

Star Formation: Then and Now KITP, Santa Barbara 2007

First Stars: Review of Theory

Volker Bromm

The University of Texas at Austin

From the Dark Ages to the Cosmic Renaissance

(Larson & Bromm, Scientific American, Dec. 2001)

First Stars → Transition from Simplicity to Complexity

Why start with Population III?

- Simplified physics
 - No magnetic fields yet (?)
 - No metals → no dust
 - Initial conditions given by CDM
 - → Well-posed problem

 Scales for star and galaxy formation overlap at earliest epochs

galaxies length ~100 pc cosmic time

Region of Primordial Star Formation

(e.g., Couchman & Rees 1986; Haiman et al. 1996; Tegmark et al. 1997)

Mass vs. redshift

- Gravitational Evolution of CDM
- Gas Microphysic:
 - Can gas sufficiently cool?
 - t_{cool} ≤ t_{ff} (Rees-Ostriker)

- Collapse of First Luminous Objects expected:
 - at: $z_{coll} = 20 30$
 - with total mass: $M \sim 10^6 M_{\odot}$

What happens inside primordial minihalos?

Massive Black Hole

Stars (single or multiple)

 Most important question: How massive were the first stars?

The First Stars: The "Standard" Model

Numerical simulations

- Bromm, Coppi, & Larson (1999, 2002)
- Abel, Bryan, & Norman (2000, 2002)
- Nakamura & Umemura (2001, 2002)
- Yoshida et al. (2006); O'Shea & Norman (2007); Gao et al. (2007)
- Main Result: →Top-heavy IMF

The Physics of Population III

- Simplified physics
 - No magnetic fields yet (?)
 - No metals → no dust
 - Initial conditions given by CDM
 - → Well-posed problem
- Problem:
 - How to cool primordial gas?
 - No metals → different cooling
 - Below 10⁴ K, main coolant is H₂

T_{vir} for Pop III

- H₂ chemistry
 - Cooling sensitive to H₂ abundance
 - H₂ formed in non-equilibrium
 - → Have to solve coupled set of rate equations

First Stars within WDM

Gao & Theuns 2007, to appear in Science

- Primordial gas first falls into filaments, not minihalos

Cosmological Initial Conditions

• Consider situation at **z = 20**

Gas density

Primordial Object

~ 7 kpc

The First Star-Forming Region ("minihalos")

projected gas density at z=20

~ 7 kpc (proper)

Formation of a Population III Star

(Bromm, Coppi, & Larson 1999, 2002; Bromm & Loeb 2004)

$$M_{halo} \sim 10^6 M_{\odot}$$

$$M_{elump} \sim 10^3 M_{o}$$

~ 25 pc

A Physical Explanation:

(Bromm, Coppi, & Larson 1999, 2002)

- Gravitational instability (Jeans 1902)
- Jeans mass:
 M_J~T^{1.5} n^{-0.5}

Thermodynamics of primordial gas

M_J vs. n

- •Two characteristic numbers in microphysics of H₂ cooling:
 - $-T_{min} \sim 200 \text{ K}$
 - $n_{crit} \sim 10^3$ 10^4 cm⁻³ (NLTE \rightarrow LTE)
- Corresponding Jeans mass: M_J ~ 10³ M_o

The Crucial Role of Accretion

Final mass depends on accretion from dust-free

Envelope

The Crucial Role of Accretion

- Final mass depends on accretion from dust-free Envelope
- Development of core-envelope structure
 - Omukai & Nishi 1998, Ripamonti et al. 2002
- $M_{core} \sim 10^{-3} M_o \rightarrow very similar to Pop. I$
- Accretion onto core —very different!
- $dM/dt_{acc} \sim M_J/t_{ff} \sim T^{3/2}$ (Pop I: T ~ 10 K, Pop III: T ~ 300 K)
- •Can the accretion be shut off in the absence of dust?

Protostellar Collapse

Bromm & Loeb 2004, New Astronomy, 9, 353

Simulate further fate of the clump

Accretion onto a Primordial Protostar

dM/dt vs. time

Upper limit:
$$M_* (t = 3 \times 10^6 \text{ yr}) \approx 500 M_{\odot}$$

- -Similar range (~50 ~ few 100 M_O) found by:
 - Abel et al. 2002; Omukai & Palla 2003; Tan & McKee 2004; Yoshida et al. 2006; O'Shea & Norman 2007)

Protostellar Accretion Rates

Several groups found similar accretion rates.

- The rate is very high
 ~0.01M_{sun}/yr
 because of high prestellar
 temperature ~300 K
 (c.f.10⁻⁶-10⁻⁵M_{sun}/yr
 for the present-day case)
- The rate decreases with time.

Glover (2005)

0.3Mpc

Protostellar Collapse: Mass accretion

(Yoshida et al. 2006, ApJ, 652, 6)

• For continued accretion, need: L=L*+L_{acc}<L_{Edd}

→ M_{crit} ~ 5x10⁻³ M_☉ yr ⁻¹

Accretion rate vs. mass

Radius vs. mass

→ See also: Tan & McKee: ~ 30 – 100 M_O

Protostellar Collapse: Angular Momentum

(Yoshida et al. 2006, ApJ, 652, 6)

 Lowest specific angular momentum gas collapses first!

Neglected Processes

- Magnetic fields (MHD effects, MRI, dynamos, jets...)
 - -- E.g., Tan & Blackman 2004; Machida et al. 2006; Silk & Langer 2006
- Cosmic Rays (ionization, heating, chemistry...)
 - -- E.g. Shchekinov & Vasiliev 2004; Rollinde et al. 2005, 2006; Jasche et al. 2007; Stacy & Bromm 2007
 - → might lead to lower Pop III masses!
- Possible modifications to CDM (WDM, annihalation heating...)
 - -- E.g. Yoshida et al. 2003; Gao & Theuns 2007;
 Spolyar et al. 2007

Impact of Cosmic Rays on Pop III Star Formation

(Stacy & Bromm 2007, MNRAS, in press, arXiv:0705.3634)

→lowering Pop III mass scale?

(see also: Jasche, Ciardi & Ensslin 2007)

The Death of the First Stars:

(Heger et al. 2003)

7

Pop III

Initial Stellar Mass

Physics of Pair-instability Supernovae

 $M \sim 140 - 260 M_{\odot}$

- -T>109K
- ph+ph → e⁻e+
- grav. runaway collapse

- large jump in core T

- no compact remnant
- all heavy elements dispersed
- distinct nucleosynthetic pattern

The First Supernova Explosions

(Greif, Johnson, Bromm & Klessen 2007, ApJ, in press; arXiv:0705.3048)

(See also: Bromm, Yoshida & Hernquist 2003, ApJ, 596, L135)

The First Supernova-Explosion (Greif et al. 2007; arXiv:0705.3048)

Temperature

• E_{sn}~10⁵²ergs

Complete Disruption (PISN)

The First Supernova-Explosion

(Greif et al. 2007; arXiv:0705.3048)

$$\rightarrow$$
 ~ 10⁻⁴ -10⁻³ Z_O

Paradise Lost: The Transition to Population II

(Bromm, Ferrara, Coppi, & Larson 2001, MNRAS, 328, 969)

- Add trace amount of metals
- Limiting case of no H₂
- Heating by photoelectric effect on dust grains

Cooling Rate vs. T

Consider two identical (other than Z) simulations!

Effect of Metallicity:

Insufficient cooling

log n_H [cm⁻³]

- → Critical metallicity: Z_{crit} ~ 5 x 10⁻⁴ Z_o
- Vigorous fragmentation

→ Recently confirmed by Smith & Sigurdsson (2007)

Forming the First Low-mass Stars:

(Bromm & Loeb 2003, Nature 425, 812)

- Abundance pattern:
 - HE0107-5240, 1327-2326
- very Fe-poor
- very C/O-rich
- Pop III → Pop II:
 - driven by: CII, OI (fine-structure transitions)
- Minimum abundances:
- [C/H] ~ -3.5
- [O/H] ~ -3.1
- Identify truly 2nd gen. stars!

Physics of the Critical Metallicity:

- → Highly complex!
- What is primary coolant?
 - Dust (e.g., Schneider et al. 2006) vs. fine-structure cooling?
 - Molecules (CO...)?
 - Fine-structure cooling: Which elements? (C, O, Si, Fe,...)
 - → Bromm & Loeb (2003); Santoro & Shull (2006)
- Equation of state arguments:
 - → e.g., Omukai (2000); Omukai et al. (2005); Spaans & Silk (2005)
- Z_{crit} = f (environment, formation history,...)
 - → Realistic Initial Conditions are crucial!

Relics from the Dawn of Time:

- **HE0107-5240**: [Fe/H] = 5.2 (Christlieb et al. 2002)
- **HE1327-2326**: [Fe/H] = 5.4 (Frebel et al. 2005)

How could such a low-mass star have formed?

Forming the First Low-mass Stars:

(Frebel, Johnson & Bromm 2007, MNRAS, in press; astro-ph/0701395)

Transition discriminant' (D_{trans}): C + O abundance

The First Dwarf Galaxies

What is character of star formation?

- 2 sigma peak
- $M \sim 10^8 M_o$, $z \sim 10$
- $T_{vir} > 10^4 K$
- Cooling possibleDue to atomic H

1 co-moving Mpc

Setting the Stage for Pop II Star Formation:

- Influence of previous episodes of star formation

Fate of shock-heated primordial gas

(Johnson & Bromm 2006, MNRAS, 366, 247)

1) Minihalo-case (T_{vir} ~ few 1,000 K): Pop III

HD makes no difference! (M_{char}~ few 100 M_☉)

Fate of shock-heated primordial gas

(Johnson & Bromm 2006, 366, 247)

2) Shocked-case (T_{vir} > 10,000 K): Pop III.2

HD may make difference! (M_{char}~ few 10 M_o)

Fate of shock-heated primordial gas

(Johnson & Bromm 2006, MNRAS, 366, 247)

- M_{char} ~ few 100 M_o - M_{char} ~ few 10 M_{o}

How abrupt is Pop III → Pop II transition?

Towards the First Dwarf Galaxies

(Johnson, Greif, & Bromm 2007, ApJ, 665, 85)

Towards the First Dwarf Galaxies

(Johnson, Greif, & Bromm 2007, ApJ, 665, 85)

H₂ abundance (green color)

Photon Interaction with Hydrogen Density during Star Formation and Decay HII regions:white-gray overlay

Movie credit:

 Paul Navratil

 (Texas Advanced Computing Center)

~ 660 kpc (comoving)

Summary

Primordial gas typically attains:

```
- T \sim 200 - 300 \text{ K}
- n \sim 10^3 - 10^4 \text{ cm}^{-3}
```

- Corresponding Jeans mass: M_J ~ 10 ³ M_o
- Pop III SF might have favored very massive stars
- Transition to Pop II driven by presence of metals (z_{trans} ~ 15 +- 5)
- PISNe completely disrupt mini-halos and enriches surroundings
- 2nd generation of intermediate-mass stars ("Pop III.2")

Perspectives:

- Further fate of clumps
 - Feedback of protostar on its envelope
 - Inclusion of opacity effects (radiative transfer)
- The ``Second Generation of Stars' (high-z dwarf glaxies)
- SN feedback and metal enrichment from the first stars
- What were the seeds for the first quasars?
- When did QSO activity first begin?