Outflow Opening Angles in Early B (Proto)Stars

Debra Shepherd (NRAO)

With support from NSF, Spitzer, The Origins Institute (McMaster U.) & Kavli Institute

Keping Qiu, Chris DePree, Leonardo Testi, Henrik Beuther, Quizhou Zhang and others

Santa Barbara, KITP stars07

22 October 2007

First: Low-Mass Outflow Evolution

Low-Mass Outflow Evolution

Outflow Properties

	T Tauri stars	Early B stars	Mid to late O stars
L _{bol} [L _o]	~ 10 ⁰⁻²	~ 10 ^{3 - 4}	~ 10 ⁴⁻⁵
Outfow timescale [yrs]	~ 107	~ few x 10 ⁵	~ few x 10 ⁴
M _{flow} / M _{star}	~ few	~ 10-20	?
M _f [M _☉ yr ⁻¹]	10 -7 to 10 -5	\lesssim 10 $^{\text{-4}}$ to 10 $^{\text{-3}}$	$\leq 10^{-3}$ to 10^{-2}
$\dot{P_f}$ [M _o km s ⁻¹ yr ⁻¹]	~ 10 -5	~ 10 ⁻³ to 10 ⁻²	~ 10 ⁻² to 10 ⁻¹

Feedback from outflows dominates over radiation at early times.

Massive vs Low-Mass Protostars

Kelvin-Helmholtz time scale (time to reach ZAMS):

 $\tau_{\rm KH} = GM^2/RL$

Accretion time scale: $\tau_{acc} = M_{\star} / \dot{M}_{acc}$

For $M_{\star} \sim 8 M_{\odot}$

 $\tau_{\rm acc} = \tau_{\rm KH}$

And for $M_{\star} > 8 M_{\odot}$ the star reaches the ZAMS while still accreting – ionizing radiation affects outflow & infall

O & B star proposed evolution

Assume formation via accretion. Consider evolutionary scenario (Beuther & Shepherd 2005):

Three outflow morphologies produced by 2 possible evolutionary sequences:

TOP:evolution of early B star from HM protostellar object via HCHII region to UC HII regionBOTTOM:evolution of an O star which transitions from B and late O-type stages to final $M_{\star} \& L_{\star}$ Final M_{\star} independent of initial clump mass: young early O star can *look* like mid-B star.

Early B (Proto)Stars

Source	RA (J2000)	Dec (J2000)	L $[log_{10}(L_{\odot})]$	D [kpc]	Age [years]
IRAS 20293	20 31 10.7	40 03 10	3.6	1.7	~ few x 10^3
IRAS 19410	19 43 11.4	23 44 06	4.0	2.1	$\leq 10^4$?
AFGL 5142	05 30 48.	33 47 54	3.5	1.8	$\sim \text{few x } 10^4$
05358+3543	05 39 10.4	35 45 19	3.8	1.7	3-4 x 10 ⁴
IRAS 20126	20 14 26.0	41 13 33	3.9	1.7	6 x 10 ⁴
W75 N	20 38 36.5	42 37 34	3.0	2.0	2 x 10 ⁵
G192.16	05 58 13.5	16 31 58	3.5	2.0	2 x 10 ⁵
HH 80-81	18 16 13.0	-20 48 48	4.2	1.7	106

Focus here on highlighted sources

IRAS 19410 - MM1

A scaled-up outflow from an early B star Age unclear, size suggests $\leq 10^4$ years

2000 AU

~ 0.3 pc

AFGL 5142 - \sim few x 10⁴ years old

J2(

eclination

33

Early B protostar - No obvious UC HII region (not on ZAMS yet). Still accreting & producing outflow.

Hunter et al. (1999): HCO⁺, SiO, young outflow. Spectral type unknown but mass of molecular cores suggests the formation of early B stars.

Spitzer (Qiu et al. 2007): shocked gas (green) beyond CO flow suggestive of collimated jets.

AFGL 5142

 $T_{dyn} \sim few \ge 10^4 years$

Not So Simple...

W75 N early B, ~ 10^5 years old

W75 N B Star Cluster

Davis et al. (1998) Torrelles et al. (2003) Shepherd et al. (2003, 2004) Alakoz et al. (2005) Combined outflows:

$$\begin{split} & L_{bol} \sim 4 \; x \; 10 \; {}^{4}L_{sun} \; (combined) \\ & T_{dyn} \sim 2 \; x \; 10 \; {}^{5} \; yrs \\ & M_{2.6mm} \sim 340 \; M_{sun} \\ & M_{f} \; \sim 165 \; M_{sun} \\ & M_{f} \; \sim 10 \; {}^{-3} \; M_{sun} \; yr \; {}^{-1} \\ & M_{f} \; \sim 2 \; x \; 10 \; {}^{-2} \; M_{sun} \; km \; s \; {}^{-1} \; yr \; {}^{-1} \end{split}$$

B0.5 – B2 ZAMS stars

185

VLA 2: Wide-angle outflow from B2 ZAMS star with UC HII region.

VLA 1: Jet – lower luminosity? Or is it younger/older? (Torrelles et al. 2003) W75 N

VLBA H_2O maser proper motions \rightarrow Wide-angle flow Torrelles et al (2003)

> Qiu et al. 2007 -Spitzer shocked gas (green) beyond CO flow suggestive of remnant, collimated jet.

20^h 38^m 50^s

40

Right Ascension (J2000)

30^S

VLA observations: 3.6 cm continuum: A+B+C configurations with multi-scale clean deconvolution.

Declination (J2000)

42° .36'

38

Resolution= 0.3", Grey scale = 1σ to peak RMS = 26 microJy/bm, Peak = 2.9 mJy/bm Contours = -3,2,3,6,9,12,15,20,40,60,80,100 σ

J2000 Declination

W75 N - VLA 2

B0.5 spectral type $T_{dyn} \sim 2x10^5$ years

G192.16: B2 ZAMS ~ few x 10^5 years old

G192.16-3.82

Indebetouw et al. (2003) Devine et al. (1999) Shepherd et al. (1998,1999,2001)

$$\begin{split} L_{bol} &\sim 3 \; x \; 10 \; {}^{3}L_{sun} \\ T_{dyn} &\sim 1.7 \; x \; 10 \; {}^{5} \; yrs \\ M_{2.6mm} &\sim 10 \; M_{sun} \\ M_{f} \; &\sim 95.3 \; M_{sun} \\ M_{f} \; &\sim 5.6 \; x \; 10 \; {}^{-4} \; M_{sun} \; yr \; {}^{-1} \\ P_{f} &\sim 594 \; M_{sun} \; km \; s \; {}^{-1} \end{split}$$

B2 ZAMS star with UC HII region 50°-90°-45° opening angle outflow Collimation consistent with wind-blown bubble Evidence for 100AU accretion disk, 1000AU rotating torus

> NH₃ core not graviatationally bound – near end of accretion phase

[SII]

G192.16

G192.19

Tdyn ~ 2×10^5 years

Proposal:

1000 AU →

 $0.2 \, \mathrm{pc}$

5 pc

10 pc

HII region expands, creating molecular shell. Shell acts like a nozzle as outflow breaks through? Flow expands as a wind-blown bubble.

HH 80-81

 $\overline{T}_{dyn} \sim 10^6$ years

Presence of collimated jet at late stage inconsistent with proposed outflow evolution of an early B star. Ionized outflow has both well-collimated jet and may have powerful wider angle wind.

Early B star outflows still being imaged:

IRAS 20293

~ few x 10^3 years

IRAS 20126 - Ha & CO(1-0)

 6×10^4 years

 $3-4 \times 10^4$ years

O star perspective

G34.26 & G34.4 Star Cluster Churchwell et al. (2004), Shepherd et al. (2007 ApJ, 1 Nov) G34.26 G34.4MM G34 2F Green \rightarrow shocks – similar to H₂ 'fingers' in Orion.

Spitzer/GLIMPSE image: 3.6µm (blue), 4.6µm (green), 5.8µm (orange), 8.0µm (red).

Tenative Conclusions - early B star outflows

G192.16 (\geq few x 10⁵ years, no jet)

Model constraints?

Age	Outflow opening angle
10 ² - 10 ⁴ years	1°- few degree opening angle jet (scaled up low-mass flow)
Few x 10 ⁴ years	20-30° "jet"
10 ⁵ - 10 ⁶ years	40-50° wind, widens to > 90° outside of UCHII region? Wind opening angle within 50 AU of star can be > 90°. Collimated jets can continue (one found).

Outflow Momentum/M*

For 2 sources we might know the momentum and stellar mass sufficiently to estimate P_{flow}/M_{\star}

• G192.16 - outflow has broken out of cloud, \rightarrow P = lower limit

 $L_{bol} \sim 3 \times 10^{3} L_{sun}$ HII region \rightarrow B2 ZAMS ~ 8 M $_{\odot}$ $P_{f} \sim 594 M_{sun} km s^{-1}$

 $P_{\rm flow}/M_{\star} \gtrsim 75$

IRAS 20126 - outflow just reaching edge of cloud but high precession
 → inclination correction not very accurate; ionized gas severely contaminated by jet emission

 $L_{bol} \sim 10^{4} L_{\odot}$ HII region \rightarrow B0.5 ZAMS ~ 10 M $_{\odot}$ $P_{f} \sim 403 M_{\odot} km s^{-1}$

 $P_{flow}/M \star \sim 40$