Identifying the Geometry of the MSSM

Brent D. Nelson Northeastern University

with James Gray, Yang-Hui He & Vishnu Jejjala

Physics Letters **B638** (2006) 253 [hep-th/0511062] Nuclear Physics **B750** (2006) 1 [hep-th/0604208]

A Proposal for a New Approach

We propose to search for unexplained structure in the geometry of the vacuum spaces of supersymmetric theories

- \Rightarrow Supersymmetric quantum field theories have scalars \rightarrow a complicated vacuum space of possible field *vevs* $\langle \phi_i \rangle$
- The vacuum manifold, or moduli space \mathcal{M} , generally characterized by certain flat directions
- Efforts in the past to understand how these flat directions are "lifted"
- This manifold M may have special structure that correlates with certain phenomenological properties – but NOT related to gauge invariance or discrete symmetries

- \Rightarrow So how does one determine the geometry of the vacuum space \mathcal{M} ?
- Consider a general N=1 supersymmetric system defined by

$$S = \int \mathsf{d}^4 x \left[\int \mathsf{d}^4 \theta \, \Phi_i^{\dagger} e^V \Phi_i + \left(\frac{1}{4g^2} \int \mathsf{d}^2 \theta \, \operatorname{Tr} \mathcal{W}_{\alpha} \mathcal{W}^{\alpha} + \int \mathsf{d}^2 \theta \, \, \mathbf{W}(\Phi) + \text{ h.c.} \right) \right]$$

The scalar potential can be found from the component form of the above

$$V(\phi_i, \bar{\phi}_i) = \sum_{i} \left| \frac{\partial \mathbf{W}}{\partial \phi_i} \right|^2 + \frac{g^2}{4} \left(\sum_{i} q_i |\phi_i|^2 \right)^2$$

where ϕ_i is the lowest (scalar) component of superfield Φ_i with charge q_i

- Vacuum configuration is any set of field values $\left\{\phi_i^0\right\}$ such that $V(\phi_i^0,\bar{\phi}_i^0)=0$
- ⇒ This implies the following relations:

$$\frac{\partial W}{\partial \phi_i} = 0$$
 F-TERMS; $\sum_i q_i |\phi_i|^2 = 0$ D-TERMS

 \Rightarrow The vacuum moduli space \mathcal{M} is the space of all possible solutions ϕ^0 to these F and D-flatness conditions

 \Rightarrow To every solution of the F-flatness conditions there exists a solution to the D-flatness conditions in the orbit of the complexified gauge group \mathcal{G}^C :

$$\mathcal{M}=\mathcal{F}//\mathcal{G}^C$$

where \mathcal{F} is the space of all F-flat field configurations

 \Rightarrow To every solution of the F-flatness conditions there exists a solution to the D-flatness conditions in the orbit of the complexified gauge group \mathcal{G}^C :

$$\mathcal{M}=\mathcal{F}//\mathcal{G}^C$$

where \mathcal{F} is the space of all F-flat field configurations

- → More practically speaking, the procedure involves the following:
- 1. Take a theory defined by a superpotential $W = W(\Phi_1, \Phi_2, \dots, \Phi_n)$
- 2. Set up a basis of gauge invariant operators (GIOs) $D = \{D_1, D_2, \dots, D_k\}$
- 3. Determine the *n* F-flatness conditions given by $\partial W/\partial \phi_i = 0$
- 4. Find the set $\tilde{n} \leq n$ of independent relations defined in (3)
- 5. Use these to eliminate \tilde{n} fields in the GIOs

$$D_k(\phi_1,\ldots,\phi_n)\to D_k(z_i,\ldots,z_n)$$

- \Rightarrow The various D_k form the coordinates of \mathcal{M}
- These coordinates will NOT (in general) be independent
- Let $Eq(\mathcal{M})$ be the set of all algebraic relations amongst these D_k $\Rightarrow Eq(\mathcal{M})$ defines \mathcal{M} as an algebraic variety
- \Rightarrow To *identify* the manifold, we want to know $Eq(\mathcal{M})$; i.e. want to build the quotient ring explicitly
- The building of the quotient ring is a manifestation of the syzygy problem
- Huge subject in mathematics barely touched by physics
- A generalization of finding divisors for a given polynomial
- Macaulay 2 and Singular can solve this problem using a Groebner bases algorithm; already includes technology for performing ring maps

- \Rightarrow Seven species of chiral superfields \Rightarrow 49 scalar fields (n=49)
- \Rightarrow All 991 possible GIOs tabulated below (k = 991)

T. Gherghetta, C. Kolda, S. Martin, Nucl. Phys., B468 (1996)

Operator	Explicit Sum	Index	Number
LH_u	$L^{\alpha}_{i}H^{\beta}\epsilon_{\alpha\beta}$	i = 1, 2, 3	3
H_uH_d	$H_{lpha}(H_d)_{eta}\epsilon^{lphaeta}$	NA	1
LLe	$L^i_lpha L^j_eta e^k \epsilon^{lphaeta}$	$i, j = 1, 2, 3; \ k = 1, \dots, j - 1$	9
LH_de	$L^i_{lpha}(H_d)_{eta}e^j\epsilon^{lphaeta}$	i, j = 1, 2, 3	9
udd	$u_a^i d_b^j d_c^k \epsilon^{abc}$	$i, j = 1, 2, 3; \ k = 1, \dots, j - 1$	9
QdL	$Q_{a,lpha}^i d_a^j L_eta^k \epsilon^{lphaeta}$	i, j, k = 1, 2, 3	27
QuH_u	$Q_{a,\alpha}^i u_a^j (H_u)_{\beta} \epsilon^{\alpha\beta}$	i, j = 1, 2, 3	9
QdH_d	$Q_{a,lpha}^i d_a^j (H_d)_eta \epsilon^{lphaeta}$	i, j = 1, 2, 3	9
QQQL	$Q_{a,\beta}^{i}Q_{b,\gamma}^{j}Q_{c,\alpha}^{k}L_{\delta}^{l}\epsilon^{abc}\epsilon^{\beta\gamma}\epsilon^{\alpha\delta}$	$i, j, k, l = 1, 2, 3; i \neq k, j \neq k,$ $j < i, (i, j, k) \neq (3, 2, 1)$	24
QuQd	$Q_{a,lpha}^i u_a^j Q_{b,eta}^k d_b^l \epsilon^{lphaeta}$	i, j, k, l = 1, 2, 3	81
QuLe	$Q_{a,lpha}^{i}u_{a}^{j}L_{eta}^{k}e^{l}\epsilon^{lphaeta}$	i, j, k, l = 1, 2, 3	81
uude	$u_a^i u_b^j d_c^k e^l \epsilon^{abc}$	i, j, k, l = 1, 2, 3; j < i	27
$QQQH_d$	$Q_{a,\beta}^{i}Q_{b,\gamma}^{j}Q_{c,\alpha}^{k}(H_{d})_{\delta}\epsilon^{abc}\epsilon^{\beta\gamma}\epsilon^{\alpha\delta}$	$i, j, k, l = 1, 2, 3; i \neq k, j \neq k,$ $j < i, (i, j, k) \neq (3, 2, 1)$	8
QuH_de	$Q_{a,\alpha}^i u_a^j (H_d)_{\beta} e^k \epsilon^{\alpha\beta}$	i, j, k = 1, 2, 3	27
dddLL		m, n = 1, 2, 3; n < m	3

 $i,j,k=1,2,3 \leftrightarrow ext{flavor indices}, \quad a,b,c=1,2,3 \leftrightarrow ext{color indices}, \quad lpha,eta,\gamma=1,2 \leftrightarrow SU(2)_L ext{ indices}$

Operator Explicit Sum		Index	Number
uuuee	$u_a^i u_b^j u_c^k e^m e^n \epsilon^{abc} \epsilon_{ijk}$	$m, n = 1, 2, 3; \ n \le m$	6
QuQue	$Q_{a,lpha}^i u_a^j Q_{b,eta}^k u_b^m e^n \epsilon_{lphaeta}$	$i,j,k,m,n=1,2,3; \ \operatorname{as}\{(i,j),(k,m)\}$	108
QQQQu	$Q_{a,\beta}^{i}Q_{b,\gamma}^{j}Q_{c,\alpha}^{k}Q_{f,\delta}^{m}u_{f}^{n}\epsilon^{abc}\epsilon^{\beta\gamma}\epsilon^{\alpha\delta}$	$i, j, k, m = 1, 2, 3; i \neq m,$ $j \neq m, j < i,$ $(i, j, k) \neq (3, 2, 1)$	72
$dddLH_d$	$d_a^i d_b^j d_c^k L_\alpha^m (H_d)_\beta \epsilon^{abc} \epsilon_{ijk} \epsilon_{\alpha\beta}$	m = 1, 2, 3	3
$uudQdH_u$	$u_a^i u_b^j d_c^k Q_{f,\alpha}^m d_f^n (H_u)_{\beta} \epsilon^{abc} \epsilon_{\alpha\beta}$	i, j, k, m = 1, 2, 3; j < i	81
$(QQQ)_4LLH_u$	$(QQQ)_4^{\alpha\beta\gamma}L_{\alpha}^mL_{\beta}^n(H_u)_{\gamma}$	$m, n = 1, 2, 3; \ n \le m$	6
$(QQQ)_4LH_uH_d$	$(QQQ)_{4}^{\alpha\beta\gamma}L_{\alpha}^{m}(H_{u})_{\beta}(H_{d})_{\gamma}$	m = 1, 2, 3	3
$(QQQ)_4H_uH_dH_d$	$(QQQ)_4^{\alpha\beta\gamma}(H_u)_{\alpha}(H_d)_{\beta}(H_d)_{\gamma}$	NA	1
$(QQQ)_4LLLe$	$(QQQ)_4^{\alpha\beta\gamma}L_{\alpha}^mL_{\beta}^nL_{\gamma}^pe^q$	m, n, p, q = 1, 2, 3; $n \le m; \ p \le n$	27
uudQdQd		$i, j, k, m, n, p, q = 1, 2, 3; \ j < i, \mathrm{as}\{(m, n), (p, q)\}$	324
$(QQQ)_4LLH_de$	$(QQQ)_4^{\alpha\beta\gamma}L_{\alpha}^mL_{\beta}^n(H_d)_{\gamma}e^p$	$m, n, p = 1, 2, 3; n \le m$	9
$(QQQ)_4LH_dH_de$	$(QQQ)_4^{\alpha\beta\gamma}L_\alpha^m(H_d)_\beta(H_d)_\gamma e^n$	m, n = 1, 2, 3	9
$QQQ)_4H_dH_dH_de$	$(QQQ)_4^{\alpha\beta\gamma}(H_d)_{\alpha}(H_d)_{\beta}(H_d)_{\gamma}e^m$	m = 1, 2, 3	3

In the above we defined $[(QQQ)_4]_{\alpha\beta\gamma}=Q^i_{a,\alpha}Q^j_{b,\beta}Q^k_{c,\gamma}\epsilon^{abc}\epsilon^{ijk}$

⇒ The reason the problem has languished for a decade...

⇒ Superpotential we would ultimately like to study is given by

$$W_{\text{MSSM}} = \lambda^{0} H_{u} H_{d} + \lambda_{ij}^{1} Q_{i} H_{u} u_{j} + \lambda_{ij}^{2} Q_{i} H_{d} d_{j} + \lambda_{ij}^{3} L_{i} H_{d} e_{j}$$

$$= \lambda^{0} \sum_{\alpha,\beta} H_{u}^{\alpha} H_{d}^{\beta} \epsilon_{\alpha\beta} + \sum_{i,j} \lambda_{ij}^{1} \sum_{\alpha,\beta,a} Q_{a,\alpha}^{i} (H_{u})_{\beta} u_{a}^{j} \epsilon_{\alpha\beta}$$

$$+ \sum_{i,j} \lambda_{ij}^{2} \sum_{\alpha,\beta,a} Q_{a,\alpha}^{i} (H_{d})_{\beta} d_{a}^{j} \epsilon_{\alpha\beta} + \sum_{i,j} \lambda_{ij}^{3} \sum_{\alpha,\beta} L_{\alpha}^{i} (H_{d})_{\beta} e^{j} \epsilon_{\alpha\beta}$$

- \Rightarrow The matrices λ_{ij} are flavor mixing matrices
- In explicit computations they are randomly generated matrices
- Dimensionality of some coefficients suppressed (irrelevant for topology)

⇒ Superpotential we would ultimately like to study is given by

$$W_{\text{MSSM}} = \lambda^{0} H_{u} H_{d} + \lambda_{ij}^{1} Q_{i} H_{u} u_{j} + \lambda_{ij}^{2} Q_{i} H_{d} d_{j} + \lambda_{ij}^{3} L_{i} H_{d} e_{j}$$

$$= \lambda^{0} \sum_{\alpha,\beta} H_{u}^{\alpha} H_{d}^{\beta} \epsilon_{\alpha\beta} + \sum_{i,j} \lambda_{ij}^{1} \sum_{\alpha,\beta,a} Q_{a,\alpha}^{i} (H_{u})_{\beta} u_{a}^{j} \epsilon_{\alpha\beta}$$

$$+ \sum_{i,j} \lambda_{ij}^{2} \sum_{\alpha,\beta,a} Q_{a,\alpha}^{i} (H_{d})_{\beta} d_{a}^{j} \epsilon_{\alpha\beta} + \sum_{i,j} \lambda_{ij}^{3} \sum_{\alpha,\beta} L_{\alpha}^{i} (H_{d})_{\beta} e^{j} \epsilon_{\alpha\beta}$$

- \Rightarrow The matrices λ_{ij} are flavor mixing matrices
- In explicit computations they are randomly generated matrices
- Dimensionality of some coefficients suppressed (irrelevant for topology)
- ⇒ Quotient space far too large and complicated for current methods
- Largest success thus far involved 25 GIOs
- Computational load scales rapidly with $\dim(\mathcal{M})$ for computing topological information

- \Rightarrow Drop all flavor indices (i = j = k = 1) so now n = 7
- ⇒ There are now only 9 GIOs (one of each variety)

$$LH_u$$
, H_uH_d , QdL , QuH_u , QdH_d , LH_de , $QuQd$, $QuLe$, QuH_de

⇒ Simplified superpotential

$$W_{0} = \lambda^{0} \sum_{\alpha,\beta} H_{u}^{\alpha} H_{d}^{\beta} \epsilon_{\alpha\beta} + \lambda^{1} \sum_{\alpha,\beta,a} Q_{a,\alpha} (H_{u})_{\beta} u_{a} \epsilon^{\alpha\beta}$$
$$+ \lambda^{2} \sum_{\alpha,\beta,a} Q_{a,\alpha} (H_{d})_{\beta} d_{a} \epsilon^{\alpha\beta} + \lambda^{3} \sum_{\alpha,\beta} L_{\alpha} (H_{d})_{\beta} e \epsilon^{\alpha\beta}$$

 \Rightarrow Computation of vacuum manifold $\mathcal M$ for various deformations

$W_0+?$	$\dim(\mathcal{M})$	\mathcal{M}	$W_0+?$	$\dim(\mathcal{M})$	\mathcal{M}
0	1	\mathbb{C}	QuQd	1	\mathbb{C}
LH_u	0	point	QuLe	1	\mathbb{C}
QdL	0	point	QuH_de	1	\mathbb{C}

- \Rightarrow Set vevs for u_L^i , u_R^i , d_L^i , d_R^i to zero by hand
- \Rightarrow This leaves n=13 scalar fields and k=22 GIOs

Operator	Explicit Sum	Index	Number
LH_u	$L_i^{\alpha}H^{\beta}\epsilon_{\alpha\beta}$	i = 1, 2, 3	3
H_uH_d	$H_{\alpha}(H_d)_{\beta}\epsilon^{\alpha\beta}$	NA	1
LLe	$L^i_{\alpha}L^j_{\beta}e^k\epsilon^{lphaeta}$	$i, j = 1, 2, 3; \ k = 1, \dots, j - 1$	9
LH_de	$L^i_{\alpha}(H_d)_{\beta}\epsilon^{\alpha\beta}e^j$	i, j = 1, 2, 3	9

$$W_0 = \lambda^0 H_u H_d + \lambda_{ij}^3 L_i H_d e_j = \lambda^0 \sum_{\alpha,\beta} H_u^{\alpha} H_d^{\beta} \epsilon_{\alpha\beta} + \sum_{i,j} \lambda_{ij}^3 \sum_{\alpha,\beta} L_{\alpha}^i (H_d)_{\beta} e^j \epsilon_{\alpha\beta}$$

 \Rightarrow Computation of vacuum manifold \mathcal{M} for various deformations

$W_0+?$	$\dim(\mathcal{M})$	\mathcal{M}	$W_0+?$	$\dim(\mathcal{M})$	\mathcal{M}
0	5	cone over $(\mathbb{CP}^8 6 2^6)$	LLe	0	point
LH_u	1	\mathbb{C}	$LLe + LH_u$	0	point

 \Rightarrow Affine cone over base manifold \mathcal{B} with $\dim(\mathcal{B})=4$ formed by non-complete intersection of six quadratics in \mathbb{CP}^8

→ Next logical choice of deformation is dimension four terms which lift the Higgs directions:

$$W_1 = W_0 + \lambda' (H_u^{\alpha} H_d^{\beta} \epsilon_{\alpha\beta})^2 + \lambda''_{ij} (L^i H_u^{\alpha}) (L^j H_d^{\beta}) \epsilon_{\alpha\beta}$$

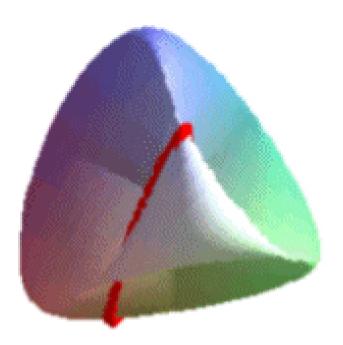
- We find that $\dim(\mathcal{M}) = 3....$ interesting!
- The manifold ${\mathcal M}$ is an affine cone over a compact, two-dimensional base ${\mathcal B}$
- This base is the non-complete degree 4 intersection of 6 quadrics in \mathbb{CP}^5 as a projective variety
- ⇒ Consider the simplest geometrical information about this surface, the Hodge diamond

$$h^{p,q}(B) = h^{0,2} \begin{bmatrix} h^{0,0} & & & & & & & 1 & & \\ h^{0,1} & & h^{0,1} & & & & & & & 0 & & 1 & \\ & h^{0,1} & & & h^{0,1} & & & h^{0,2} & \longrightarrow & 0 & & 1 & & 0 \\ & h^{0,0} & & & & & & & & 1 & & 0 \end{bmatrix}$$

⇒ No explanation for the simplicity of this structure from field theory

• This manifold turns out to be one of the simplest you can imagine: the Veronese surface embedding \mathbb{CP}^2 in \mathbb{CP}^5

Giuseppe Veronese



The Veronese Surface

Interpretation...and Future Directions

⇒ Ultimate goal: provide a guide-book of "target" geometries for top-down explicit string constructions

Interpretation...and Future Directions

- → Ultimate goal: provide a guide-book of "target" geometries for top-down explicit string constructions
- ⇒ Short-term goal: A new principle for low-energy phenomenology?
- Any special geometry of the vacuum moduli space \mathcal{M} should be regarded as fundamental
- Any deformation of the gauge theory should be restricted to those which enhance/preserve the features of ${\cal M}$
- Divide theories into "conjugacy classes" on the basis of their common geometrical structres
- Guide to bottom-up model building akin to "naturalness" or fine-tuning