New Heterotic GUT and Standard Model Vacua

Ralph Blumenhagen

MPI für Physik, München

based on: R.B., S. Moster, T. Weigand (hep-th/0603015),
R.B., S. Moster, R. Reinbacher, T. Weigand (hep-th/0609nnn)

Motivation

Mainly two kinds of semi-realistic compactifications:

Motivation

Mainly two kinds of semi-realistic compactifications:

- Compactifications with intersecting D-branes

Motivation

Mainly two kinds of semi-realistic compactifications:

- Compactifications with intersecting D-branes

Reviews: (BI., Cvetic, Langacker, Shiu, hep-th/0502005), (BI., Körs, Lüst, Stieberger, Phys. Rept. due this fall)

Motivation

Mainly two kinds of semi-realistic compactifications:

- Compactifications with intersecting D-branes

Reviews: (BI., Cvetic, Langacker, Shiu, hep-th/0502005), (BI., Körs, Lüst, Stieberger, Phys. Rept. due this fall)
see also talks by Bianchi, Choi, Cvetic, Lüst, Marchesano, Schellekens, Taylor, Verlinde

Motivation

Motivation

- Heterotic strings on Calabi-Yau with bundles

Motivation

- Heterotic strings on Calabi-Yau with bundles

see talks by Faraggi, Kyae, Ovrut, Raby, Ratz

Motivation

- Heterotic strings on Calabi-Yau with bundles

see talks by Faraggi, Kyae, Ovrut, Raby, Ratz

Motivation

Motivation

Usually, one uses $S U(4)$ and $S U(5)$ vector bundles + discrete Wilson lines to get realistic string models. (Bouchard,Cvetic, Donagi), (Braun, He, Ovrut, Pantev)

Motivation

Usually, one uses $S U(4)$ and $S U(5)$ vector bundles + discrete Wilson lines to get realistic string models. (Bouchard,Cvetic, Donagi), (Braun, He, Ovrut, Pantev)

Alternatively:

- Consider the $E_{8} \times E_{8}$ heterotic string equipped with the specific class of bundles

$$
W=V \oplus L
$$

with structure group $G=S U(4) \times U(1)$.

Motivation

Usually, one uses $S U(4)$ and $S U(5)$ vector bundles + discrete Wilson lines to get realistic string models. (Bouchard,Cvetic, Donagi), (Braun, He, Ovrut, Pantev)

Alternatively:

- Consider the $E_{8} \times E_{8}$ heterotic string equipped with the specific class of bundles

$$
W=V \oplus L
$$

with structure group $G=S U(4) \times U(1)$.

- Embedding this structure group into one of the E_{8} factors leads to the breaking to $H=S U(5) \times U(1)_{X}$, where the adjoint of E_{8} decomposes as follows into $G \times H$ representations.

Motivation

Motivation

Motivation

Motivation

reps.	Cohomology
$\mathbf{1 0} \mathbf{- 1}_{-1}$	$H^{*}\left(\mathcal{M}, V \otimes L^{-1}\right)$
$\mathbf{1 0}_{4}$	$H^{*}\left(\mathcal{M}, L^{4}\right)$
$\overline{\mathbf{5}}_{3}$	$H^{*}\left(\mathcal{M}, V \otimes L^{3}\right)$
$\overline{\mathbf{5}}_{-2}$	$H^{*}\left(\mathcal{M}, \bigwedge^{2} V \otimes L^{-2}\right)$
$\mathbf{1}_{-5}$	$H^{*}\left(\mathcal{M}, V \otimes L^{-5}\right)$

Table 1: Massless spectrum of $H=S U(5) \times U(1)_{X}$ models.

Motivation

reps.	Cohomology
$\mathbf{1 0} 0_{-1}$	$H^{*}\left(\mathcal{M}, V \otimes L^{-1}\right)$
$\mathbf{1 0}_{4}$	$H^{*}\left(\mathcal{M}, L^{4}\right)$
$\overline{\mathbf{5}}_{3}$	$H^{*}\left(\mathcal{M}, V \otimes L^{3}\right)$
$\overline{\mathbf{5}}_{-2}$	$H^{*}\left(\mathcal{M}, \bigwedge^{2} V \otimes L^{-2}\right)$
$\mathbf{1}_{-5}$	$H^{*}\left(\mathcal{M}, V \otimes L^{-5}\right)$

Table 1: Massless spectrum of $H=S U(5) \times U(1)_{X}$ models.
Candidate for a flipped $S U(5)$ model \rightarrow need to understand structure of $E_{8} \times E_{8}$ compactification with $U(N)$ bundles.

Motivation

Motivation

- Direct breaking of E_{8} to the Standard Model group by a bundle with structure group $S U(5) \times U(1)$.

Motivation

- Direct breaking of E_{8} to the Standard Model group by a bundle with structure group $S U(5) \times U(1)$.

$S U(3) \times S U(2) \times U(1)_{Y}$	Cohom.
$(\mathbf{3}, \mathbf{2})_{\frac{1}{3}}$	$H^{*}(V)$
$(\mathbf{3}, \mathbf{2})_{-\frac{5}{3}}$	$H^{*}\left(L^{-1}\right)$
$(\overline{\mathbf{3}}, \mathbf{1})_{\frac{2}{3}}$	$H^{*}\left(\bigwedge^{2} V\right)$
$(\overline{\mathbf{3}}, \mathbf{1})_{-\frac{4}{3}}$	$H^{*}\left(V \otimes L^{-1}\right)$
$(\mathbf{1}, \mathbf{2})_{-1}$	$H^{*}\left(\bigwedge^{2} V \otimes L^{-1}\right)$
$(\mathbf{1}, \mathbf{1})_{2}$	$H^{*}(V \otimes L)$
$(\mathbf{1}, \mathbf{1})_{1}$	$H^{*}\left(L^{-1}\right)$

Plan

- Compactifications of the Heterotic String

Plan

- Compactifications of the Heterotic String
- Loop corrected Donaldson-Uhlenbeck-Yau condition

Plan

- Compactifications of the Heterotic String
- Loop corrected Donaldson-Uhlenbeck-Yau condition
- Flipped $S U(5)$ vacua

Plan

- Compactifications of the Heterotic String
- Loop corrected Donaldson-Uhlenbeck-Yau condition
- Flipped $S U(5)$ vacua
- Example of three-generation model

Plan

- Compactifications of the Heterotic String
- Loop corrected Donaldson-Uhlenbeck-Yau condition
- Flipped $S U(5)$ vacua
- Example of three-generation model
- Conclusions and Outlook

Plan

- Compactifications of the Heterotic String
- Loop corrected Donaldson-Uhlenbeck-Yau condition
- Flipped $S U(5)$ vacua
- Example of three-generation model
- Conclusions and Outlook

Compactifications of Heterotic String

Compactifications of Heterotic String

$E_{8} \times E_{8} \mathrm{HS}$ with vector bundles of the following form

$$
W=W_{1} \oplus W_{2}
$$

where $W_{1,2}$ is embedded into the first/second E_{8}.

Compactifications of Heterotic String

$E_{8} \times E_{8} \mathrm{HS}$ with vector bundles of the following form

$$
W=W_{1} \oplus W_{2}
$$

where $W_{1,2}$ is embedded into the first/second E_{8}.
We choose

$$
W_{i}=V_{N_{i}} \oplus \bigoplus_{m_{i}=1}^{M_{i}} L_{m_{i}}
$$

with $U\left(N_{i}\right)$ bundle $V_{N_{i}}$ and the complex line bundles $L_{m_{i}}$.

Compactifications of Heterotic String

$E_{8} \times E_{8} \mathrm{HS}$ with vector bundles of the following form

$$
W=W_{1} \oplus W_{2}
$$

where $W_{1,2}$ is embedded into the first/second E_{8}.
We choose

$$
W_{i}=V_{N_{i}} \oplus \bigoplus_{m_{i}=1}^{M_{i}} L_{m_{i}}
$$

with $U\left(N_{i}\right)$ bundle $V_{N_{i}}$ and the complex line bundles $L_{m_{i}}$.

$$
c_{1}\left(W_{i}\right)=c_{1}\left(V_{N_{i}}\right)+\sum_{m_{i}=1}^{M_{i}} c_{1}\left(L_{m_{i}}\right)=0
$$

Tadpole cancellation

Tadpole cancellation

- The Bianchi identity for the three-form H implies the tadpole cancellation condition

$$
0=\frac{1}{4(2 \pi)^{2}}\left(\operatorname{tr}\left(\bar{F}_{1}^{2}\right)+\operatorname{tr}\left(\bar{F}_{2}^{2}\right)-\operatorname{tr}\left(\bar{R}^{2}\right)\right)-\sum_{a} N_{a} \bar{\gamma}_{a}
$$

to be satisfied in cohomology. Here $\bar{\gamma}_{a}$ are Poincare dual to two-cycles Γ_{a} wrapped by the $N_{a} \mathrm{M} 5$-branes.

Tadpole cancellation

- The Bianchi identity for the three-form H implies the tadpole cancellation condition

$$
0=\frac{1}{4(2 \pi)^{2}}\left(\operatorname{tr}\left(\bar{F}_{1}^{2}\right)+\operatorname{tr}\left(\bar{F}_{2}^{2}\right)-\operatorname{tr}\left(\bar{R}^{2}\right)\right)-\sum_{a} N_{a} \bar{\gamma}_{a}
$$

to be satisfied in cohomology. Here $\bar{\gamma}_{a}$ are Poincare dual to two-cycles Γ_{a} wrapped by the $N_{a} \mathrm{M} 5$-branes.
This can be written as

$$
\sum_{i=1}^{2}\left(\operatorname{ch}_{2}\left(V_{N_{i}}\right)+\frac{1}{2} \sum_{m_{i}=1}^{M_{i}} c_{1}^{2}\left(L_{m_{i}}\right)\right)-\sum_{a} N_{a} \bar{\gamma}_{a}=-c_{2}(T)
$$

Massless spectrum

Massless spectrum

- The massless spectrum is determined by various cohomology classes

$$
H^{*}(X, W)
$$

where the bundles W can be derived from the explicit embedding of the structure group into $S O(32)$ or $E_{8} \times E_{8}$.

Massless spectrum

- The massless spectrum is determined by various cohomology classes

$$
H^{*}(X, W)
$$

where the bundles W can be derived from the explicit embedding of the structure group into $S O(32)$ or $E_{8} \times E_{8}$.

- The net-number of chiral matter multiplets is given by the Euler characteristic of the respective bundle \mathcal{W}

$$
\chi(X, \mathcal{W})=\int_{X}\left[\operatorname{ch}_{3}(\mathcal{W})+\frac{1}{12} c_{2}\left(T_{X}\right) c_{1}(\mathcal{W})\right]
$$

The Green-Schwarz mechanism

The Green-Schwarz mechanism

- All non-abelian cubic gauge anomalies do cancel, whereas the mixed abelian-nonabelian, the mixed abelian-gravitational and the cubic abelian ones do not.

The Green-Schwarz mechanism

- All non-abelian cubic gauge anomalies do cancel, whereas the mixed abelian-nonabelian, the mixed abelian-gravitational and the cubic abelian ones do not. They need to be cancelled by a generalised Green-Schwarz mechanism involving the terms

$$
S_{G S}=\frac{1}{24(2 \pi)^{5} \alpha^{\prime}} \int B \wedge X_{8}
$$

and

$$
S_{k i n}=-\frac{1}{4 \kappa_{10}^{2}} \int e^{-2 \phi_{10}} H \wedge \star_{10} H
$$

(Lukas, Stelle, hep-th/9911156), (R.B., Honecker, Weigand, hep-th/0504232)

Hermitian Yang-Mills equation

Hermitian Yang-Mills equation

- At string tree level, the connection of the vector bundle has to satisfy the hermitian Yang-Mills equations

$$
F_{a b}=F_{\bar{a} \bar{b}}=0, \quad g^{a \bar{b}} F_{a \bar{b}}=\star[J \wedge J \wedge F]=0
$$

F has to be a holomorphic vector bundle.

Hermitian Yang-Mills equation

- At string tree level, the connection of the vector bundle has to satisfy the hermitian Yang-Mills equations

$$
F_{a b}=F_{\bar{a} \bar{b}}=0, \quad g^{a \bar{b}} F_{a \bar{b}}=\star[J \wedge J \wedge F]=0
$$

F has to be a holomorphic vector bundle.

- A necessary condition is the so-called Donaldson-Uhlenbeck-Yau (DUY) condition,

$$
\int_{X} J \wedge J \wedge c_{1}\left(V_{N_{i}}\right)=0, \quad \int_{X} J \wedge J \wedge c_{1}\left(L_{m_{i}}\right)=0
$$

to be satisfied for all n_{i}, m. If so, a theorem by Uhlenbeck-Yau guarantees a unique solution provided each term is μ-stable.

One-loop DUY equation

One-loop DUY equation

Computing the Fl-terms, reveals a one-loop correction to the DUY equation in the presence of M5-branes, which leads to the conjecture (BI.,Moster, Reinbacher, Weigand, alg-geom/0609nnn).

One-loop DUY equation

Computing the Fl-terms, reveals a one-loop correction to the DUY equation in the presence of M5-branes, which leads to the conjecture (BI.,Moster, Reinbacher, Weigand, alg-geom/0609nnn).
There exists a corresponding stringy one-loop correction to the HYM equation of the form

$$
\begin{gathered}
\star_{6}\left[J \wedge J \wedge F_{i}^{a b}-\frac{\ell_{s}^{4}}{4(2 \pi)^{2}} e^{2 \phi_{10}} F_{i}^{a b} \wedge\left(\operatorname{tr}_{E_{8 i}}\left(F_{i} \wedge F_{i}\right)-\right.\right. \\
\left.\left.\quad \frac{1}{2} \operatorname{tr}(R \wedge R)\right)+\ell_{s}^{4} e^{2 \phi_{10}} \sum_{a} N_{a}\left(\frac{1}{2} \mp \lambda_{a}\right)^{2} F_{i}^{a b} \wedge \bar{\gamma}_{a}\right]+ \\
\text { (non - pert. terms })=0 .
\end{gathered}
$$

One-loop DUY equation

One-loop DUY equation

There exists a unique solution, once the bundle satisfies the corresponding integrability condition and the bundle is Λ-stable with respect to the slope

$$
\begin{array}{r}
\Lambda(\mathcal{F})=\frac{1}{\operatorname{rk}(\mathcal{F})}\left[\int_{X} J \wedge J \wedge c_{1}(\mathcal{F})-\ell_{s}^{4} g_{s}^{2} \int_{X} c_{1}(\mathcal{F}) \wedge\right. \\
\left(\operatorname{ch}_{2}\left(V_{N_{i}}\right)+\frac{1}{2} \sum_{n_{i}=1}^{M_{i}} c_{1}^{2}\left(L_{n_{i}}\right)+\frac{1}{2} c_{2}(T)\right)+(\mathrm{npt})
\end{array}
$$

One-loop DUY equation

There exists a unique solution, once the bundle satisfies the corresponding integrability condition and the bundle is Λ-stable with respect to the slope

$$
\begin{array}{r}
\Lambda(\mathcal{F})=\frac{1}{\operatorname{rk}(\mathcal{F})}\left[\int_{X} J \wedge J \wedge c_{1}(\mathcal{F})-\ell_{s}^{4} g_{s}^{2} \int_{X} c_{1}(\mathcal{F}) \wedge\right. \\
\left(\operatorname{ch}_{2}\left(V_{N_{i}}\right)+\frac{1}{2} \sum_{n_{i}=1}^{M_{i}} c_{1}^{2}\left(L_{n_{i}}\right)+\frac{1}{2} c_{2}(T)\right)+(\mathrm{npt})
\end{array}
$$

If, as for $S U(N)$ Bundles

$$
\lambda(V)=\mu(V)
$$

we can immediately conclude that a μ-stable bundle is also λ-stable for sufficiently small string coupling $g_{\text {anta }}$

Flipped $S U(5)$ vacua

Flipped $S U(5)$ vacua

Consider heterotic string on a Calabi-Yau manifold X with bundle

$$
W=V \oplus L
$$

with structure group $G=S U(4) \times U(1)$.

Flipped $S U(5)$ vacua

Consider heterotic string on a Calabi-Yau manifold X with bundle

$$
W=V \oplus L
$$

with structure group $G=S U(4) \times U(1)$.

reps.	Cohomology
$\mathbf{1 0} \mathbf{- 1}_{-1}$	$H^{*}\left(\mathcal{M}, V \otimes L^{-1}\right)$
$\mathbf{1 0}_{4}$	$H^{*}\left(\mathcal{M}, L^{4}\right)$
$\overline{\mathbf{5}}_{3}$	$H^{*}\left(\mathcal{M}, V \otimes L^{3}\right)$
$\overline{\mathbf{5}}_{-2}$	$H^{*}\left(\mathcal{M}, \bigwedge^{2} V \otimes L^{-2}\right)$
$\mathbf{1}_{-5}$	$H^{*}\left(\mathcal{M}, V \otimes L^{-5}\right)$

Flipped $S U(5)$ vacua

Flipped $S U(5)$ vacua

- If this really is flipped $S U(5)$, then GUT breaking via Higgs in 10.

Flipped $S U(5)$ vacua

- If this really is flipped $S U(5)$, then GUT breaking via Higgs in 10.
- However, for $c_{1}(L) \neq 0$ the $U(1)$ receives a mass via the GS mechanism \rightarrow standard $S U(5)$ GUT with extra exotics + GUT breaking via discrete Wilson lines
(Tatar, Watari, hep-th/0602238), (Andreas, Curio, hep-th/0602247)

Flipped $S U(5)$ vacua

- If this really is flipped $S U(5)$, then GUT breaking via Higgs in 10.
- However, for $c_{1}(L) \neq 0$ the $U(1)$ receives a mass via the GS mechanism \rightarrow standard $S U(5)$ GUT with extra exotics + GUT breaking via discrete Wilson lines
(Tatar, Watari, hep-th/0602238), (Andreas, Curio, hep-th/0602247)
- Embed a second line bundle into the other E_{8}, such that a linear combination of the two observable $U(1)$'s remains massless

Flipped $S U(5)$ vacua

Flipped $S U(5)$ vacua

- Concretely, we embed the line bundle L also in the second E_{8}, where it leads to the breaking $E_{8} \rightarrow E_{7} \times U(1)_{2}$ and the decomposition
$248 \xrightarrow{E_{7} \times U(1)}\left\{(\mathbf{1 3 3})_{0}+(\mathbf{1})_{0}+(\mathbf{5 6})_{1}+(\mathbf{1})_{2}+c . c.\right\}$.

Flipped $S U(5)$ vacua

- Concretely, we embed the line bundle L also in the second E_{8}, where it leads to the breaking $E_{8} \rightarrow E_{7} \times U(1)_{2}$ and the decomposition
$248 \xrightarrow{E_{7} \times U(1)}\left\{(\mathbf{1 3 3})_{0}+(\mathbf{1})_{0}+(56)_{1}+(\mathbf{1})_{2}+\right.$ c.c. $\}$.
- The resulting massless spectrum is

$E_{7} \times U(1)_{2}$	bundle
$\mathbf{5 6} \boldsymbol{6}_{1}$	L^{-1}
$\mathbf{1}_{2}$	L^{-2}

Flipped $S U(5)$ vacua

- Concretely, we embed the line bundle L also in the second E_{8}, where it leads to the breaking $E_{8} \rightarrow E_{7} \times U(1)_{2}$ and the decomposition
$248 \xrightarrow{E_{7} \times U(1)}\left\{(\mathbf{1 3 3})_{0}+(\mathbf{1})_{0}+(56)_{1}+(\mathbf{1})_{2}+\right.$ c.c. $\}$.
- The resulting massless spectrum is

$E_{7} \times U(1)_{2}$	bundle
$\mathbf{5 6}_{1}$	L^{-1}
$\mathbf{1}_{2}$	L^{-2}

- More general breakings are possible.

Flipped $S U(5)$ vacua

Flipped $S U(5)$ vacua

- Tadpole cancellation condition

$$
\operatorname{ch}_{2}(V)+3 \operatorname{ch}_{2}(L)-\sum_{a} N_{a} \bar{\gamma}_{a}=-c_{2}(T) .
$$

Flipped $S U(5)$ vacua

- Tadpole cancellation condition

$$
\operatorname{ch}_{2}(V)+3 \operatorname{ch}_{2}(L)-\sum_{a} N_{a} \bar{\gamma}_{a}=-c_{2}(T)
$$

- The linear combination

$$
U(1)_{X}=-\frac{1}{2}\left(U(1)_{1}-\frac{5}{2} U(1)_{2}\right)
$$

remains massless if the following conditions are satisfied

$$
\int_{X} c_{1}(L) \wedge c_{2}(V)=0, \int_{\Gamma_{a}} c_{1}(L)=0 \quad \text { for all M5 branes. }
$$

Flipped $S U(5)$ vacua: spectrum

Flipped $S U(5)$ vacua: spectrum

reps.	bundle	SM part.
$(\mathbf{1 0}, \mathbf{1})_{\frac{1}{2}}$	$\chi(V)=g$	$\left(q_{L}, d_{R}^{c}, \nu_{R}^{c}\right)+\left[H_{10}\right]$
$(\mathbf{1 0}, \mathbf{1})_{-2}$	$\chi\left(L^{-1}\right)=0$	-
$(\overline{\mathbf{5}}, \mathbf{1})_{-\frac{3}{2}}$	$\chi\left(V \otimes L^{-1}\right)=g$	$\left(u_{R}^{c}, l_{L}\right)$
$(\overline{\mathbf{5}}, \mathbf{1})_{1}$	$\chi\left(\bigwedge^{2} V\right)=0$	$\left[\left(h_{3}, h_{2}\right)+\left(\bar{h}_{3}, \bar{h}_{2}\right)\right]$
$(\mathbf{1}, \mathbf{1})_{\frac{5}{2}}$	$\chi(V \otimes L)+\chi\left(L^{-2}\right)=g$	e_{R}^{c}
$(\mathbf{1}, \mathbf{5 6})_{\frac{5}{4}}$	$\chi\left(L^{-1}\right)=0$	-

Table 2: Massless spectrum of $H=S U(5) \times U(1)_{X} \times E_{7}$ models with $g=\frac{1}{2} \int_{X} c_{3}(V)$.

Flipped $S U(5)$ vacua

Flipped $S U(5)$ vacua

- One gets precisely g generations of flipped $S U(5)$ matter.

Flipped $S U(5)$ vacua

- One gets precisely g generations of flipped $S U(5)$ matter.
- Right handed leptons from the second E_{8} are absent if

$$
\int_{X} c_{1}^{3}(L)=0 .
$$

Flipped $S U(5)$ vacua

- One gets precisely g generations of flipped $S U(5)$ matter.
- Right handed leptons from the second E_{8} are absent if

$$
\int_{X} c_{1}^{3}(L)=0 .
$$

- The generalised DUY condition for the bundle L simplifies to

$$
\lambda(V)=\mu(V)=\int_{X} J \wedge J \wedge c_{1}(V)=0
$$

Flipped $S U(5)$ vacua: couplings

Flipped $S U(5)$ vacua: couplings

- GUT breaking via $H_{10}+\bar{H}_{10}$ leads to a natural solution of the doublet-triplet splitting problem via a missing partner mechanism in the superpotential coupling

$$
10_{\frac{1}{2}}^{H} 10_{\frac{1}{2}}^{H} 5_{-1} .
$$

Flipped $S U(5)$ vacua: couplings

- GUT breaking via $H_{10}+\bar{H}_{10}$ leads to a natural solution of the doublet-triplet splitting problem via a missing partner mechanism in the superpotential coupling

$$
10_{\frac{1}{2}}^{H} 10_{\frac{1}{2}}^{H} 5_{-1} .
$$

- Gauge invariant Yukawa couplings

$$
10_{\frac{1}{2}}^{i} \mathbf{1 0}_{\frac{1}{2}}^{j} 5_{-1}, \quad 10_{\frac{1}{2}}^{i} \overline{5}_{-\frac{3}{2}}^{j} \overline{5}_{1}, \quad \overline{5}_{-\frac{3}{2}}^{i} \mathbf{1}_{\frac{5}{2}}^{j} \mathbf{5}_{-1},
$$

lead to Dirac mass-terms for the $d,(u, \nu)$ and e quarks and leptons after electroweak symmetry breaking.

Flipped $S U(5)$ vacua: couplings

Flipped $S U(5)$ vacua: couplings

- Since the electroweak Higgs carries different quantum numbers than the lepton doublet, the dangerous dimension-four proton decay operators
lle $\in \overline{5}_{-\frac{3}{2}}^{i} \mathbf{1}_{\frac{5}{2}}^{j} \overline{5}_{-\frac{3}{2}}^{k}$, qdl, udd $\in \mathbf{1 0}_{\frac{1}{2}}^{i} \mathbf{1 0}_{\frac{1}{2}}^{j} \overline{5}_{-\frac{3}{2}}^{k}$
are not gauge invariant.

Flipped $S U(5)$ vacua: gauge coupl.

Flipped $S U(5)$ vacua: gauge coupl.

- Breaking a stringy $S U(5)$ or $S O(10)$ GUT model via discrete Wilson lines, the Standard Model tree level gauge couplings satisfy

$$
\alpha_{3}=\alpha_{2}=\frac{5}{3} \alpha_{Y}=\alpha_{G U T}
$$

at the string scale.

Flipped $S U(5)$ vacua: gauge coupl.

- Breaking a stringy $S U(5)$ or $S O(10)$ GUT model via discrete Wilson lines, the Standard Model tree level gauge couplings satisfy

$$
\alpha_{3}=\alpha_{2}=\frac{5}{3} \alpha_{Y}=\alpha_{G U T}
$$

at the string scale.

- Since the $U(1)_{X}$ has a contribution from the second E_{8}, this relation gets modified to

$$
\alpha_{3}=\alpha_{2}=\frac{8}{3} \alpha_{Y}=\alpha_{G U T}
$$

Bundles on elliptically fibered CYs

Bundles on elliptically fibered CYs

Elliptically fibered Calabi-Yau manifold X

$$
\pi: X \rightarrow B
$$

with the property that the fiber over each point is an elliptic curve E_{b} and that there exist a section σ.

Bundles on elliptically fibered CYs

Elliptically fibered Calabi-Yau manifold X

$$
\pi: X \rightarrow B
$$

with the property that the fiber over each point is an elliptic curve E_{b} and that there exist a section σ.

- If the base is smooth and preserves only $\mathcal{N}=1$ supersymmetry in four dimensions, it is restricted to a del Pezzo surface, a Hirzebruch surface, an Enriques surface or a blow up of a Hirzebruch surface.

Bundles on elliptically fibered CYs

Elliptically fibered Calabi-Yau manifold X

$$
\pi: X \rightarrow B
$$

with the property that the fiber over each point is an elliptic curve E_{b} and that there exist a section σ.

- If the base is smooth and preserves only $\mathcal{N}=1$ supersymmetry in four dimensions, it is restricted to a del Pezzo surface, a Hirzebruch surface, an Enriques surface or a blow up of a Hirzebruch surface.
- Friedman, Morgan and Witten have defined stable $S U(N)$ bundles on such spaces via the so-called spectral cover construction. (Friedman, Morgan, Witten, hep-th/9701162)

Fourier-Mukai transform

Fourier-Mukai transform

The idea is to use a simple description of $S U(n)$ bundles over the elliptic fibers and then globally glue them together to define bundles over X.

Fourier-Mukai transform

The idea is to use a simple description of $S U(n)$ bundles over the elliptic fibers and then globally glue them together to define bundles over X.
Mathematically, such a prescription is realized by the Fourier-Mukai transform

$$
V=\pi_{1 *}\left(\pi_{2}^{*} \mathcal{N} \otimes \mathcal{P}_{B}\right)
$$

with

$$
\left(X \times_{B} C, \mathcal{P}_{B} \otimes \pi_{2}^{*} \mathcal{N}\right)
$$

$$
(X, V) \quad(C, \mathcal{N})
$$

Fourier-Mukai transform

The idea is to use a simple description of $S U(n)$ bundles over the elliptic fibers and then globally glue them together to define bundles over X.
Mathematically, such a prescription is realized by the Fourier-Mukai transform

$$
V=\pi_{1 *}\left(\pi_{2}^{*} \mathcal{N} \otimes \mathcal{P}_{B}\right)
$$

with

$$
\left(X \times_{B} C, \mathcal{P}_{B} \otimes \pi_{2}^{*} \mathcal{N}\right)
$$

$$
(X, V) \quad(C, \mathcal{N})
$$

Cohomology classes

In
(BI., Moster, Reinbacher, Weigand, hep-th/0609nnn)

Cohomology classes

In
(BI., Moster, Reinbacher, Weigand, hep-th/0609nnn)
we will provide all the necessary mathematics to compute all relevant cohomology classes of vector bundles on X via various intertwined exact sequences from those of line bundles on B.

Cohomology classes

In
(BI., Moster, Reinbacher, Weigand, hep-th/0609nnn)
we will provide all the necessary mathematics to compute all relevant cohomology classes of vector bundles on X via various intertwined exact sequences from those of line bundles on B.
For example:

$$
\begin{aligned}
H^{0}\left(X, V_{a} \otimes V_{b}\right) & =0 \\
H^{1}\left(X, V_{a} \otimes V_{b}\right) & =H^{0}\left(C_{a} \cap C_{b}, \mathcal{N}_{a} \otimes \mathcal{N}_{b} \otimes K_{B}\right) \\
H^{2}\left(X, V_{a} \otimes V_{b}\right) & =H^{1}\left(C_{a} \cap C_{b}, \mathcal{N}_{a} \otimes \mathcal{N}_{b} \otimes K_{B}\right) \\
H^{3}\left(X, V_{a} \otimes V_{b}\right) & =0
\end{aligned}
$$

For the special case $V_{a}=\mathcal{O}_{X}$ and $C_{a}=\sigma$, one finds agreement with (Donagi, He, Ovrut, Reinbacher, hep-th/0405014)

Three generation example

Three generation example

Using stable bundle extensions

$$
0 \rightarrow V_{1} \rightarrow V \rightarrow V_{2} \rightarrow 0
$$

we have so far found concrete flipped $S U(5)$ models with just three generations of MSSM quarks and leptons plus one vector-like GUT Higgs, i.e.

$$
H^{i}(X, V)=(0,1,4,0)
$$

Three generation example

Three generation example

Jumping over many technical details, the total spectrum of the "best" example we found so far reads

$S U(5) \times U(1)_{X} \times E_{6}$	Cohomology	χ
$(\mathbf{1 0}, \mathbf{1})_{\frac{1}{2}}$	$(0,1,4,0)$	3
$(\mathbf{1 0}, \mathbf{1})_{-2}$	$(0,0,0,0)$	0
$(\overline{\mathbf{5}, \mathbf{1}})_{-\frac{3}{2}}$	$(0,0,3,0)$	3
$(\overline{\mathbf{5}}, \mathbf{1})_{1}$	$(0,[51,55],[51,55], 0)$	0
$(\mathbf{1}, \mathbf{1})_{\frac{5}{2}}$	$(0,0,3,0)+(0,[0,2],[0,2], 0)$	3
$(\mathbf{1}, \mathbf{2 7})_{\frac{5}{6}}$	$(0,0,0,0)$	0
$(\mathbf{1}, \mathbf{2 7})_{-\frac{5}{3}}$	$(0,0,0,0)$	0

Conclusions

Conclusions

- Heterotic string compactifications with $U(N)$ bundles provide new prospects for string model building.

Conclusions

- Heterotic string compactifications with $U(N)$ bundles provide new prospects for string model building.
- They do have multiple anomalous $U(1)$ gauge symmetries, which are cancelled by a generalised Green-Schwarz mechanism.

Conclusions

- Heterotic string compactifications with $U(N)$ bundles provide new prospects for string model building.
- They do have multiple anomalous $U(1)$ gauge symmetries, which are cancelled by a generalised Green-Schwarz mechanism.
- There appears a one-loop correction to the DUY supersymmetry condition, motivating a new notion of stability of vector bundles.

Conclusions

- Heterotic string compactifications with $U(N)$ bundles provide new prospects for string model building.
- They do have multiple anomalous $U(1)$ gauge symmetries, which are cancelled by a generalised Green-Schwarz mechanism.
- There appears a one-loop correction to the DUY supersymmetry condition, motivating a new notion of stability of vector bundles.
- Three generation flipped $S U(5)$ and SM like vacua can be constructed on elliptically fibered CY manifolds.

Conclusions

- Heterotic string compactifications with $U(N)$ bundles provide new prospects for string model building.
- They do have multiple anomalous $U(1)$ gauge symmetries, which are cancelled by a generalised Green-Schwarz mechanism.
- There appears a one-loop correction to the DUY supersymmetry condition, motivating a new notion of stability of vector bundles.
- Three generation flipped $S U(5)$ and SM like vacua can be constructed on elliptically fibered CY manifolds.
- Relation between heterotic orbifold constructions and the smooth Calabi-Yau description? (Buchmüller, Hamaguchi,
Lebedev, Ratz, hep-ph/0511035), (Kim, Kyae, hep-th/0608086)

Conclusions

- Heterotic string compactifications with $U(N)$ bundles provide new prospects for string model building.
- They do have multiple anomalous $U(1)$ gauge symmetries, which are cancelled by a generalised Green-Schwarz mechanism.
- There appears a one-loop correction to the DUY supersymmetry condition, motivating a new notion of stability of vector bundles.
- Three generation flipped $S U(5)$ and SM like vacua can be constructed on elliptically fibered CY manifolds.
- Relation between heterotic orbifold constructions and the smooth Calabi-Yau description? (Buchmüller, Hamaguchi,
Lebedev, Ratz, hep-ph/0511035), (Kim, Kyae, hep-th/0608086)
- Heterotic Landscape?

