


OUTLINE

Successes of Inflation

Size, Hubble expansion, homogeneity, isotropy, flatness,
absences of monopoles, almost scale-invariant adiabatic
Gaussian density perturbations

Eternal Inflation:

Mechanisms

Implications

Ambiguities in Calculating Probabilities

Initial Singularity Theorem — cannot be past-complete
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Successes of Inflation

1) The universe is big— about 1090

particles!

2) Hubble expansion— what was the
repulsive driving force?

3) Homogeneity and isotropy— in the
conventional big bang (without infla-
tion), CMB uniformity requires com-
munication ∼ 100 times speed of
light.

4) Flatness Problem — why was Ω at
t = 1 sec equal to 1 to 15 decimal
places?

5) Why no magnetic monopoles?

6) Nearly scale invariant, adiabatic,
Gaussian density perturbations.
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Eternity of Small Field (New) Inflation

Essentially all known inflationary models are
eternal — once inflation starts it never stops.

Small Field Inflation:

1) False vacuum is metastable, and decays
exponentially.

2) Volume of false vacuum inflates exponentially.

3) Rate of inflation � rate of decay.

Volume of false vacuum increases with time!
(Steinhardt, 1983; Vilenkin, 1983)
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Schematic view of decay of false vacuum (assume each bar is 3 times larger than
previous):

But:

Real universe is 3D, not 1D.

Decay of false vacuum is random, not systematic.

Inflationary universe has a fractal structure — on scales much too large to observe.

If inflation happens once, an infinite number of universes are produced.
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ETERNAL CHAOTIC INFLATION

Andrei Linde showed in 1986 that even chaotic inflation can be eternal. One needs
to consider quantum fluctuations of φ:

Quantum fluctuations play a conspicuous role in
inflating spacetimes:

For static spaces, quantum fluctuations are
important on small scales, but only on small
scales.

For inflating spaces, the small scale quantum
fluctuations are constantly stretched to classical
sizes.

Simple random walk picture: In each time interval ∆t = H−1, the average
field φ in each region of size H−1 receives a random increment with root
mean square ∆φqu = H/2π. This random increment is superimposed on the
classical motion, which is downward.
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Quantum fluctuations are equally likely to move
φ up or down the hill.

BUT: suppose φ = φ0 at the start of some
time interval ∆t = H−1. During ∆t, the
volume expands by e3 ≈ 20. If the fraction
of space in which φ increases is > 1/e3, then
volume of region with φ > φ0 INCREASES. If
so, inflation never ends.

In equations, the probability of an upward fluctuation exceeds 1/e3 if

∆φqu ≈ H

2π
> 0.61 |φ̇cl|H−1 ⇐⇒ H2

|φ̇cl|
> 3.8 .

But
H2

|φ̇cl|
∼ δρ

ρ
(scalar density perturbations),

so the criterion for eternal inflation is that the density perturbations on very
long wavelengths are O(1).
For example, for a V = λφ4 theory, if φ >∼ 0.75λ−1/6Mp , inflation will be

eternal. Note that energy density ∼ 0.08λ1/3M 4
p, which can be considerably

below the Planck scale. –8–



Unanswered questions about eternal chaotic inflation:

? In this calculation, the regions in which φ fluctuates upward to Planckian
energies dominate the volume. What really happens when the energy density
becomes Planckian?

? Can we find a more fully quantum mechanical description of eternal inflation?

–9–



Implications of Eternal Inflation

1) Hypotheses about initial conditions become divorced from observation. Inflat-
ing network presumably approaches steady state.

2) Plausibility of inflation beginning becomes (almost) irrelevant — need only
begin once in all eternity. (How could inflation NOT begin!?) In particular,
small field inflation (i.e., “new” inflation) is certainly not dead.
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3) The spatial volume grows without bound. This leads to deep questions about
the number of degrees of freedom:

It is hard to imagine how a finite number of degrees of freedom can describe
an ever-enlarging multiverse.

If the number of degrees of freedom is infinite, then either all states
with Λ > 0 are unstable, or the eternally inflating spacetime is not
asymptotically de Sitter (Banks & Fischler, 2003).

If the number of degrees of freedom is infinite, then either

a) Degrees of freedom are created as the multiverse expands, or

b) The universe begins with an infinite number of degrees of freedom, but
all are frozen except for a finite number. As the multiverse enlarges,
more and more degrees of freedom are unfrozen.

Conceivably string theory might imply that the number of degrees of
freedom is finite, and therefore eternal inflation can’t happen. But I find
it hard to believe that string theory can forbid such a simple consequence
of combining quantum field theory with GR.
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4) Inflation could conceivably help to save the predictive power of string theory.
(To me the “anthropic principle” is the explanation of last resort, so I don’t
want to give in to it until we are sure that there is no better explanation for
the world around us.)

Even if there are 101000 vacuum-like states of string theory, maybe inflation
produces overwhelmingly more of one type of vacuum than the others.

In eternally inflating scenarios, presumably the state(s) with the fastest
exponential expansion rate dominates — probably by an infinite amount.
But all states in the decay chain of this state will also grow with the same
exponential.

Our universe should then be found in the decay chain of the dominating
state. The decay chain may be complicated, but maybe it will be far
smaller than the full landscape of string theory vacua.

At the present time this idea is only wishful thinking, but we are presumably
in the earliest stages of understanding the vacua of string theory.
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Ambiguities in the Calculation of Probabilities

Anything that can happen will happen; so the implications of eternal inflation must
be described in terms of probabilities. But in the infinite spacetime, the fraction
with any particular property is infinity/infinity. If one regularizes by cutting out
a finite spacetime volume, the answer depends on how one chooses the cutoff.

The Youngness Paradox: Suppose one cuts of the distribution by stopping at

some fixed time, say in a synchronous coordinate system. Then one finds
peculiar effects. The rate of production of new pocket universes is growing
exponentially with a time constant of perhaps 10−37 second. For every pocket
universe of age t, there are exp

{
1037

}
that are 1 sec younger! The result is

an incredibly youth-dominated “society”.

All historical inferences are distorted, because the probability of any scenario that
can “get us here” 1 sec faster is enhanced by exp

{
1037

}
.
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The Youngness Paradox: Suppose one cuts of the distribution by stopping at

some fixed time, say in a synchronous coordinate system. Then one finds
peculiar effects. The rate of production of new pocket universes is growing
exponentially with a time constant of perhaps 10−37 second. For every pocket
universe of age t, there are exp

{
1037

}
that are 1 sec younger! The result is

an incredibly youth-dominated “society”.

All historical inferences are distorted, because the probability of any scenario that
can “get us here” 1 sec faster is enhanced by exp

{
1037

}
.

Do we live in the center of the world?, by Linde, Linde, & Mezhlumian, 1994:
used such an argument to show that we most likely live near the center of a
spherical hole in the cosmic density distribution. Vilenkin and collaborators
(Garriga, Tanaka, Vanchurin, Winitzki) have shown that these conclusions can
be avoided with an alternative method of calculation, but I believe that it is
still unclear how one decides on the right method of calculation.
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Eternal to Past? | Probably Not

A relevant theorem was proved recently by Borde, Vilenkin, and me (gr-qc/0110012,
PRL 2003).

When a geodesic observer moves through an expanding space, she slows down
(redshift).

The redshift is a purely kinematical effect, independent of the dynamics of GR,
and therefore independent of any energy conditions.

To see this, imagine a universe with 1D space, and imagine that the comoving
particles are cars. Consider a geodesic observer moving relative to them.
In observer’s frame, the cars are moving by. If the first car passes at 70
km/hr, and the cars are moving apart, then the next car will not pass at
80 km/hr!

If we follow the observer backwards in an expanding universe, she speeds up.
But, the calculation shows that if Haverage > 0 in the past, then she will reach
the speed of light in a finite proper time.
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Consider a geodesic observer (timelike
or null trajectory) moving through an
expanding universe:

The observer measures the velocities
uµ(τ) of the “comoving geodesic
test particles” that she passes, and
from their motion she infers a local,
unidirectional Hubble parameter

H ≡ ∆vradial

∆r
.

The comoving test particles need not exist. It merely must be be possible to define
the velocity fields, with �aproper = 0 at the time each test particle is passed.

The relative velocity between the test particles and the geodesic observer can be
described by

γ ≡ uµ vµ =
1√
1− v2rel

,

where the 2nd equality holds only for timelike geodesics.
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The redshifting (slowing down) of the relative velocity is directly related to the
measurement of H:

H =
dF (γ)

dτ
,

where

F (γ) =

{
γ−1 for null observers

arctanh(1/γ) for timelike observers .

F (γ) = “slowness” .

So, for geodesic observers moving at relative speed vrel at time τf ,

∫ τf

H dτ ≤ arctanh
(
1

γ

)
= arctanh

(√
1− v2rel

)
.

For null observers, if we normalize the affine parameter τ by dτ/dt = 1 at τf , then

∫ τf

H dτ ≤ 1 .
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Example: de Sitter space in flat coordinates:

ds2 = −dt2 + e2Htd�x2 .

A comoving geodesic (�x = constant) has infinite length, but any other
backwards-going geodesic reaches t = −∞ in a finite proper time.

The de Sitter spacetime can of course be extended beyond t = −∞, and
the full de Sitter spacetime is of course geodesically complete. However, the
expanding phase must be preceded by a contracting phase, which is not part
of an inflationary model. If the spacetime is extended beyond t = −∞, the
theorem implies that H must become negative.
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Application to Inflationary Models:

The theorem can then be summarized by saying that any spacetime for which
Hav > 0 along any past-directed geodesic cannot be geodesically complete in
the past.

In particular, the cyclic ekpyrotic model has Hav > 0 for null geodesics for a single
cycle, and since every cycle is identical, Hav > 0 when averaged over all
cycles. Therefore the cyclic model is past-incomplete, and requires a boundary
condition in the past.
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Disclaimers: There is of course no conclusion that an eternally inflating model
must have a unique beginning, and no conclusion that there is an upper bound
on the length of all backwards-going geodesics from a given point. There may
be models with regions of contraction embedded within the expanding region that
could evade our theorem. Aguirre & Gratton have proposed a model that evades
our theorem, in which the arrow of time reverses at the t = −∞ hypersurface, so
the universe “expands” in both halves of the full de Sitter space.

Claim: An eternally inflating model of the type usually assumed, which would lead
to Hav > 0 for past-directed geodesics, cannot be complete.

Some new physics (i.e., not inflation) would be needed to
describe the past boundary of the inflating region. One
possibility would be a quantum origin.
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SUMMARY

The inflationary paradigm is in great shape!

Inflation can explain the large size, the Hubble expansion, the homogeneity,
isotropy, and flatness of the universe. Can also explain the absence of
monopoles, and the nearly scale-invariant adiabatic Gaussian density pertur-
bations.

Both small field and large field inflationary models are generically eternal into
the future.

Eternal inflation divorces the initial condition problem from observation, makes
the probability of inflation starting irrelevant (if nonzero), raises questions
about the number of degrees of freedom, and offers the possibility that inflation
MIGHT choose a preferred class of vacuum states.

Although eternal inflation seems inevitable and has attractive features, the
problem of calculating probabilities in an eternally inflating universe remains
unclear.

Eternally inflating models, including the cyclic ekpyrotic model, are past-
incomplete — some new physics (quantum origin?) is needed to describe
the past boundary of the inflating region.
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