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I. INTRODUCTION

• The Star Formation Efficiency (SFE) can be defined as 

the fraction of a molecular cloud’s mass that ends up 
in stars during its lifetime.

• It is the integral of the SFR over the cloud’s lifetime Δt:

∫
Δ

=
t

dt
M

SFR1SFE
cl
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• The SFE is known to be low:

~ a few % in global cloud complexes (e.g., Myers et al. 1986)

~ 10-30% in cluster-forming cores (e.g., Lada & Lada 2003)

• Why?
– low SFR? (“Slow”) (e.g., Mouschovias 1976; Shu et al. 1977; Klessen et al. 2000; 

Palla & Stahler 2002;  Mouschovias & Tassis 2004; Vázquez-Semadeni et al. 2003, 2005; 
Krumholz, Tan & McKee 2006),

– or small Δt? (“Brief”) (e.g., Ballesteros-Paredes et al. 1999; Elmegreen 2000; 
Hartmann et al. 2001; Hartmann 2003; Bate et al. 2003; Vázquez-Semadeni et al. 2007; 
Ballesteros-Paredes & Hartmann 2007; Elmegreen 2007),

– or something else? A combination of the above?
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II. MECHANISMS FOR A SLOW SFR

1. Magnetic support (Mouschovias 1976, 1991; Shu, Adams & Lizano 1987).

– Low-mass SF occurs in magnetically subcritical molecular 
clouds (MCs) mediated by ambipolar diffusion (AD).

• Low efficiency because
– Low filling factor of supercritical gas.
– Long AD timescale (τAD) in quiescent, strongly subcritical

conditions.

– High+low-mass SF occurs in supercritical clouds
• High efficiency.
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– However,
• GMCs are supersonically turbulent... (e.g., Zuckerman & Palmer 1974; 

Larson 1981; Heyer & Brunt 2004) :
– Cores form in (short) crossing time (Ballesteros-Paredes et al. 1999; 

Elmegreen 2000).

– τAD is comparable to dynamical time (Fatuzzo & Adams 2002 ; Heitsch et 
al. 2004).

• ... and marginally magnetically critical (e.g., McKee 1989; Bourke et al. 
2001; Hartmann et al. 2001)

– τAD is comparable to dynamical time in moderately subcritical
clouds (Ciolek & Basu 2001).

• Most low-mass stars form in high-mass star forming regions 
(supercritical mode).

• So, probably cannot appeal to low-mass mode of magnetic 
support model to account for low SFE.
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2. Turbulent regulation of the SFE in isolated clouds.

– Turbulence is a multiscale phenomenon, with largest 
velocities and timescales at largest spatial scales (Kolmogorov 1941; 
Larson 1981; Heyer & Brunt 2004).

– Dual role of supersonic turbulence:
• Prevent monolithic cloud collapse.

• Promote nonlinear (large amplitude) small-scale density 
fluctuations that

– Shorter formation and free-fall times than parent cloud’s.
– Involve only a fraction of the total cloud mass (a different kind of filter 

than AD-mediated cores).
– Only a fraction of which proceeds to collapse (Elmegreen 1993; Padoan

1995; Vázquez-Semadeni et al. 1996, 2003, 2005; Klessen, Heitsch & Mac Low 2000; 
Heitsch, Mac Low & Klessen 2001; Padoan & Nordlund 2002; Nakamura & Li 2005).
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– Precise effect of turbulence strength depends on global 
cloud conditions:

a)Smaller SFE requires:

Nakamura & Li 2005
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Larger turbulent rms Mach # in continually 
driven regimes.
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regimes.
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b)Same (2-5%) values of SFE over “reasonable” cloud lifetimes 
require moderately supercritical B in driven regimes, moderately 
subcritical B in decaying regimes, 

Non-magnetic
Strongly supercritical
Moderately supercritical

B

SFE

Nakamura & Li (2005),
2D, decaying, with AD.

Vázquez-Semadeni, Kim & Ballesteros-Paredes
(2005). 3D, supercritical, no AD.

Non-magnetic

Supercritical

Subcritical
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A model for the inhibitory effect of turbulence in stationary 
turbulent regimes (continuously driven), is based on the sonic 
scale λs (Padoan 1995; Vázquez-Semadeni et al. 2003; Krumholz & McKee 2005):

λs: The scale across which the typical turbulent velocity difference 
equals the sound speed:

Heyer & Brunt 2004Larson 1981
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– Below λs: 

– Turbulent subfragmentation becomes weaker (δρ/ρ ~ Ms
2

< 1) (or ~ Ma for MHD turbulence – Padoan &Nordlund 2002)

– Turbulent support becomes subdominant (δuturb < cs).

Maybe SFE related to fraction of mass in Jeans-
unstable cores of size < λs? (i.e., “super-Jeans”, subsonic 
cores).
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λs decreases with 
increasing levels of 
turbulence at given T.

• Supported by simulations of varying Ms and driving scale at 
constant J=L/LJ=4 (Vázquez-Semadeni, Ballesteros-Paredes & Klessen 2003, ApJ 585, L131).

– Sonic scale and SFE measured in the simulations:

SFE measured as collapsed mass 
fraction after 2 crossing times.

Ms 2 3.2 6 10

2τc/τ0 12.5 10 6.7 2

τ0 ~ 2/3 τff



13

)/exp()(SFE 0 ss λλλ −∝

SFE depends monotonically on λs
(regardless of driving length)

Vázquez-Semadeni et al. 2003
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– The model has been extended by (Krumholz & McKee (2005) to 
use the ratio of λs to the Jeans length LJ as the condition for 
gravitational collapse,

– Select the regions from lognormal density PDF (Vázquez-Semadeni
1994; Padoan et al 1997; Padoan & Nordlund 2002)

– for obtaining the SFE after one free-fall time

where
2

grav

kin ⎟
⎠
⎞

⎜
⎝
⎛∝=

JE
E Mα

is the virial parameter. M is the rms
Mach number and J the Jeans 
number (L/LJ).
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Krumholz & Tan 2007
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• Fraction of mass in subsonic, super-Jeans cells as function of 
cell size may be  lower than mass in collapsed objects, even 
zero at large Mach numbers (Vázquez-Semadeni & Ballesteros-Paredes, in 
prep.)

However (#1)...
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• There must be some subsonic, super-Jeans structures:
– Quiescent starless cores.
– Seen in idealized simulations...
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Gómez et al. 2007, ApJ in press, arXiv/0705.0559
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– ... which evolve along the stability sequence:

Lada et al. 2007 (Protostars & Planets V)
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Ward-Thompson et al. 2007 (Protostars & Planets V)

(Galván-Madrid et al. 2007)

– Collapse times in moderately supercritical MHD isothermal, driven 
simulations (“prestellar lifetimes”): 2—10 τff.

• Consistent with observations.

Fit to 
averages.

2563a
2563b
5123

(Galván-Madrid et al. 2007, ApJ in press, arXiv/0704.3587)
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-1/3

-0.75

Vázquez-Semadeni, González & Kim, 2007, in prep.

• However #2: Numerical simulations of turbulent clouds with 
various Mach numbers, keeping α cst. are marginally consistent 
with the sonic-scale/LJ model.
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• Conclude:

– Not all collapsing mass may come from subsonic, super-
Jeans structures (Bate, Bonnell et al...)

• Correlation between SFE and λs may be representative of 
disruptive effect of turbulence, but not exhaust mass reservoir for 
collapse.

• Need full virial balance studies (e.g., Tilley & Pudritz 2004, 2005; Dib et al. 
2007), but correlating with SFE.

– Moreover, all these studies have been in closed boxes. A 
certain lifetime for the clouds has to be assumed. 

• Cloud lifetimes need to be assessed to understand SFE.

Cloud evolution studies.
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III. MC FORMATION AND EVOLUTION (“BRIEF” SF?)

• Some key questions in MC evolution:

– How do they form?
• Large-scale instabilities mainly? (Mac Low and Ostriker talks)
• Cooling and thermal instability are essential (Hennebelle & Pérault

1999, 2000; Koyama & Inutsuka 2000, 2002; Heitsch et al. 2005, 2006; Audit & 
Hennebelle 2005, 2007; Vázquez-Semadeni 2006, 2007).

– Can trigger turbulence with transonic compressions.

– How do they get their turbulence and how long is it driven?

– How long do they live?
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– Two kinds of models for driving/lifetime of GMCs:
1) Turbulence “built in” from formation mechanism from diffuse 

atomic ISM (Vishniac 1994; Walder & Folini 2000; Koyama & Inutsuka 2002, 2004; Audit 
& Hennebelle 2005; VS et al. 2003, 2006; Heitsch et al. 2005, 2006).

-- Natural way of driving turbulence (including duration).

Audit & Hennebelle 2005Koyama & Inutsuka 2002
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(Vázquez-Semadeni et al.  2007, ApJ 657, 870)

– SF proceeds rapidly and briefly (Ballesteros-Paredes et al. 1999;Elmegreen 
2000; Hartmann et al. 2001).

– Ekin at later times driven by gravity (Hartmann & Burkert 2007; VS et al. 2007).

– Clouds probably dispersed shortly after SF episode (e.g., Whitworth 
1979;Franco et al. 1994; Hartmann et al. 2001; VS et al. 2007; Elmegreen 2007).
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SF starts 
(17.2 Myr)

SF expected to affect cloud (20.3 
Myr) (SFE ~ 15%) (Franco et al.’s 
1994 prescription).Global 

collapse 
starts (12.2 
Myr)

Run with:
Lbox = 256 pc, 
Linf = 112 pc

(Vázquez-
Semadeni et al.  
2007)

Eth

Ek

|Eg|Turbulent Ekin fed 
by collision first, 
then by 
gravitational 
contraction.

Turbulent driving 
decays on time. 
Intermediate 
between driven and 
decaying.

SFR not small, 
but Δt may be 
small.

Δt
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– (Indirect) evidence in favor of externally-driven turbulence:

• Suggest a (turbulent?) cascade from larger scales.
• No decay?

Heyer & Brunt 2004

a) A universal scaling law, 
independent of SF activity.

Heyer & Brunt 2007

b) A universal “dipole” large-
scale mode. Consistent with 
“driving from the outside”.
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c) GMCs are not isolated, but rather the “tip of the iceberg” (or the “white caps”) 
of the galactic density distribution (e.g., Blitz et al. 2007, PPV).

Engargiola et al. 2003: Study of M33

Color image: HI 
distribution

Circles: CO

They conclude that 
GMCs form out of 
the HI.

GMC dynamics 
are part of global 
ISM dynamics.
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• Two kinds of models for driving/lifetime of GMCs
(cont’d):

2) From stellar feedback (Whitworth 1979; McKee 1989; Matzner & McKee 
1999; Matzner 2002; Krumholz et al. 2006; Nakamura & Li 2007; Nakamura’s talk).

– SF may proceed slowly over relatively long times (Palla & Stahler
2000, 2002; Krumholz & Tan 2006).

• (Indirect) evidence in favor of internally-driven turbulence:

Blitz, Fukui, et al 2007, PPV

Class I 
Only YSOs Apparently long lifetimes 

(25-30 Myr) of GMCs in 
external galaxies.

BUT: “GMCs are probably 
notnot in virial equilibrium”:

• highly filamentary
• not very centrally 
concentrated
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• But are clouds supported or disrupted by stellar feedback?

• Evidence in favor of quick cloud dispersal:
– Clusters older than ~5-10 Myr are usually devoid of gas (Leisawitz et al. 

1989; Fukui et al. 1999).

2004

Gas pushed 
sideways 
from SF 
regions.

Observed in simulations with HII-region like driving:
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• Stellar-driven “equilibrium GMC” concept may operate in 
an averaged sense over sufficiently large volumes.

• Locally clouds can be dispersed, but globally GMCs may 
“persist”.

Passot, et al. 1995

L= 1 kpc
Δt = 50 Myr
Including: self-gravity, 
B, HII-like feedback.

A multi-timescale process
(Elmegreen 2000).
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• CONCLUSIONS

– Turbulence provides an effective filter for the mass that can 
collapse in a MC.

– SFE levels below 10% over times ~ τff (“slow SFR”) can be 
obtained in closed boxes with either

• Stationary supersonic turbulence in magnetically supercritical 
clouds.

• Decaying turbulence in moderately magnetically subcritical
clouds.

• Perhaps reality in intermediate, gradual decay regime?

– Super Jeans-, subsonic-fraction model of “mass filtering” for 
collapse explains low SFE. 
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– However:
• Subsonic, super-Jeans model may possibly miss part of the total 

mass involved in collapse.

• Effect of turbulent Mach number and magnetic field strength 
depend on nature of turbulence (driven or decaying).

• Numerical models of cloud and star formation suggest
– Turbulence from formation mechanism (at least initially).
– SFR may be not so small,

» but then need brief Δt (due to SF feedback?)

• All models assume a cloud lifetime
– Longish Δt for slow SFR.

• Observations suggest turbulence driven from the outside of 
clouds.

– Rather than from stellar feedback?
– Does stellar feedback then disrupt parent clouds?
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– Need:
• Studies of cloud evolution+SFE including stellar feedback 

and magnetic fields in open boxes to determine:

– Determination and evolution of clouds’ physical parameters.

– Mechanism and duration of turbulence driving.

– Duration of SF episodes as a function of scale size.

– Role of magnetic fields.
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The End
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• Additional result: Magnetically supercritical case produces fewer but 
more massive collapsed objects than non-magnetic case.

Vázquez-Semadeni, Kim, Shadmehri & Ballesteros-Paredes (2005)

3D MHD, moderately supercritical, μ = 2.8 3D non-magnetic
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Vázquez-Semadeni, Kim & Ballesteros-Paredes (2005)

Masses of collapsed objects vs. B ~ 1/μ

~ B
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3.5 kpc

Elmegreen 2007.
See also Ballesteros-Paredes
& Hartmann 2007.

“Instantaneous” SF 
on the dust lane.

Shredded material 
and secondary SF 
behind arm.

M51
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t=0 Myr

t=0 Myr

t=1.125 Myr t=1.525 Myr t=2.0 Myr t=2.625 Myr

Non-self-gravitating
central core with 
high uniform density.

Self-gravitating
central core with BE-
like density profile.

Collapsed core, 
with SIS profile.

Compression forms 
central core that 
grows in mass and 
size:

Core’s mass catches 
up with Jeans mass.

Jeans mass decreases 
in central dense core.

Mach ~ 1 shock 
confines core.

Gómez et al. 2007, ApJ in press, 
arXiv/0705.0559

Density slope flat at center and 
steepens (~-1 -2) outwards.

Δt = 1.1 Myr

Inward-moving shock-
bounded shell forms
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