Triggered Star Formation: Radiative Feedback from Massive Stars

Shu-ichiro Inutsuka (Kyoto Univ & KITP) Takashi Hosokawa (NAOJ)

Ref. Hosokawa & SI (2005), ApJ 623, 917
Hosokawa & SI (2006), ApJ 646, 240
Hosokawa & SI (2006), ApJ 648, L131
Hosokawa & SI (2007), ApJ 664, 363

Star Formation, Then and Now

August 15, 2007

Outline

- Introduction
- Expanding HII region in Molecular Cloud
 - Radiation Hydro Calculation
 - Ionization Front & Dissociation Front
 - Comparison with Observation
- Expanding HII region in diffuse HI Cloud
 Search for "Dark" Molecular Clouds
- Discussion
 - Thermal Instability & Gravitational Instability
- Future

Radiative Feedback for Molecular Cloud

- Ionizing photons ($h\nu > 13.6 \text{eV}$)
- Dissociating photons

 $(11.0 \text{eV} < h\nu < 13.6 \text{eV})$

Negative Feedback

destroy molecular cloud and suppress star formation ($H2 \rightarrow HI \rightarrow HII$) (e.g., Whitworth 1979) **V.S**

Positive Feedback

shock front sweeps up ISM
to trigger star formation
(compression of H2)
(e.g., Elmegreen & Lada 1977)

Expanding HII Region

Sh104 classical HII region, *R*≈4pc

embedded young cluster in one clump

Deharveng et al. (2003) A&A, 408, L25

Direct Evidence of Collect and Collapse Scenario? Possible?

Other Similar Regions

Deharveng, Zavagno & Caplan (2005), A&A, 433, 565

Dust emission red : 21.3µm (grains) green: 8.3µm (PAHs)

Many Similar Regions

Dust ring around HII regions + embedded point sources

Basic Equations

1D Radiation-Hydrodynamics Calculation hydrodynamics : 2nd-order Godunov method **continuity** $\frac{\partial}{\partial t} \left(\frac{1}{\rho} \right) - \frac{\partial (r^2 u)}{\partial m} = 0$ $(dm = \rho r^2 dr)$ **momentum eq.** $\frac{\partial u}{\partial t} + r^2 \frac{\partial p}{\partial m} = 0$ Thermal Conduction energy eq. $\rho\left(\frac{\partial E}{\partial t} + \frac{\partial(r^2 u p)}{\partial m} + \frac{\partial(r^2 q_{\text{cond}})}{\partial m}\right) = n(\Gamma - \Lambda)$ equation of state $P = nkT (2x_{H^+} + x_H + x_{H_2}/2 + x_{He}), \ \rho = 1.4m_H n$ **Radiative** UV photon ($h\nu > 13.6eV$) FUV photon ($11.0eV < h\nu < 13.6eV$) transfer freq. dependent chemistry H⁺/H, O⁺/O, H/H₂, C⁺/CO (Nelson & Langer 1998)

(photoinization) (photodissociation)

Heating / Cooling Processes

	region	process	reference	note
Heating	HII <	H photoionization	Spitzer (78) etc.	
	PDR	Photoelectron	Bakes & Tielens (94)	
		H_2 photodissociation	HM79 (Hollenbach & McKee '79)	
		H_2 reformation	HM79	
		Cosmic-ray	Shull & Van Steenberg (85)	
Cooling	HII	H recombination	Spitzer (78) etc.	
		Lyman- α	Spitzer (78)	
		OI $(63.0 \mu m)$	HM89 (Hollenbach & McKee '89)	
		OII $(37.29 \mu m)$	HM89	
		CII (23.26 μ m)	HM89	
		Collisional ionization	Tenorio-Tagle et al. (86)	
	PDR	OI (63.1 μm)	HM89	†1
		CII (157.7 μ m)	HM89	
		H_2 rot/vib excitation	HM79, Galli & Palla (98)	
		CO rot/vib excitation	HM79	
		Dust recombination	Bakes & Tielens (94)	
		Collisional dust-gas heat transfer	HM89	† 2

Main heating : energy gain from UV radiation Main cooling : line-cooling

FIG. 1.—Our representative lines for Lyman bands, σ_{ν,H_2} . The points indicate the center of the grids. The dashed line means the dust absorption cross section for H₂ dissociating FUV photons, σ_d .

Expansion in Molecular Cloud

• study the physical/chemical structure of the shell

• Does molecular gas accumulates in the shell shielding FUV photons?

Gas Dynamics

T~10⁴K \rightarrow HII region, T~100K \rightarrow PDR, T~10K \rightarrow molecular cloud PDR is gradually trappeded in the shell

Front-Overtaking

The PDR is taken in the shell by the time when the HII region expands to the observed radius of Sh104.

Mass Evolution

Generality: Scaling relations

Quantitative change with different number density

$$\begin{array}{c} \text{up} \left\{ \begin{array}{l} \text{Length scale: } R_{\text{St}} \propto n^{-2/3} \\ \text{Time scale: } t_{\text{dyn}} = R_{\text{st}}/c_{\text{HII}} \propto n^{-2/3} \\ \text{Shell mass: } M_{\text{Sh}} \propto nR_{\text{st}}^3 \propto n^{-1} \end{array} \right\} \quad \text{down} \\ \text{Shell column density: } \sigma_{\text{Sh}} \propto nR_{\text{st}} \propto n^{-1} \\ \text{Incident FUV flux from the star:} \\ F_{\text{FUV,i}} \propto S_{\text{FUV}}/R_{\text{st}}^2 \propto n^{4/3} \end{array} \right\}$$

Low density

high density

Next Question:

What happens, if HII region expands into diffuse ISM (CNM)?

Expansion in Diffuse HI Gas

- Study the physical/chemical structure of the shell
- Does molecular gas form from ambient neutral medium?

Dynamical Evolution

Dense and cold shell is formed around the HII region density : n~1000/cc, temperature: T~30 K

Accumulation of Molecules

Why only H₂ molecules ?

Abundance of CO molecules is much smaller than that of H_2 \rightarrow Self-shielding effect is efficient only for H_2 .

"Dark" Molecular Clouds

Hosokawa & SI 2007, ApJ 664, 363

Search for "Dark" H₂ Clouds

Looking for cold (T~a few ×10 K) HI without CO

HI 21cm line emission

HI Self-Absorption (HISA) : absorption by colder HI against the emission by the warmer HI ($T_b \sim 100$ K)

Canadian Galactic Plane Survey CGPS ; Taylor et al. (2003)

- galactic plane survey @ radio, IR
- angular resolution : about 1'
- distribution of HI, HII, CO, dust

Channel Map Blue image:21cm emission, Red contour:CO

CGPS data in W5 HII region

21cm continuum (HII gas) $T_b=5K \text{ (bright)} \rightarrow 12.5K \text{ (dark)}$

Image : 60µm dust emission Contour : ¹²CO(1-0) @ v_{LSR}=-39.8 km/s

> Ionized gas is surrounded with the dust shell.

Distribution of CO molecules show poor correlation with the dust shell.

CGPS data in W5 HII region

HI 21cm emission @ v_{LSR} =-39.8 km/s : T_b=45K (bright) \rightarrow 110K (dark)

Shell-like HISA feature is found around W5 HII region.
HISA feature overlaps with the dust shell.

Absorption Line Profile

The HISA temperature is less than T~80K. If p < 0.75, HISA is fairly cold (T < 50K).

We have studied the feedback of the stellar UV/FUV radiation in the molecular clouds and diffuse neutral medium.

- (I) In the molecular cloud
 - Cold (T~30K) and dense (n~ 10^5 /cc) shell is formed around HII region.
 - The PDR initially extends beyond the shell, but gradually trapped in the shell
 - Finally, most of the swept-up gas remains in the shell as the cold molecular gas, which agrees with some observations ; *positive feedback*

(II) In the diffuse interstellar medium (HI)

- Cold (T~30K) and dense (n~1000/cc) shell is formed around HII region.
- H2 is formed from ambient HI in the shell, but CO is hardly formed. intermediate gas phase between the diffuse neutral medium and molecular clouds
- Recent observational data shows the signs of this predicted gas phase.

Discussion: What about 2D/3D Dynamics?

- Propagation of Shock Wave into CNM
 - Generic Process in ISM
 - Koyama & Inutsuka 2002, ApJL 564, L97
 - Audit & Hennebelle 2005
 - Heitsch et al. 2005
 - Vazquez-Semadeni et al. 2006, etc.

1D Shock Propagation into CNM

Density-Pressure Diagram

Density-Temperature Diagram

CNM becomes thermally unstable with shock.

Koyama & Inutsuka,2000,ApJ 532,980

1D Shock Propagation into WNM

Koyama & Inutsuka 2000, ApJ **532**, 980 See also Hennebelle & Pérault 1999

Shock Propagation into WNM

➔ direction of propagation

watching from moving frame

Koyama & Inutsuka 2002

demo[1].avi

Generation of Turbulent Dense Shell?

Dense shells are turbulent! Due to thermal instability?

Generality of Triggered SF

- $M_{\rm av}$: average mass of formed stars
- $f(>20M_{o})$: number fraction of massive stars
- $M_{\rm sh}$: mass of dense shell
- ε : SF efficiency

$$\frac{\# \text{ of star formed in shell}}{\# \text{ of original stars}} = \frac{f(>20M_{\Box})}{M_{\text{av}}} M_{\text{sh}} \varepsilon$$
$$= \left(\frac{0.6M_{\Box}}{M_{\text{av}}}\right) \left(\frac{f(>20M_{\Box})}{0.0006}\right) \left(\frac{M_{\text{sh}}}{10^4 M_{\Box}}\right) \left(\frac{\varepsilon}{0.1}\right)$$

Hosokawa & SI (2005), ApJ 623, 917

Condition for Star Burst

If $M_* > 20M_o$, then number of massive stars increases exponetially.

Hosokawa & SI (2006) ApJ **648**, L131

Future

- Multi-Dimensional Simulations
 - Thermal Instability (Field Length ~ AU Scale!)
 - Gravitational Instability (Jeans Length)
- Effect of Magnetic Field
 - Non-Ideal MHD (ambipolar diffusion, etc.)
 - 2-fluid MHD simulations always result in a few μG. Inoue et al. 2007, ApJ 658, L99

Ideal Self-Contained Test Case for Feedback, Turbulence, & Star Formation

____w3__

Radiative Feedback for Diffuse ISM

Negative Feedback

Photoionization of the neutral medium : promising process to supply the diffuse warm ionized medium.

($HI \rightarrow HII$) (e.g., Miller & Cox 1993)

V.S

Positive Feedback

Shock front sweeps up the ambient neutral medium. Reformation of molecule is triggered in the compressed layer.

($HI \rightarrow H2$) (e.g., Koyama & Inutsuka 2000)

Motivation

Negative feedbackPositive feedbackPhase I : dissociation + ionization $\nu.s.$ Compression of molecular gas $(H2 \rightarrow HI \rightarrow HII)$ $\nu.s.$ Reformation of molecular gas $(HI \rightarrow H2)$

Modeling of Sh219 requires ρ gradient

at ~ 0.1Myr, the HII region expands to the observed radius of Sh219
The HII, HI densities agree with the observed values.

Warning to Numerical Simulation

THE ASTROPHYSICAL JOURNAL, 602:L25–L28, 2004 February 10 © 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A.

THE FIELD CONDITION: A NEW CONSTRAINT ON SPATIAL RESOLUTION IN SIMULATIONS OF THE NONLINEAR DEVELOPMENT OF THERMAL INSTABILITY

HIROSHI KOYAMA^{1,2} AND SHU-ICHIRO INUTSUKA³ Received 2003 February 6; accepted 2004 January 2; published 2004 January 30

Requirement for Spatial Resolution "Field Condition"

We should resolve the structure of transition layer: $\lambda_{\rm F}$

"Field length":
$$\lambda_{\rm F} \equiv \sqrt{\frac{KT}{\rho^2 \Lambda}} \approx 10^{-2} \, {\rm pc}$$

FIG. 3.—Convergence test for density distribution at t = 8 Myr. The error function is defined by eq. (6). Model CV (*open squares*) and model CCV (*filled circles*) are presented.

Linear Stability Analysis of Magnetized Sheet-like Clouds

Nagai, SI, & Miyama 1998, ApJ 506, 306

Gravitational Fragmentation of Magnetized Sheet-like Clouds

Linear Analysis: Nagai, SI, & Miyama 1998, ApJ **506**, 306 Non-linear: Umekawa, Matsumoto, Miyaji, & Yoshida 1999, PASJ **51**, 625

Filament \perp B

 $M_{Line} > M_{Line,Crit} \equiv 2C_S^2/G$

Radial Collapse toward the Axis

Isothermal to Adiabatic

minimum mass scale of fragment

$M \ge 0.1 M_{\odot}$

Smaller P_{ext}

SI & Miyama 1997, ApJ **480**, 681 Masunaga & SI 1999, ApJ **510**, 822 Larger P_{ext}

Filament || B

 $M_{Line} < M_{Line,Crit}$

less-unstable filaments

no star formation

Character of Gravity

SI & Miyama 1997, ApJ 480, 681

Character of Gravity

Collapse cannot be halted by pressure and magnetic field.

Isothermal EoS of Gas

In dense region, gas and dust grains are thermally well coupled.

Heating rate (Γ_{g}) and Cooling rate (Λ_{g}) of **Dust Grains**

$$4\pi\kappa\rho\langle I\rangle$$
 initially negligible $= 4\pi\kappa\rho\sigma_{\rm SB}T^4 \equiv \Lambda_{\rm thin}$
radiative heating collisional heating by gas radiative cooling

Grains stay almost isothermal unless the gas is heated up by rapid contraction, shock, etc. (Gaustad 1963, ApJ **138**, 1050; Hayashi 1966, ARAA **4**, 171)

Transition from Isothermal to Adiabatic Evolution SI & Miyama 1997, ApJ **480**, 681; Masunaga & SI 1999, ApJ **510**, 822