A census of starless cores and deeply embedded protostars w/ Spitzer and Bolocam: Perseus, Serpens, and Ophiuchus

Melissa L. Enoch (UC Berkeley) KITP, 6 Nov 2007

Collaborators: Anneila Sargent (Caltech), Neal Evans (UT Austin), Kaisa Young (Nicholls State Univ.), Jason Glenn (CU, Boulder), the Bolocam Instrument Team, and the c2d Spitzer Legacy Team

Understanding the earliest phases of star-formation CLASS STAGE POTENTIAL PROPERTY OF THE PROP

Outstanding questions

- Global physics controlling the formation, support, and collapse of prestellar cores
- Initial conditions of prestellar cores in molecular clouds
- 3) Protostellar evolution through the earliest phases
- Variations with cloud environment

Observations

- Unbiased census of prestellar cores, young protostars
 - Large, complete surveys of molecular clouds
- Bolocam 1.1mm continuum surveys
 - FOV = 7.5', resolution = 31"
 - Unprecedented coverage: 7.5 deg² (Perseus),
 10.8 deg² (Ophiuchus), 1.5 deg² (Serpens)
 - $M_{lim} \sim 0.2 M_{\odot}$ (Per), 0.15 M_{\odot} (Oph), 0.1 M_{\odot} (Ser)
 - NO CHOPPING, but not sensitive to > few arcmin
 - Detect prestellar cores
 - Initial conditions (core masses)
 - Data (fits) available on c2d page
 - Source props (flux, size, density, mass, etc) in c2d delivery

Observations

- Unbiased census of prestellar cores, young protostars
 - Large, complete surveys of molecular clouds
- "Cores to Disks" (c2d) Spitzer Legacy program
 - Lupus, Cham, Perseus, Serpens, Ophiuchus
 - Coverage out to A_V ~ 2–5 mag
 - $-\lambda = 3.6-160 \,\mu m \,(IRAC \,\&\, MIPS) + 2MASS$
 - Properties of embedded protostars
 - Separate prestellar cores, youngest Class 0
 - Source "classification" based on colors, mags, likelihood they are not galaxies (Harvey et al., 2007)
 - Complete to embedded protostars w/ L_{bol} > ~ 0.05 L_☉
 (Dunham et al., in prep)

What is a core?

- Mean density required for detection
 - $n \ge 2-3x10^4 \text{ cm}^{-3}$
- Contrast to background
 - $\ge 30-100$
 - For cloud mean density
 - 200 cm⁻³ (Per)
 - 1000 cm⁻³ (Ser)
 - 400 cm⁻³ (Oph)
- Sensitive to sizes
 - D ≤ 1.5-3x10⁴ AU
- Total mass at 1mm (>5
 σ) ~ 2 x mass in cores

Identifying embedded protostar candidates

YSO candidates from c2d catalogs (Harvey et al. in press, c2d delivery doc)

Protostellar classification

Possible methods

- NIR-MIR spectral index (α_{IR})
 - Criteria for very embedded objects?
- T_{bol}
 - Biases?
- Overall SED shapes?

Protostellar classification

- More embedded ⇔ lower Tbol
- ⇒ Tbol is a good measure of evolutionary state for young sources
- Adopt class divisions from Chen et al. 1995:

T < 70 K (Class 0) 70 < T < 650 K [+ 1mm] (Class I) T > 650 K (Class II)

Complete to $M_{env} > 0.1 M_{\odot}$

Key results

- Spatial distribution (cores & embedded protostars)
 - Clustering, extinction threshold
- Starless (prestellar?) core mass distribution
 - Comparison to the IMF & protostellar CMD
- Lifetime of prestellar cores
- Early protostellar evolution
 - Class 0 lifetime, accretion rates, spectral evolution

Key results

- Spatial distribution (cores & embedded protostars)
 - Clustering, extinction threshold
- Starless (prestellar?) core mass distribution
 - Comparison to the IMF & protostellar CMD
- Lifetime of prestellar cores
- Early protostellar evolution
 - Class 0 lifetime, accretion rates, spectral evolution

Comparing starless & protostellar cores: spatial distribution

Clustering of starless & protostellar cores

Correlation w/ visual extinction

- A_V from 2MASS + c2d IRAC maps (>90% sources are stars)
- Strong correlation between A_V and 1 mm, but not all high A_V regions have well-defined cores

Extinction threshold & core formation efficiency

- 75% of cores found above
 - A_{V} ~8 (Per), A_{V} ~14 (Ser), A_{V} ~20-23 (Oph)
- Evidence for A_V thresholds:
 A_V~6 (Per, Kirk et al. 06)
 A_V~15 (Oph, Johnstone et al. 04)
- Low mass ratios ⇒ SF is inefficient on cloud scales
 - More efficient at high A_V

Cloud	A_{V}	Cloud mass	Core mass	Mass ratio (%)
Perseus	2 (20)	7300 (340)	278 (88)	3.8 (26)
Serpens	2 (20)	3500 (230)	92 (79)	2.7 (34)
Ophiuchus	2 (20)	3600 (560)	44 (37)	1.2 (7)

Extinction threshold & core formation efficiency

- 75% of cores found above
 - A_{V} ~8 (Per), A_{V} ~14 (Ser), A_{V} ~20-23 (Oph)
- Evidence for A_V thresholds:
 A_V~6 (Per, Kirk et al. 06)
 A_V~15 (Oph, Johnstone et al. 04)
- Low mass ratios ⇒ SF is inefficient on cloud scales
 - More efficient at high A_V

Cloud	A_{\vee}	Cloud mass	Core mass	Mass ratio (%)
Perseus	2 (20)	7300 (340)	278 (88)	3.8 (26)
Serpens	2 (20)	3500 (230)	92 (79)	2.7 (34)
Ophiuchus	2 (20)	3600 (560)	44 (37)	1.2 (7)

Key results

- Spatial distribution (cores & embedded protostars)
 - Clustering, extinction threshold
- Starless (prestellar?) core mass distribution
 - Comparison to the IMF & protostellar CMD
- Lifetime of prestellar cores
- Early protostellar evolution
 - Class 0 lifetime, accretion rates, spectral evolution

Combined prestellar core mass distribution

 Combine starless cores from 3 clouds

⇒ 108 cores

Masses:

 $T_D = 10K$ $\kappa_v = 0.0114 \text{ cm}^2/\text{g}$

- Best fit power
 law: α ~ 2.5
- <u>IMF:</u>

Salpeter: $(\alpha \sim 2.4)$

Scalo: (α~2.7)

peak: $0.2-0.3~M_{\odot}$

⇒ "Not inconsistent" with are determined during core formation

Comparing starless & protostellar cores: mass distribution

STARLESS

PROTOSTELLAR

 Starless mass distribution is steeper (highest mass cores are protostellar) and narrower

Are the starless cores "bound"?

- GBT NH₃ survey of Bolocam cores in Perseus (Rosolowsky et al.)
- M_{vir} from NH₃
 linewidth &
 HWHM size
- M_{dust} from 1mm flux
- Most starless cores are likely to be bound

Key results

- Spatial distribution (cores & embedded protostars)
 - Clustering, extinction threshold
- Starless (prestellar?) core mass distribution
 - Comparison to the IMF & protostellar CMD
- Lifetime of prestellar cores
- Early protostellar evolution
 - Class 0 lifetime, accretion rates, spectral evolution

Prestellar core lifetime

Cloud	N _{SL}	N _{SL} / N _{emb}	$\langle n \rangle_{\rm SL}$ (cm ⁻³)	t _{ff} (yr)	t _{SL} /t _{ff}
Per	67	1.0	1.4x10 ⁵	9x10 ⁴	4.4
Ser	15	0.4	1.2x10 ⁵	10x10 ⁴	2.0
Oph	26	8.0	1.7x10 ⁵	9x10 ⁴	3.3

- Assuming continuous SF, evolutionary sequence, time is the only variable... N₁/N₂ = t₁/t₂
 - N_{SL}/N_{emb} and $t_{emb} \sim 4x10^5$ yr \Rightarrow prestellar core lifetime $\sim 4x10^5$ yr (Per); $2x10^5$ yr (Ser); $3x10^5$ yr (Oph)
 - ~ few x t_{ff} , and $\langle t_{AD} \rangle \sim 10^7 \text{ yr}$
- Prestellar core lifetime suggests dynamic core evolution
- Inconsistent w/ magnetically dominated paradigm? (for densities ≥ 2x10⁴ cm⁻³)

Prestellar core lifetime

- n(H₂) measured
 in 10⁴ AU
 aperture
- Estimated τ
 - ⇒ Cores not in free-fall
 - ⇒ Not highly subcritical
- Lifetime decreases at higher densities

Key results

- Spatial distribution (cores & embedded protostars)
 - Clustering, extinction threshold
- Starless (prestellar?) core mass distribution
 - Comparison to the IMF & protostellar CMD
- Lifetime of starless cores
- Early protostellar evolution
 - Class 0 lifetime, accretion rates, spectral evolution

Class 0 timescale

Cloud	N _{Class0}	N _{ClassI}	N _{ClassI} /	t _{Class 0} (yr)
Per	29	39	0.7	1.7x10 ⁵
Ser	11	26	0.4	1.2x10 ⁵
Oph	3	29	0.1	0.4x10 ⁵

- Assuming continuous SF, evolutionary sequence, time is the only variable... $N_1/N_2 = t_1/t_2$
 - N_{Class0}/N_{ClassI} and t_{emb} ~ $4x10^5$ yr ⇒ Class 0 lifetime ~ $1.7x10^5$ yr (Per); $1.2x10^5$ yr (Ser); $0.4x10^5$ yr (Oph)
- No very rapid accretion phase in Perseus and Serpens
 - As was suggested based on $t_{\text{Class 0}} \sim 10^4 \text{ yr}$ (Andre & Montmerle 94, Froebrich et al. 06)
- Class 0 timescale is significantly different in Ophiuchus

Timescales for star formation

Tassis & Mouschovias 2004

Protostellar evolution: L_{bol}-T_{bol} diagram

Protostellar evolution: Menv vs Tbol

- M_{env} correlated with T_{bol}, as expected
- Constant dM/dt tracks fit well
 - \Rightarrow Masses of ~ 0.3-4 M $_{\odot}$ for Per & Ser, < 1 M $_{\odot}$ for Oph

Summary (so far...)

- Largest millimeter surveys to date in 3 molecular clouds: 20 deg², 200 cores
- Compared w/ Spitzer surveys ⇒ complete, unbiased sample: 108 prestellar cores, 43 Class 0, and 94 Class I protostars
- 1. Physics controlling the formation, support, and collapse of cores
 - Prestellar core lifetime ~ 2–4x10⁵ yr
 - ⇒ dynamic, turbulent formation process
 - But, disagreements w/ simulations, B fields may also be important?
- 2. Initial conditions of prestellar cores
 - Starless cores strongly clustered, comparable to embedded protostars
 - Presteller CMD similar to IMF
 - ⇒ Further evidence that stellar masses determined by core fragmentation
- 3. Early protostellar evolution
 - Class 0 lifetime 1–2x10⁵ yr (Per, Ser)
 - ⇒ No very rapid early accretion phase, dM/dt ~ constant
 - Evidence for episodic accretion during Class I, 25% quiescent
- 4. Variations with environment
 - Early accretion or SF history very different in Oph

