A census of starless cores and deeply embedded protostars w/ Spitzer and Bolocam: Perseus, Serpens, and Ophiuchus Melissa L. Enoch (UC Berkeley) KITP, 6 Nov 2007 Collaborators: Anneila Sargent (Caltech), Neal Evans (UT Austin), Kaisa Young (Nicholls State Univ.), Jason Glenn (CU, Boulder), the Bolocam Instrument Team, and the c2d Spitzer Legacy Team ## Understanding the earliest phases of star-formation CLASS STAGE POTENTIAL PROPERTY OF THE PROP #### Outstanding questions - Global physics controlling the formation, support, and collapse of prestellar cores - Initial conditions of prestellar cores in molecular clouds - 3) Protostellar evolution through the earliest phases - Variations with cloud environment ### Observations - Unbiased census of prestellar cores, young protostars - Large, complete surveys of molecular clouds - Bolocam 1.1mm continuum surveys - FOV = 7.5', resolution = 31" - Unprecedented coverage: 7.5 deg² (Perseus), 10.8 deg² (Ophiuchus), 1.5 deg² (Serpens) - $M_{lim} \sim 0.2 M_{\odot}$ (Per), 0.15 M_{\odot} (Oph), 0.1 M_{\odot} (Ser) - NO CHOPPING, but not sensitive to > few arcmin - Detect prestellar cores - Initial conditions (core masses) - Data (fits) available on c2d page - Source props (flux, size, density, mass, etc) in c2d delivery #### Observations - Unbiased census of prestellar cores, young protostars - Large, complete surveys of molecular clouds - "Cores to Disks" (c2d) Spitzer Legacy program - Lupus, Cham, Perseus, Serpens, Ophiuchus - Coverage out to A_V ~ 2–5 mag - $-\lambda = 3.6-160 \,\mu m \,(IRAC \,\&\, MIPS) + 2MASS$ - Properties of embedded protostars - Separate prestellar cores, youngest Class 0 - Source "classification" based on colors, mags, likelihood they are not galaxies (Harvey et al., 2007) - Complete to embedded protostars w/ L_{bol} > ~ 0.05 L_☉ (Dunham et al., in prep) ### What is a core? - Mean density required for detection - $n \ge 2-3x10^4 \text{ cm}^{-3}$ - Contrast to background - $\ge 30-100$ - For cloud mean density - 200 cm⁻³ (Per) - 1000 cm⁻³ (Ser) - 400 cm⁻³ (Oph) - Sensitive to sizes - D ≤ 1.5-3x10⁴ AU - Total mass at 1mm (>5 σ) ~ 2 x mass in cores ## Identifying embedded protostar candidates YSO candidates from c2d catalogs (Harvey et al. in press, c2d delivery doc) #### Protostellar classification #### Possible methods - NIR-MIR spectral index (α_{IR}) - Criteria for very embedded objects? - T_{bol} - Biases? - Overall SED shapes? #### Protostellar classification - More embedded ⇔ lower Tbol - ⇒ Tbol is a good measure of evolutionary state for young sources - Adopt class divisions from Chen et al. 1995: T < 70 K (Class 0) 70 < T < 650 K [+ 1mm] (Class I) T > 650 K (Class II) Complete to $M_{env} > 0.1 M_{\odot}$ ## Key results - Spatial distribution (cores & embedded protostars) - Clustering, extinction threshold - Starless (prestellar?) core mass distribution - Comparison to the IMF & protostellar CMD - Lifetime of prestellar cores - Early protostellar evolution - Class 0 lifetime, accretion rates, spectral evolution ## Key results - Spatial distribution (cores & embedded protostars) - Clustering, extinction threshold - Starless (prestellar?) core mass distribution - Comparison to the IMF & protostellar CMD - Lifetime of prestellar cores - Early protostellar evolution - Class 0 lifetime, accretion rates, spectral evolution ## Comparing starless & protostellar cores: spatial distribution ### Clustering of starless & protostellar cores ## Correlation w/ visual extinction - A_V from 2MASS + c2d IRAC maps (>90% sources are stars) - Strong correlation between A_V and 1 mm, but not all high A_V regions have well-defined cores ## Extinction threshold & core formation efficiency - 75% of cores found above - A_{V} ~8 (Per), A_{V} ~14 (Ser), A_{V} ~20-23 (Oph) - Evidence for A_V thresholds: A_V~6 (Per, Kirk et al. 06) A_V~15 (Oph, Johnstone et al. 04) - Low mass ratios ⇒ SF is inefficient on cloud scales - More efficient at high A_V | Cloud | A_{V} | Cloud mass | Core mass | Mass ratio (%) | |-----------|---------|------------|-----------|----------------| | Perseus | 2 (20) | 7300 (340) | 278 (88) | 3.8 (26) | | Serpens | 2 (20) | 3500 (230) | 92 (79) | 2.7 (34) | | Ophiuchus | 2 (20) | 3600 (560) | 44 (37) | 1.2 (7) | ## Extinction threshold & core formation efficiency - 75% of cores found above - A_{V} ~8 (Per), A_{V} ~14 (Ser), A_{V} ~20-23 (Oph) - Evidence for A_V thresholds: A_V~6 (Per, Kirk et al. 06) A_V~15 (Oph, Johnstone et al. 04) - Low mass ratios ⇒ SF is inefficient on cloud scales - More efficient at high A_V | Cloud | A_{\vee} | Cloud mass | Core mass | Mass ratio (%) | |-----------|------------|------------|-----------|----------------| | Perseus | 2 (20) | 7300 (340) | 278 (88) | 3.8 (26) | | Serpens | 2 (20) | 3500 (230) | 92 (79) | 2.7 (34) | | Ophiuchus | 2 (20) | 3600 (560) | 44 (37) | 1.2 (7) | ## Key results - Spatial distribution (cores & embedded protostars) - Clustering, extinction threshold - Starless (prestellar?) core mass distribution - Comparison to the IMF & protostellar CMD - Lifetime of prestellar cores - Early protostellar evolution - Class 0 lifetime, accretion rates, spectral evolution ## Combined prestellar core mass distribution Combine starless cores from 3 clouds #### ⇒ 108 cores #### Masses: $T_D = 10K$ $\kappa_v = 0.0114 \text{ cm}^2/\text{g}$ - Best fit power law: α ~ 2.5 - <u>IMF:</u> Salpeter: $(\alpha \sim 2.4)$ Scalo: (α~2.7) peak: $0.2-0.3~M_{\odot}$ ⇒ "Not inconsistent" with are determined during core formation ## Comparing starless & protostellar cores: mass distribution **STARLESS** **PROTOSTELLAR** Starless mass distribution is steeper (highest mass cores are protostellar) and narrower ### Are the starless cores "bound"? - GBT NH₃ survey of Bolocam cores in Perseus (Rosolowsky et al.) - M_{vir} from NH₃ linewidth & HWHM size - M_{dust} from 1mm flux - Most starless cores are likely to be bound ## Key results - Spatial distribution (cores & embedded protostars) - Clustering, extinction threshold - Starless (prestellar?) core mass distribution - Comparison to the IMF & protostellar CMD - Lifetime of prestellar cores - Early protostellar evolution - Class 0 lifetime, accretion rates, spectral evolution #### Prestellar core lifetime | Cloud | N _{SL} | N _{SL} / N _{emb} | $\langle n \rangle_{\rm SL}$ (cm ⁻³) | t _{ff} (yr) | t _{SL} /t _{ff} | |-------|-----------------|------------------------------------|--|----------------------|----------------------------------| | Per | 67 | 1.0 | 1.4x10 ⁵ | 9x10 ⁴ | 4.4 | | Ser | 15 | 0.4 | 1.2x10 ⁵ | 10x10 ⁴ | 2.0 | | Oph | 26 | 8.0 | 1.7x10 ⁵ | 9x10 ⁴ | 3.3 | - Assuming continuous SF, evolutionary sequence, time is the only variable... N₁/N₂ = t₁/t₂ - N_{SL}/N_{emb} and $t_{emb} \sim 4x10^5$ yr \Rightarrow prestellar core lifetime $\sim 4x10^5$ yr (Per); $2x10^5$ yr (Ser); $3x10^5$ yr (Oph) - ~ few x t_{ff} , and $\langle t_{AD} \rangle \sim 10^7 \text{ yr}$ - Prestellar core lifetime suggests dynamic core evolution - Inconsistent w/ magnetically dominated paradigm? (for densities ≥ 2x10⁴ cm⁻³) ## Prestellar core lifetime - n(H₂) measured in 10⁴ AU aperture - Estimated τ - ⇒ Cores not in free-fall - ⇒ Not highly subcritical - Lifetime decreases at higher densities ## Key results - Spatial distribution (cores & embedded protostars) - Clustering, extinction threshold - Starless (prestellar?) core mass distribution - Comparison to the IMF & protostellar CMD - Lifetime of starless cores - Early protostellar evolution - Class 0 lifetime, accretion rates, spectral evolution ### Class 0 timescale | Cloud | N _{Class0} | N _{ClassI} | N _{ClassI} / | t _{Class 0}
(yr) | |-------|---------------------|---------------------|-----------------------|------------------------------| | Per | 29 | 39 | 0.7 | 1.7x10 ⁵ | | Ser | 11 | 26 | 0.4 | 1.2x10 ⁵ | | Oph | 3 | 29 | 0.1 | 0.4x10 ⁵ | - Assuming continuous SF, evolutionary sequence, time is the only variable... $N_1/N_2 = t_1/t_2$ - N_{Class0}/N_{ClassI} and t_{emb} ~ $4x10^5$ yr ⇒ Class 0 lifetime ~ $1.7x10^5$ yr (Per); $1.2x10^5$ yr (Ser); $0.4x10^5$ yr (Oph) - No very rapid accretion phase in Perseus and Serpens - As was suggested based on $t_{\text{Class 0}} \sim 10^4 \text{ yr}$ (Andre & Montmerle 94, Froebrich et al. 06) - Class 0 timescale is significantly different in Ophiuchus ### Timescales for star formation Tassis & Mouschovias 2004 ## Protostellar evolution: L_{bol}-T_{bol} diagram ## Protostellar evolution: Menv vs Tbol - M_{env} correlated with T_{bol}, as expected - Constant dM/dt tracks fit well - \Rightarrow Masses of ~ 0.3-4 M $_{\odot}$ for Per & Ser, < 1 M $_{\odot}$ for Oph ## Summary (so far...) - Largest millimeter surveys to date in 3 molecular clouds: 20 deg², 200 cores - Compared w/ Spitzer surveys ⇒ complete, unbiased sample: 108 prestellar cores, 43 Class 0, and 94 Class I protostars - 1. Physics controlling the formation, support, and collapse of cores - Prestellar core lifetime ~ 2–4x10⁵ yr - ⇒ dynamic, turbulent formation process - But, disagreements w/ simulations, B fields may also be important? - 2. Initial conditions of prestellar cores - Starless cores strongly clustered, comparable to embedded protostars - Presteller CMD similar to IMF - ⇒ Further evidence that stellar masses determined by core fragmentation - 3. Early protostellar evolution - Class 0 lifetime 1–2x10⁵ yr (Per, Ser) - ⇒ No very rapid early accretion phase, dM/dt ~ constant - Evidence for episodic accretion during Class I, 25% quiescent - 4. Variations with environment - Early accretion or SF history very different in Oph