ORBITS!

Rounding out Young Embedded Star Clusters, Future Structure of Dark Matter Halos, Unambiguous Definition of Galactic Masses, Orbital Instability in Triaxial Cusp Potentials, and Stochastic Hill's Equations

KITP/UCSB: August 2007
Fred Adams, Univ. Michigan

What makes young

 star clusters round? How do orbits affect radiation exposure?Density profile implied by Larson's Law:

$$
\begin{aligned}
& \frac{\partial P}{\partial \rho}=(\Delta v)^{2} \propto \frac{1}{\rho} \Rightarrow \rho \propto 1 / r \\
& \rho=\frac{\rho_{0}}{\xi(1+\xi)^{3}} \text { where } \xi=r / r_{s}
\end{aligned}
$$

What is the total mass of a galaxy? Why do dark matter halos have a nearly universal form?

Dark matter halos approach a well-defined asymptotic form with unambiguous total mass, outer radius, density profile

WHY THESE

*Most of the mass is indark matter * Most dark matter resides in these halos

* Halos have the universal form found here for most of their lives
* Most orbital motion that widdc|ervern $\mathrm{R}_{0^{74}}$) occur will be THIS orbital motion

Spherical Limit: Orbits look like Spirographs

Orbits in Spherical Potential

$$
\begin{aligned}
& \rho=\frac{\rho_{0}}{\xi(1+\xi)^{3}} \Rightarrow \Psi=\frac{\Psi_{0}}{1+\xi} \\
& \varepsilon \equiv|E| / \Psi_{0} \text { and } q \equiv j^{2} / 2 \Psi_{0} r_{s}^{2} \\
& \varepsilon=\frac{\xi_{1}+\xi_{2}+\xi_{1} \xi_{2}}{\left(\xi_{1}+\xi_{2}\right)\left(1+\xi_{1}+\xi_{2}+\xi_{1} \xi_{2}\right)} \\
& q=\frac{\left(\xi_{1} \xi_{2}\right)^{2}}{\left(\xi_{1}+\xi_{2}\right)\left(1+\xi_{1}+\xi_{2}+\xi_{1} \xi_{2}\right)}
\end{aligned}
$$

$$
\left.\begin{array}{l}
q_{\max }=\frac{1}{8 \varepsilon} \frac{(1+\sqrt{1+8 \varepsilon}-4 \varepsilon)^{3}}{(1+\sqrt{1+8 \varepsilon})^{2}} \begin{array}{c}
\text { (angular momentum } \\
\text { of the circular orbit) }
\end{array} \\
\xi_{: *}=\frac{1-4 \varepsilon+\sqrt{1+8 \varepsilon}}{4 \varepsilon} \quad \text { (effective semi-major axis) }
\end{array}\right\} \begin{aligned}
& \frac{\Delta \theta}{\pi}=\frac{1}{2}+\left[(1+8 \varepsilon)^{-1 / 4}-\frac{1}{2}\right]\left[1+\frac{\log \left(q / q_{\max }\right)}{6 \log 10}\right]^{3.6} \\
& \lim _{q \rightarrow q_{\max }} \Delta \theta=\pi(1+8 \varepsilon)^{-1 / 4} \quad \text { (circular orbits do not close) }
\end{aligned}
$$

These results determine the radiation exposure of a star, averaged over its orbit, as a function of energy, where the result is nearly independent of angular momentum:

$$
\left\langle F_{f u v}\right\rangle \approx \frac{L_{f u v}}{8 r_{s}^{2}} \frac{A \varepsilon^{3 / 2}}{\cos ^{-1} \sqrt{\varepsilon}+\sqrt{\varepsilon} \sqrt{1-\varepsilon}}
$$

where $1 \leq A(q) \leq \sqrt{2}$

Spirograph Pattern (Epicycloid) given by circle turning on a circle:

$\gamma=$ length of drawing radius

Epicycloids are
 NOT epicycles...

Spirographic Orbital Elements

(ε, q)
$\left(\xi_{1}, \xi_{2}\right)$
(α, β, γ)

$$
\begin{aligned}
& x\left(t_{p}\right)=(\alpha-\beta) \cos t_{p}+\gamma \cos \left[(\alpha-\beta) t_{p} / \beta\right] \\
& y\left(t_{p}\right)=-(\alpha-\beta) \sin t_{p}+\gamma \sin \left[(\alpha-\beta) t_{p} / \beta\right]
\end{aligned}
$$

(Adams \& Bloch 2005)

Basic Spirographic Results

$$
\begin{aligned}
& \varepsilon=\frac{\gamma^{2}+2 \gamma-(\alpha-\beta)^{2}}{2 \gamma\left[(1+\gamma)^{2}-(\alpha-\beta)^{2}\right]} \\
& q=\frac{\left[\gamma^{2}-(\alpha-\beta)^{2}\right]^{2}}{2 \gamma\left[(1+\gamma)^{2}-(\alpha-\beta)^{2}\right]}
\end{aligned}
$$

$\xi_{1}=\gamma-(\alpha-\beta), \xi_{2}=\gamma+(\alpha-\beta), \quad \Delta \vartheta=(\alpha-\beta) \pi / \alpha$

$$
\xi_{1}, \xi_{2}=\gamma \pm(\alpha-\beta) \text { so } a_{s p}=\gamma, e_{s p}=\frac{\alpha-\beta}{\gamma}
$$

Conservation of Energy gives transformation

 between physical time and parametric time:$$
\frac{d t_{p}}{d t}=\left(\frac{1}{1+\xi}-\varepsilon\right)\left[\frac{\gamma^{2}(\alpha / \beta-1) \alpha}{\beta}+\frac{(\alpha-\beta)^{2} \alpha}{\beta}-\left(\frac{\alpha}{\beta}-1\right) \xi^{2}\right]^{-1 / 2}
$$

$$
\begin{aligned}
& v_{x}=-\left[(\alpha-\beta) \sin t_{p}+\gamma\left(\frac{\alpha}{\beta}-1\right) \sin \left(\frac{(\alpha-\beta) t_{p}}{\beta}\right)\right] \frac{d t_{p}}{d t} \\
& v_{y}=\left[-(\alpha-\beta) \cos t_{p}+\gamma\left(\frac{\alpha}{\beta}-1\right) \cos \left(\frac{(\alpha-\beta) t_{p}}{\beta}\right)\right] \frac{d t_{p}}{d t}
\end{aligned}
$$

Triaxial Density Distributions

*Relevant density profiles include NFW and Hernquist

$$
\rho_{n f w}=\frac{1}{m(1+m)^{2}}
$$

$$
\rho_{\text {Hern }}=\frac{1}{m(1+m)^{3}}
$$

*Isodensity surfaces in triaxial geometry

$$
m^{2}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}} \quad a>b>c>0
$$

* In the inner limit both profiles scale as $1 / r$

$$
m \ll 1 \quad \rho \propto \frac{1}{m}
$$

Triaxial Potential

$$
\Phi=\int_{0}^{\infty} d u \frac{\psi(m)}{\sqrt{\left(u+a^{2}\right)\left(u+b^{2}\right)\left(u+c^{2}\right)}} \quad \psi(m)=\int_{\infty}^{m^{2}} \rho(m) d m^{2}
$$

*In the inner limit the above integral can be simplified to

$$
\Phi=-I_{1}+I_{2}
$$

where I_{1} is the depth of the potential well and the effective potential is given by

$$
I_{2}=2 \int_{0}^{\infty} d u \frac{\sqrt{\xi^{2} u^{2}+\Lambda u+\Gamma}}{\left(u+a^{2}\right)\left(u+b^{2}\right)\left(u+c^{2}\right)}
$$

ξ, Λ, Γ are polynomial functions of x, y, z, a, b, c

Triaxial Forces

$$
\begin{aligned}
& F_{x}=\frac{-2 \operatorname{sgn}(x)}{\sqrt{\left(a^{2}-b^{2}\right)\left(a^{2}-c^{2}\right)}} \ln \left(\frac{2 G(a) \sqrt{\Gamma}+2 \Gamma-a^{2} \Lambda}{2 a^{2} \xi G(a)+\Lambda a^{2}-2 a^{4} \xi^{2}}\right) \\
& F_{y}=\frac{-2 \operatorname{sgn}(y)}{\sqrt{\left(a^{2}-b^{2}\right)\left(b^{2}-c^{2}\right)}}\left[\sin ^{-1}\left(\frac{\Lambda-2 b^{2} \xi^{2}}{\sqrt{\Lambda^{2}-4 \Gamma \xi^{2}}}\right)-\sin ^{-1}\left(\frac{2 \Gamma / b^{2}-\Lambda}{\sqrt{\Lambda^{2}-4 \xi^{2} \Gamma}}\right)\right] \\
& F_{z}=\frac{-2 \operatorname{sgn}(z)}{\sqrt{\left(a^{2}-c^{2}\right)\left(b^{2}-c^{2}\right)}} \ln \left(\frac{2 G(c) \sqrt{\Gamma}+2 \Gamma-c^{2} \Lambda}{2 c^{2} \xi G(c)+\Lambda c^{2}-2 c^{4} \xi^{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& G(u)=\xi^{2} u^{4}-\Lambda u^{2}+\Gamma \\
& \xi^{2}=x^{2}+y^{2}+z^{2}
\end{aligned}
$$

$$
\Lambda=\left(b^{2}+c^{2}\right) x^{2}+\left(a^{2}+c^{2}\right) y^{2}+\left(a^{2}+b^{2}\right) z^{2}
$$

(Adams et al. 2007)

$$
\Gamma=b^{2} c^{2} x^{2}+a^{2} c^{2} y^{2}+a^{2} b^{2} z^{2}
$$

Orbit Gallery

0	0	0
0	0	

INSTABILITIES

Perpendicular Perturbations

*Force equations in limit of small x, y, or z become

$$
\begin{array}{ll}
F_{x} \approx-\left(\frac{4}{a\left(\sqrt{c^{2} y^{2}+b^{2} z^{2}}+a \sqrt{y^{2}+z^{2}}\right)}\right) x & F_{x} \approx-\omega_{x}^{2} x \\
F_{y} \approx-\left(\frac{4}{b\left(\sqrt{c^{2} x^{2}+a^{2} z^{2}}+b \sqrt{x^{2}+z^{2}}\right)}\right) y & F_{y} \approx-\omega_{y}^{2} y \\
F_{z} \approx-\left(\frac{4}{c\left(\sqrt{b^{2} x^{2}+a^{2} y^{2}}+c \sqrt{x^{2}+y^{2}}\right)}\right) z & F_{z} \approx-\omega_{z}^{2} z
\end{array}
$$

Equations of motion perpendicular to plane have the form of Hill's equation
*Displacements perpendicular to the plane are unstable

Hill's equation

$$
\frac{d^{2} y}{d t^{2}}+\frac{4 / b}{\sqrt{c^{2} x^{2}+a^{2} z^{2}}+b \sqrt{y^{2}+z^{2}}} y=0
$$

$$
\frac{d^{2} y}{d t^{2}}+\left\lceil\lambda_{k}+q_{k} Q\left(\mu_{k} t\right)\right\rceil y=0
$$

$$
\frac{d^{2} y}{d t^{2}}+\omega^{2}(t) y=0
$$

Floquet's Theorem

For standard Hill's equations (including Mathieu equation) the condition for instability is given by Floquet's Theorem (e.g., Arfken \& Weber 2005; Abramowitz \& Stegun 1970):

$$
|\Delta| \geq 2 \text { required for instability }
$$

where $\Delta \equiv y_{1}(\pi)+d y_{2} / d t(\pi)$

Need analogous condition(s) for the case of stochastic Hill's equation...

CONSTRUCTION OF DISCRETE MAP

To match solutions from cycle to cycle, the coefficients are mapped via the $2 x 2$ matrix:

$$
\begin{aligned}
& {\left[\begin{array}{c}
\alpha_{b} \\
\beta_{b}
\end{array}\right]=\left[\begin{array}{cc}
h & \left(h^{2}-1\right) / g \\
g & h
\end{array}\right]\left[\begin{array}{c}
\alpha_{a} \\
\beta_{a}
\end{array}\right]} \\
& \text { where } h=y_{1}(\pi), g=d y_{1} / d t(\pi) \\
& \text { and where } y_{k}(t)=\alpha_{k} y_{1 k}(t)+\beta_{k} y_{2 k}(t)
\end{aligned}
$$

The dynamics reduced to matrix products:

$$
M^{(N)}=\prod_{k=1}^{N} M_{k}\left(q_{k}, \lambda_{k}\right)
$$

GROWTH RATES

The growth rates for the matrix products can be broken down into two separate components, the asymptotic growth rate and the anomalous rate:

$$
\gamma_{\infty}=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{N} \gamma\left(q_{k}, \lambda_{k}\right) \rightarrow\langle\gamma\rangle
$$

[where individual growth rates given by Floquet's Theorem] Next: take the limit of large q, i.e., unstable limit: $h \gg 1$

$$
\begin{aligned}
& \Delta \gamma=\lim _{N \rightarrow \infty} \frac{1}{\pi N} \sum_{k=1}^{N} \ln \left(1+x_{k 1} / x_{k 2}\right)-\frac{\ln 2}{\pi} \\
& \text { where } x_{k} \equiv h_{k} / g_{k}
\end{aligned}
$$

Anomalous Growth Rate as function of the variance of the composite variable

$$
\xi \equiv \log \left[x_{k 1} / x_{k 2}\right]
$$

For asymptotic limits, the Anomalous Growth Rate has simple analytic forms

Basic Theorems

*Theorem 1: Generalized Hill's equation that is non-periodic can be transformed to the periodic case with rescaling of the parameters: $\quad t \rightarrow \mu_{k} t, \lambda_{k} \rightarrow \lambda_{k} / \mu_{k}^{2}, q_{k} \rightarrow q_{k} / \mu_{k}^{2}$

Theorem 2: Gives anomalous growth rate for unstable limit:

$$
\begin{aligned}
& \Delta \gamma=\lim _{N \rightarrow \infty}(1 / \pi N) \sum_{j=1}^{N} \ln \left[1+x_{j 1} / x_{j 2}\right]-\ln 2 / \pi \\
& \text { nomalous growth rate bounded by: } \Delta \gamma \leq \frac{\sigma_{0}^{2}}{4 \pi}
\end{aligned}
$$

* Theorem 4: Gives anomalous growth rate for unstable limit for forcing function having both positive and negative signs:

$$
\Delta \gamma+\frac{\ln 2}{\pi}=\lim _{N \rightarrow \infty} \frac{1}{\pi N}\left\{f_{+} \sum_{j=1}^{N} \ln \left(1+\left|x_{j 1}\right| x_{j 2} \mid\right)+f_{-} \sum_{j=1}^{N} \ln \left|1-\left|x_{j 1}\right| x_{j 2}\right| \mid\right\}
$$

Astrophysical Applications

* Dark Matter Halos: Radial orbits are unstable to perpendicular perturbations and will develop more isotropic velocity distributions.
* Tidal Streams: Instability will act to disperse streams; alternately, long-lived tidal streams place limits on the triaxiality of the galactic mass distribution.
* Galactic Bulges: Instability will affect orbits in the central regions and affect stellar interactions with the central black hole.

Young Stellar Clusters: Systems are born irregular and become rounder: Instability dominates over stellar scattering as mechanism to reshape cluster.

* Galactic Warps: Orbits of stars and gas can become distorted out of the galactic plane via the instability.

CONCLUSIONS

Density distribution = truncated Hernquist profile for both dark matter halos and young star clusters; Analytic results for orbits in spherical limit

* Analytic forms for the gravitational potential and forces in the inner limit -- Triaxial generalization
Orbits around the principal axes are Unstable Instability mechanism described mathematically by a STOCHATIC HILL'S EQUATION
Growth rates of Stochastic Hill's Equation have
Asymptotic and Anomalous parts (found analytically);

BIBLIOGRAPHY

* Asymptotic Form of Cosmic Structure, 2007 M.Busha, A.Evrard, \& F.Adams, ApJ, 665, 1
* Hill's Equation w. Random Forcing Terms, F. Adams \& A. Bloch, 2007, submitted to SIAM J. Ap. Math.
Orbital Instability in Triaxial Cusp Potential, F. Adams et al. 2007, ApJ, in press

Orbits in Extended Mass Distributions, F. Adams \& A. Bloch, 2005, ApJ, 629, 204

Instability Strips for Hill's Equation

 in Delta Function Limit $\frac{d^{2} y}{d t^{2}}+[\lambda+q \delta[t-\pi / 2]] y=0$$q$ given by distance of closest approach, λ by the crossing
time

Spacetime Metric Attains Universal Fb

$$
d s^{2}=-\left[1-A(r)-\chi^{2} r^{2}\right] d t^{2}+\frac{d r^{2}}{\left[1-B(r)-\chi^{2} r^{2}\right]}+r^{2} d \Omega^{2}
$$

Physical Portion of the Possible Spirographic Parameter Space

Application to LMC Orbit

