Genetic architecture and evolution of emerging artemisinin resistance in *Plasmodium falciparum*
Thanks and credits to....

All Team 112!

All Community Project Investigators
In the previous episodes...
Drug Resistance History

Visit the MalariaGEN website for the complete animation
And today...artemisinin

Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study

Arjen M. Dondorp, M.D., François Nosten, M.D., Poravuth Yi, M.D., Debashish Das, M.D., Aung Phae Phy, M.D., Joel Tarning, Ph.D., Khin Maung Lwin, Sue J. Lee, Mallika Imwong, Trent H. Pratap Singhstava, Duc P. Dung,

BACKGROUND
Artemisinin-based combination therapy (ACT) has revolutionized the treatment of Plasmodium falciparum malaria in many parts of the world. However, concerns have emerged regarding the efficacy of ACT in the western border regions of Thailand, where the efficacy of ACT has been reported to be declining.

METHODS
The study was a longitudinal surveillance study conducted at the Thai-Myanmar border from 2004 to 2009. Plasma parasitemia was measured at baseline and every 2 weeks during follow-up. The efficacy of ACT was assessed using the World Health Organization's treatment efficacy criteria.

RESULTS
The treatment failure rate was significantly higher in the western border region compared to other regions of Thailand. The failure rate increased from 0% in 2004 to 5% in 2009.

CONCLUSIONS
The emergence of artemisinin-resistant malaria highlights the need for continued surveillance and the development of alternative strategies to control malaria in the western border region of Thailand.
What about artemisinin resistance?

- “Delayed parasite clearance observed after treatment with an artesunate monotherapy, or after treatment with an artemisinin-based combination therapy (ACT)” [WHO]

- Declining efficiency observed in Southeast Asia
 - From 2.5h to >5h
 - Complete treatment failure observed in western Cambodia due to resistance to partner drug

- Urgent priority for global health
 - Hard to measure clinical phenotype
 - Genetic marker would enable large-scale surveillance
 - Hopefully marker leads to causal mutations
The *kelch13* gene

- A molecular marker of artemisinin resistance has been identified in vitro [Ariey et al. Dec 2013].
- Different mutations in the *kelch13* propeller domain were shown to be associated with delayed parasite clearance.

ARTICLE

da:10.1038/nature12876

A molecular marker of artemisinin-resistant *Plasmodium falciparum* malaria

Frederic Ariey1,2+, Benoit Witkowski1, Chanaki Amarasinghe1, Johann Bghain1,2+, Anne-Claire Langlois1,2, Nimol Khim3, Saorin Kim3, Valentine Duru4, Christiane Boeschier5, Laurence Ma5, Phanath Lim6,7,8, Rithea Leang6,8, Socheat Duong6, Sokhumhea Seng6, Sella Suon6, Char Meng Chuar6, Denis Mey Bout4, Sandile Menard8, William O. Rogers6, Blaise Genton10, Thierry Fanelut1,2, Olivier Miotti11,12,13, Pascal Ringwald14, Jacques Le Bras15, Antoine Berry2, Jean-Christophe Barale1,2+, Rick M. Fairhurst2+, Françoise Benoit-Vical6,17+, Odile Mercereau-Puijalon1,2+ & Didier Menard1+
Open questions

- How many genes are involved?
- Are all parasites equally likely to acquire a resistance-causing mutation?
- What is the geographical distribution of the mutations that cause resistance and of the genetic predisposing factors?
- Is it spreading due to migration of resistant parasites, or does it have multiple origins in different locations?
TRAC/NIH GWAS

- **1,612 clinical samples**
 - Full genome sequence
 - 1,063 with phenotypes

- **15 locations** (+2 in Africa)
 - Cambodia, Vietnam, Laos, Thailand, Myanmar and Bangladesh

High genetic and geographical resolution

Map Source: http://www.map.ox.ac.uk/
18K SNPs with MAF>0.01
- Resistance phenotype expressed as parasite clearance half-life
 - number of hours taken for artemisinin to reduce parasite density by half during the steady-state clearance phase of the treatment
- Linear mixed model (Fast-LMM) to account for population structure

kelch13 C580Y p=10^{-26}

At least 7 distinct loci with p<10^{-7}

Miotto, Amato et al., under review
Extreme allelic heterogeneity

Miotto, Amato et al., under review
Observations

- C580Y mutations in *kelch13* has a p-value of 1E-26
 - Why the other mutations are not there or why is this mutation there?

- Other loci have significant p-values

- At least 20 non-synonymous mutations in the propeller domain of *kelch13* have a phenotypic effect
 - How does this compare to the rest of the world?
 - How does this compare to the rest of the genome?
 - Are the mutations in *kelch13* all born equal?
Emergence vs spreading
Resistance is emerging

Miotto, Amato et al., under review
Resistance is emerging
Compelling evidences of different origins

Miotto, Amato et al., under review
Haplotype homozygosity
Predisposing genetic background
3,500 samples
Different topologies

Africa

Cambodia
(E)SEA has low endemicity
Population structure: Principal Component Analysis

Miotto et al., Nat Gen 2013
"wild type" recombinants?

PCA in SE Asia

"outlier" clusters

Miotto et al., Nat Gen 2013
Evidence for multiple founder effects

Even MAF spectrum

Long haplotypes and low haplotype diversity
Surface-associated interspersed genes

<table>
<thead>
<tr>
<th>Region</th>
<th>Samples</th>
<th>Haplotypes (Hs)</th>
<th>Unique Hs</th>
<th>Hs shared by < 5</th>
<th>Hs shared by >= 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAF</td>
<td>247</td>
<td>234</td>
<td>224</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>EAF</td>
<td>65</td>
<td>62</td>
<td>59</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>SAM</td>
<td>26</td>
<td>22</td>
<td>20</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>SAS</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>WSEA</td>
<td>129</td>
<td>113</td>
<td>102</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>ESEA</td>
<td>443</td>
<td>270</td>
<td>213</td>
<td>46</td>
<td>11</td>
</tr>
<tr>
<td>PNG</td>
<td>34</td>
<td>31</td>
<td>28</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

Wild-type
Founder 1
Founder 2

![Clonal expansion diagrams]

Extremely rapid clonal expansion
Subpopulations are ART-R
“Founder drift”
7 founder populations strongly associated with artemisinin resistance

- Each artemisinin-resistant founder populations strongly associated with a specific \textit{kelch13} resistance allele
- But the non-\textit{kelch13} significant SNPs (\textit{background mutations}) are all in there!

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline
Population & WT & Y493H & R539T & S534T & P553L & C580Y & Het & Total \\
\hline
VN-C & 69 & 1 & 2 & 4 & 8 & 16 & 4 & 76 \\
KH-C & 122 & 2 & 1 & 3 & 8 & 16 & 2 & 124 \\
VN-F01 & 1 & 20 & 4 & 49 & 3 & 16 & 1 & 21 \\
VN-F04 & 1 & 15 & 32 & 3 & 15 & 1 & 15 \\
WKH-F01 & 2 & 15 & 8 & 2 & 8 & 1 & 9 \\
WKH-F02 & 1 & 15 & 8 & 1 & 9 & 1 & 9 \\
WKH-F03 & 1 & 15 & 8 & 1 & 9 & 1 & 9 \\
NKH-F01 & 1 & 15 & 8 & 1 & 9 & 1 & 9 \\
NKH-F02 & 1 & 15 & 8 & 1 & 9 & 1 & 9 \\
NKH-F03 & 1 & 15 & 8 & 1 & 9 & 1 & 9 \\
NKH-F04 & 1 & 15 & 8 & 1 & 9 & 1 & 9 \\
\hline
Total & 195 & 16 & 15 & 20 & 6 & 89 & 16 & 357 \\
\hline
\end{tabular}

Miotto, Amato et al., under review
kelch13 and the background alleles have similar geographical distributions.
The genetic background is extremely differentiated even on a short geographic distance.

Miotto, Amato et al., under review
Contextualizing \textit{kelch13} within the genome and across countries
Geographical distribution of the samples

<table>
<thead>
<tr>
<th>Region</th>
<th>Sample counts</th>
<th>Country</th>
<th>Sample counts</th>
</tr>
</thead>
<tbody>
<tr>
<td>West Africa</td>
<td>957</td>
<td>Burkina Faso</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cameroon</td>
<td>134</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ghana</td>
<td>478</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gambia, The</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Guinea</td>
<td>124</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mali</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nigeria</td>
<td>5</td>
</tr>
<tr>
<td>East Africa</td>
<td>410</td>
<td>Kenya</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Madagascar</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Malawi</td>
<td>260</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tanzania</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Uganda</td>
<td>12</td>
</tr>
<tr>
<td>Central Africa</td>
<td>279</td>
<td>D. R. Congo</td>
<td>279</td>
</tr>
<tr>
<td>South America</td>
<td>27</td>
<td>Colombia</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Peru</td>
<td>11</td>
</tr>
<tr>
<td>South Asia</td>
<td>75</td>
<td>Bangladesh</td>
<td>75</td>
</tr>
<tr>
<td>West Southeast Asia</td>
<td>494</td>
<td>Myanmar</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thailand</td>
<td>385</td>
</tr>
<tr>
<td>East Southeast Asia</td>
<td>1154</td>
<td>Cambodia</td>
<td>815</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Laos</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vietnam</td>
<td>219</td>
</tr>
<tr>
<td>Oceania</td>
<td>139</td>
<td>Indonesia (Papua)</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Papua New Guinea</td>
<td>122</td>
</tr>
</tbody>
</table>
Density of the variants in AFR and SEA
Distribution of the mutations within *kelch13*

![Graph showing distribution of mutations](image)

<table>
<thead>
<tr>
<th>Category</th>
<th>AFR</th>
<th>SEA</th>
<th>SAS</th>
<th>OCE</th>
<th>SAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-synonymous</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reistance domains</td>
<td>27</td>
<td>33</td>
<td>1</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Upstream region</td>
<td>42</td>
<td>15</td>
<td>2</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Synonymous</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reistance domains</td>
<td>38</td>
<td>8</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Upstream region</td>
<td>22</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Excess of frequent NS mutations in SEA
N/S vs conservation