcing function having both positive and negative signs:
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Astrophysical Applications
Dark Matter Halos: Radial orbits are unstable to

perpendicular perturbations and will develop more

isotropic velocity distributions.

Tidal Streams: Instability will act to disperse streams;

alternately, long-lived tidal streams place limits on the

triaxiality of the galactic mass distribution.

Galactic Bulges: Instability will affect orbits in the

central regions and affect stellar interactions with the

central black hole.

Young Stellar Clusters: Systems are born irregular

and become rounder: Instability dominates over stellar

scattering as mechanism to reshape cluster.

Galactic Warps: Orbits of stars and gas can become

distorted out of the galactic plane via the instability.



CONCLUSIONS
Density distribution = truncated Hernquist profile

   for both dark matter halos and young star clusters;

   Analytic results for orbits in spherical limit

Analytic forms for the gravitational potential and

   forces in the inner limit -- Triaxial generalization

Orbits around the principal axes are Unstable

Instability mechanism described mathematically

   by a STOCHATIC HILL’S EQUATION

Growth rates of Stochastic Hill’s Equation have

   Asymptotic and Anomalous parts (found

analytically);

    Proof of relevant Theorems that define behavior
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Instability Strips for Hill’s

Equation

in Delta Function Limit
d2y

dt 2
+ + q [t /2][ ]y = 0

q  given by distance

of closest approach,

L  by the crossing

time



Spacetime Metric Attains Universal Fo

ds2 = [1 A(r) 2r2]dt 2 +
dr2
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  Physical Portion of the Possible

   Spirographic Parameter Space
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  Application to LMC Orbit

Spirographic approximation

reproduces the orbital shape  

with 7 percent accuracy  & 

conserves angular momentum

with 1 percent accuracy.

Compare with observational

uncertainties of 10-20 percent. 


