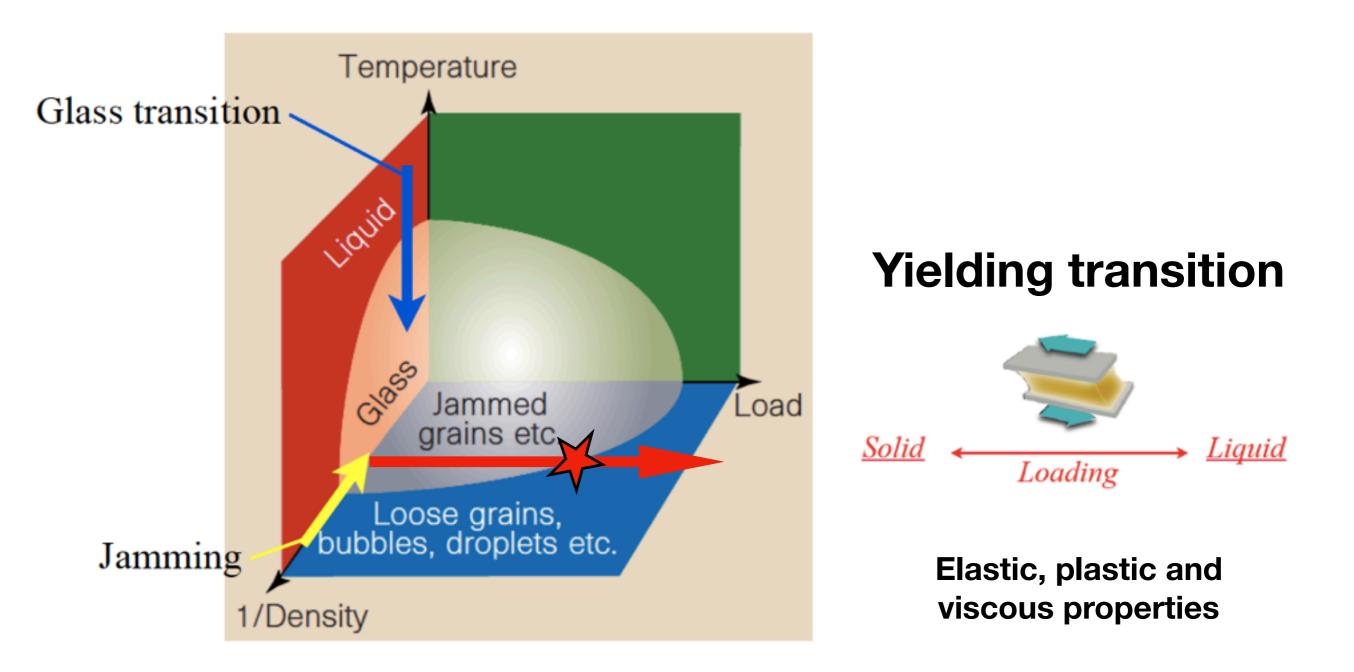
Permanent shear-band instabilities in dense yield stress materials

Kirsten Martens CNRS & University Grenoble Alpes

KITP, 25 January 2018

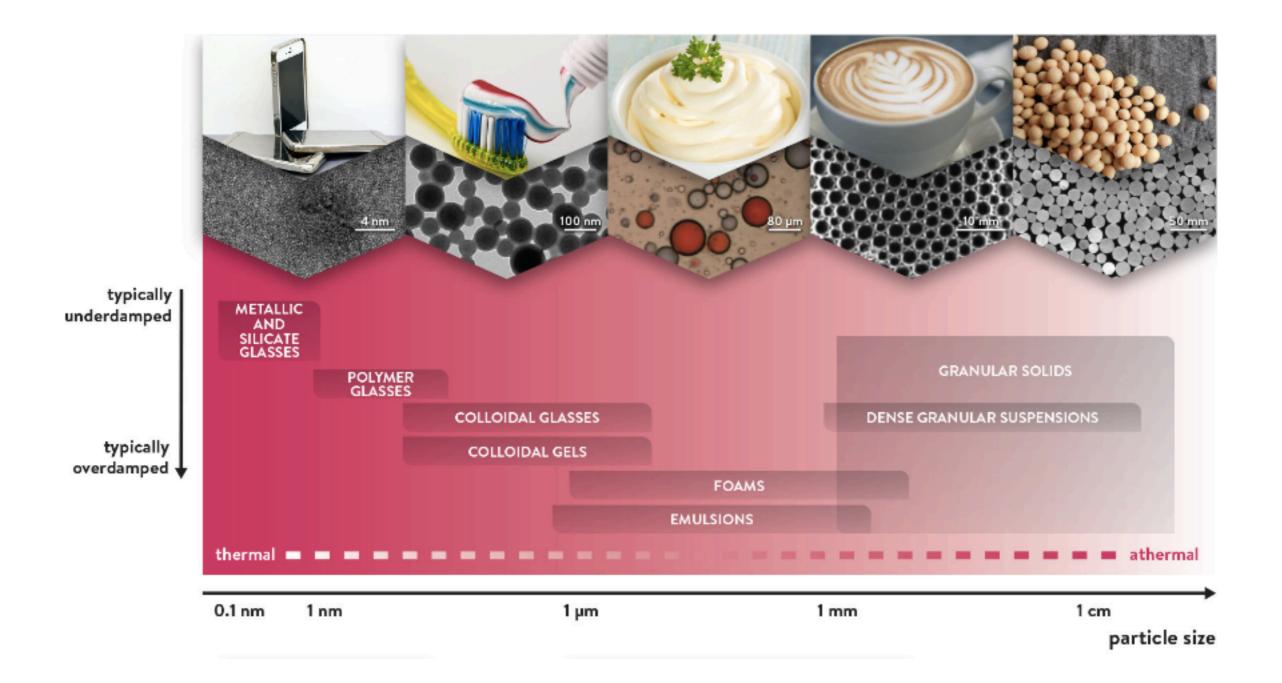
Vishwas Vasisht, Magali Le Goff, Romain Mari, Lyderic Bocquet, Jean-Louis Barrat

Jammed and glassy materials



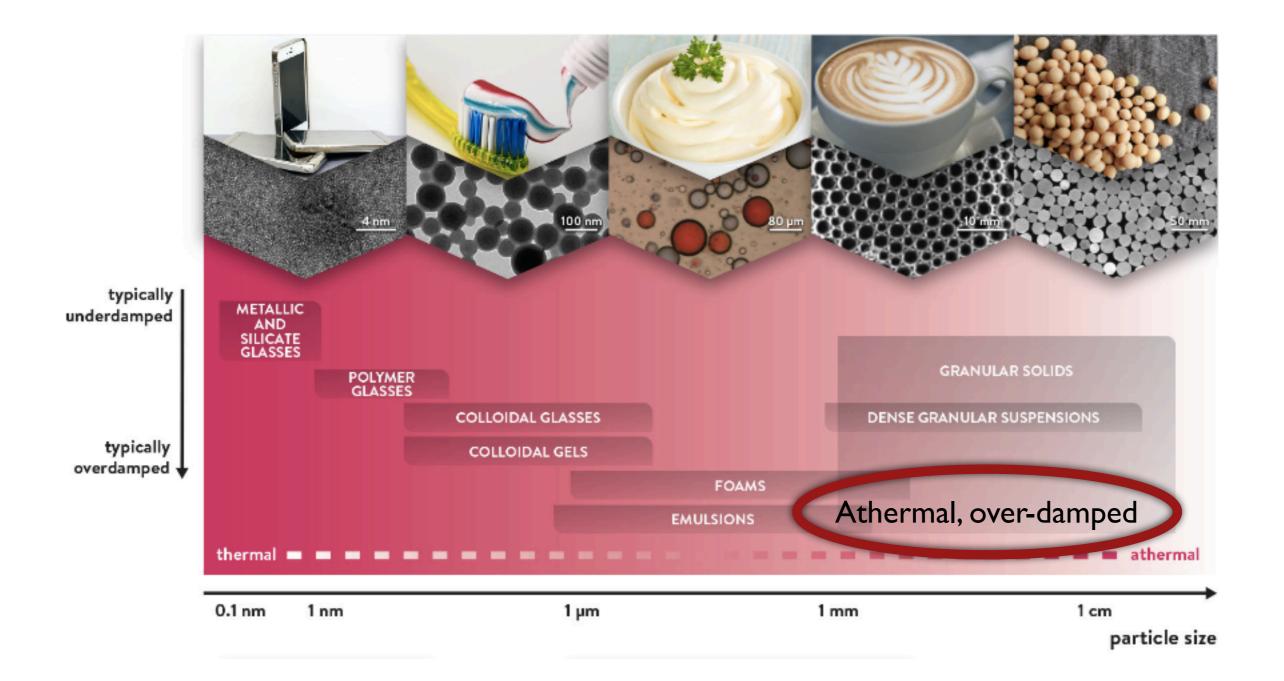
A.J.Liu & S.R.Nagel, 1998

Examples of yield stress materials



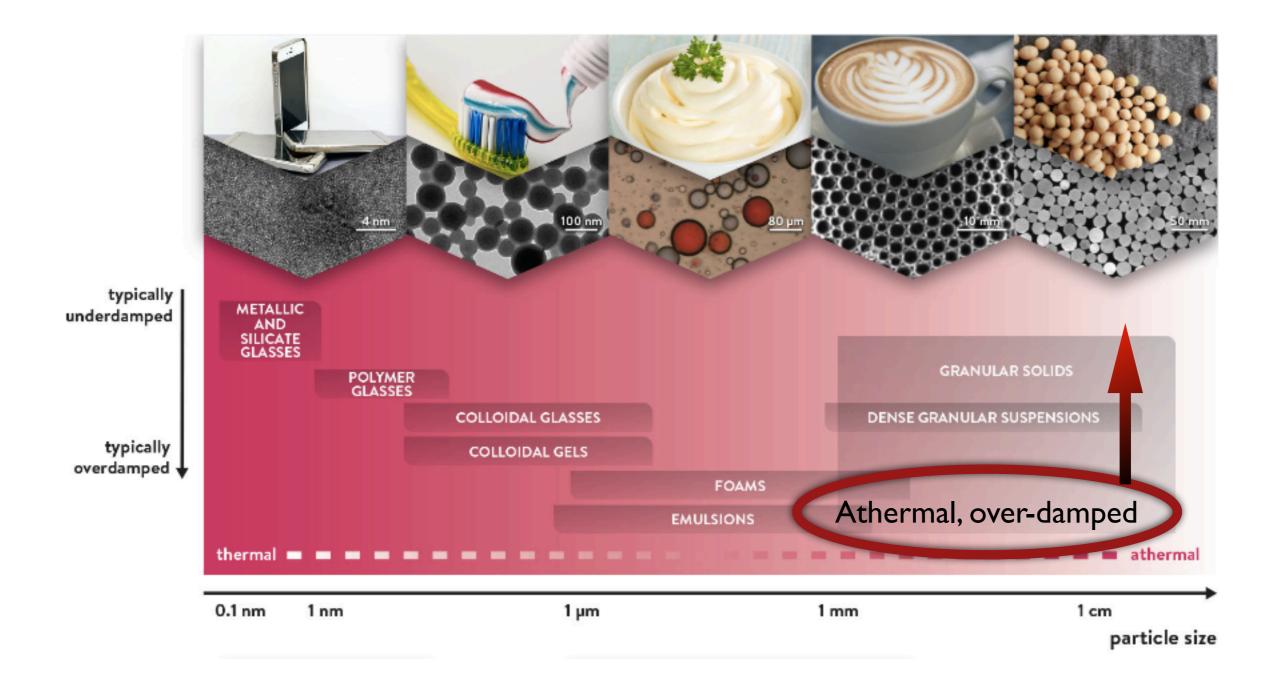
Nicolas, Ferrero, KM, Barrat, arXiv: 1708.09194 (2017)

Examples of yield stress materials



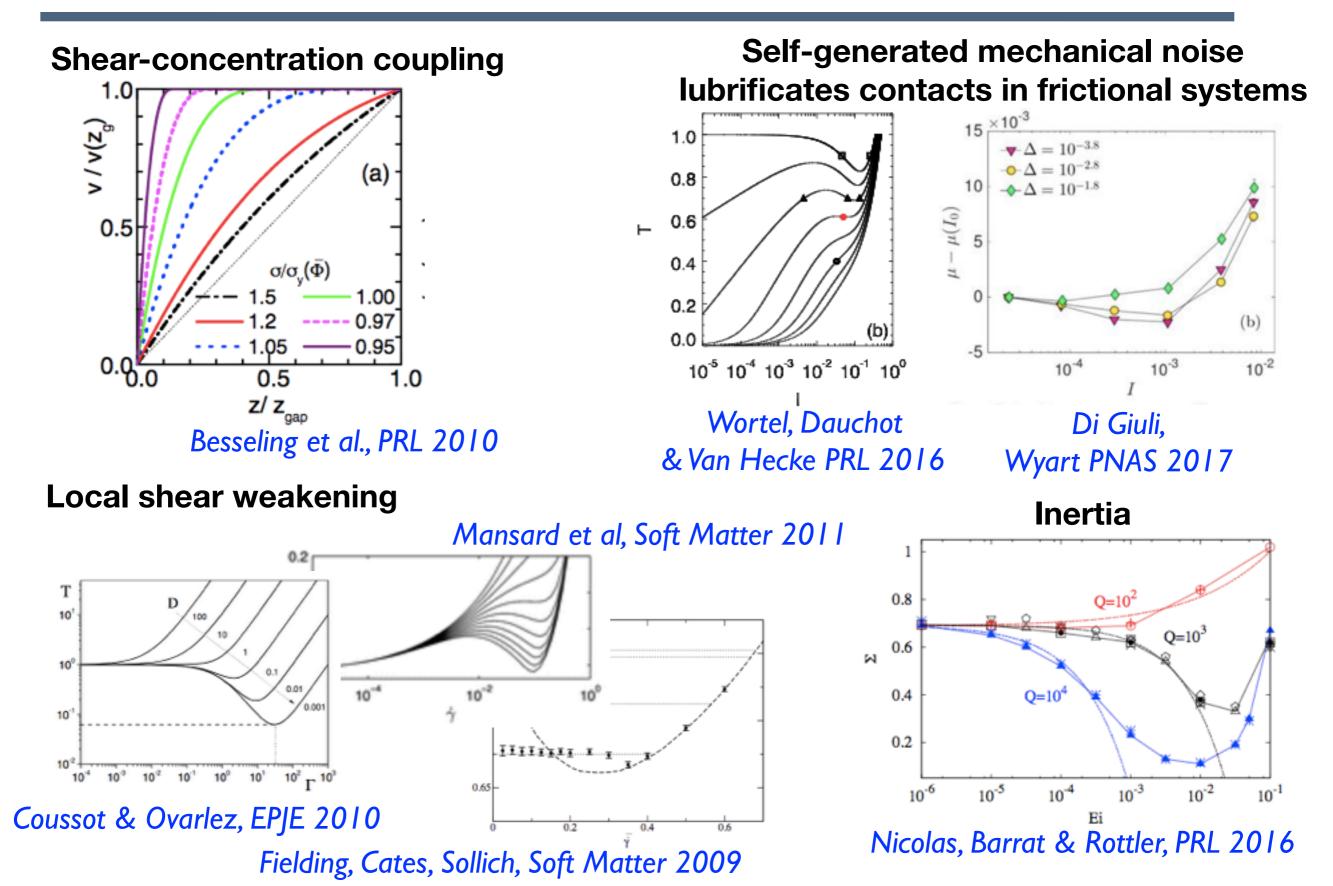
Nicolas, Ferrero, KM, Barrat, arXiv: 1708.09194 (2017)

Examples of yield stress materials

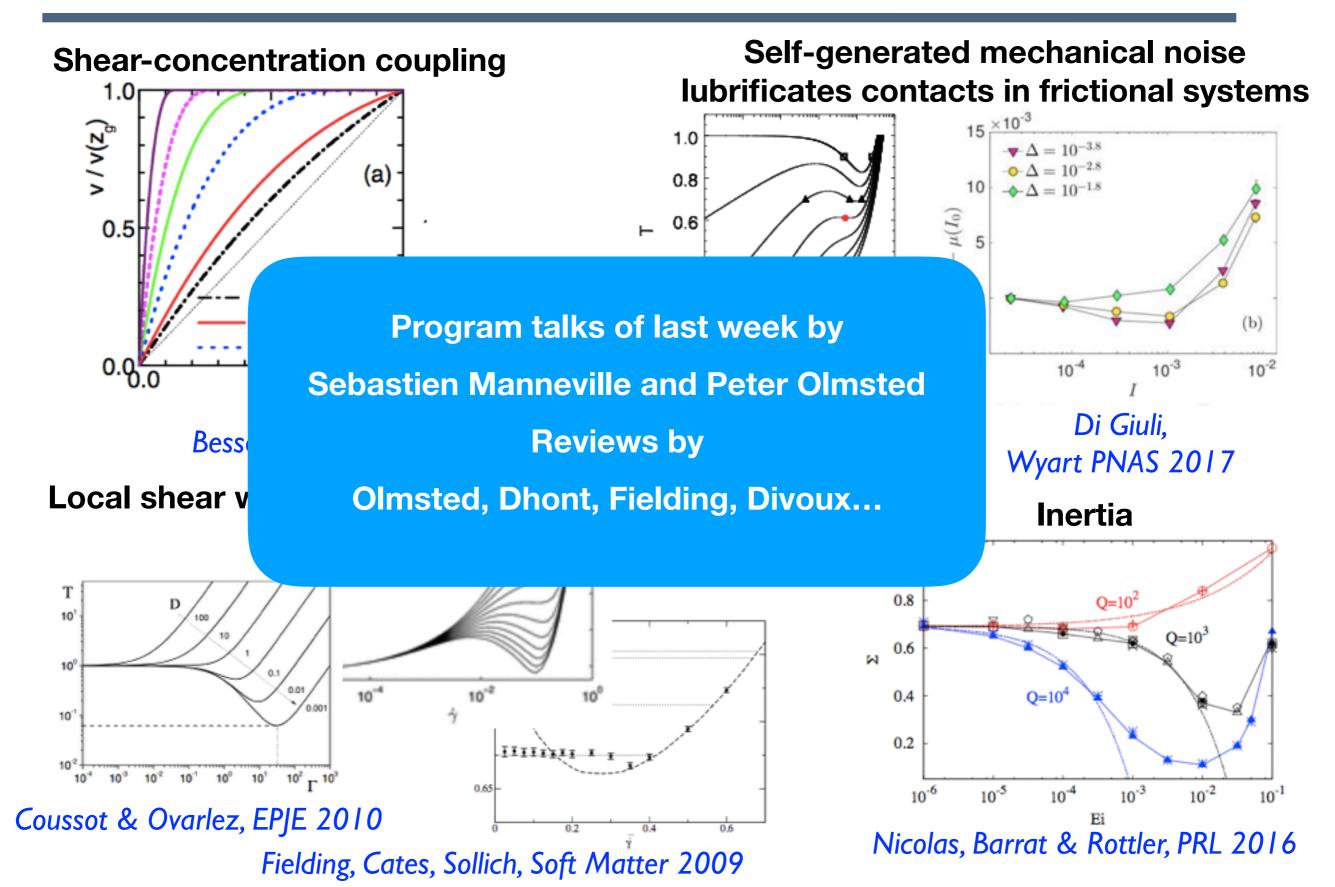


Nicolas, Ferrero, KM, Barrat, arXiv: 1708.09194 (2017)

Origins for permanent shear banding

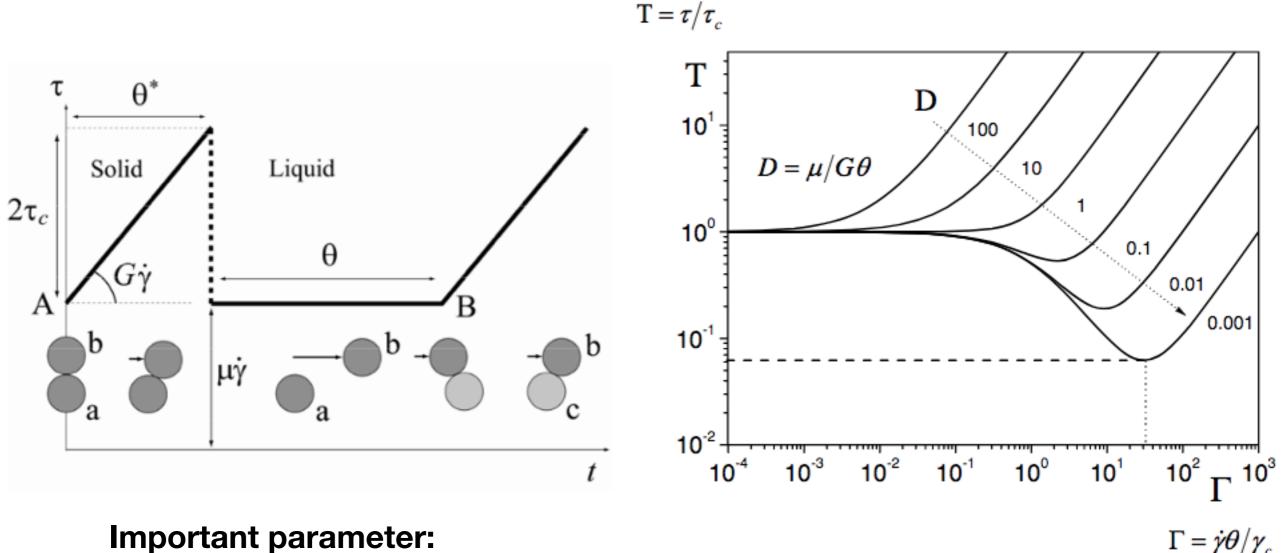


Origins for permanent shear banding



Permanent shear bands due to local shear weakening and elasticity

Physical origin of shear-banding in jammed systems

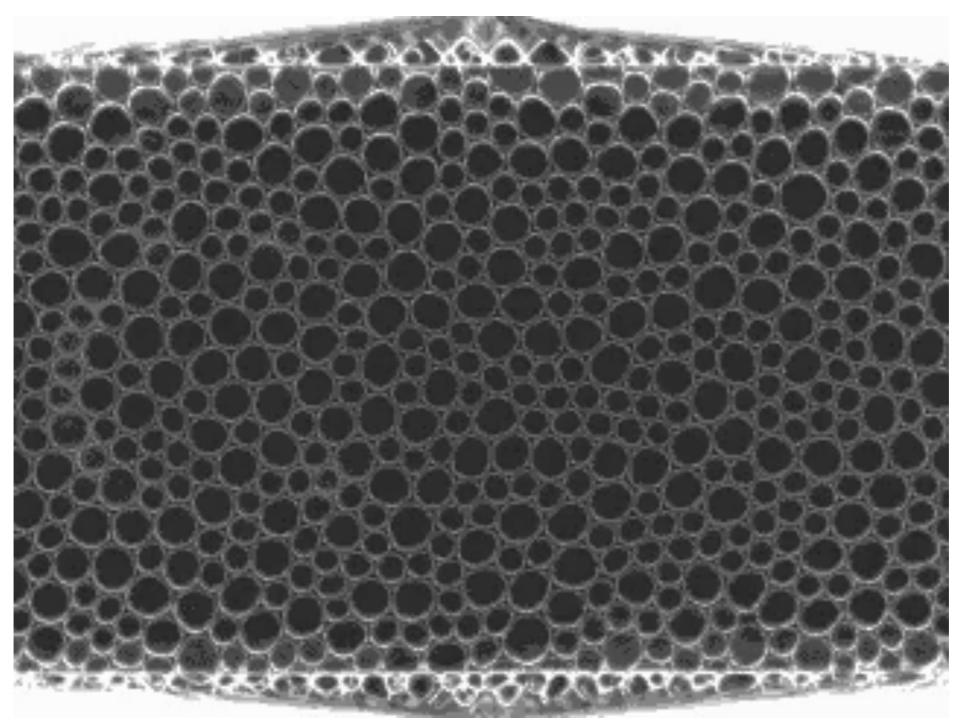


local restructuring time

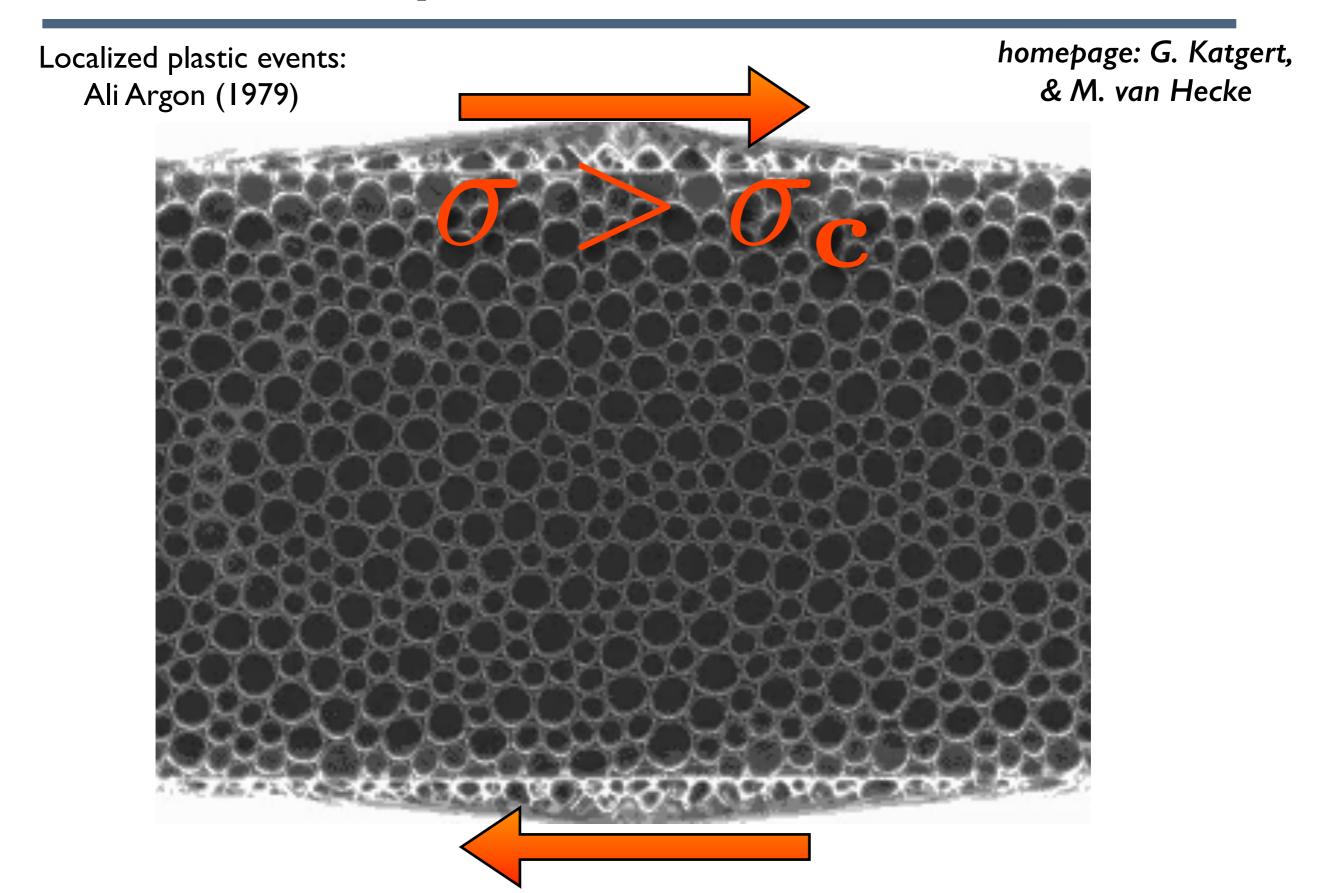
Coussot & Ovarlez, EPJE 2010

Dense yield stress materials

homepage: G. Katgert, & M. van Hecke

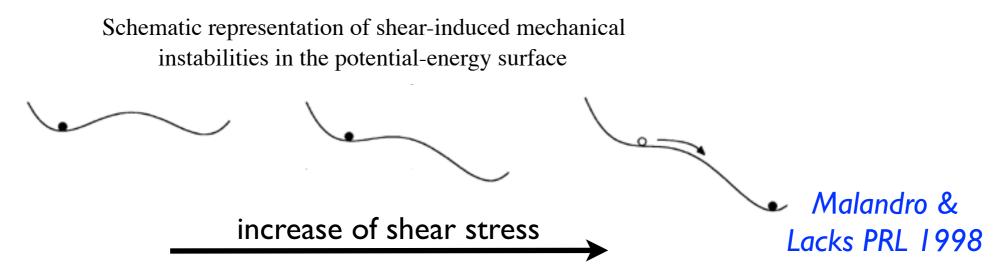


Dense yield stress materials

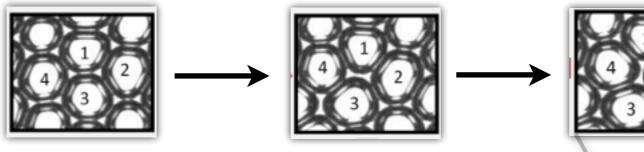


The Eshelby problem

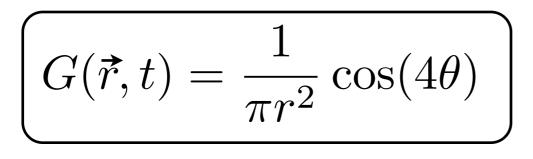
I. Strongly localised irreversible mechanical instabilities

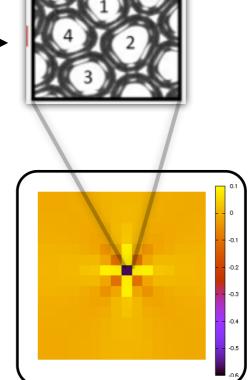


2. Accompanied by rearrangement of at most some tens of particles, small shear strains (1-10%)



3. Surrounding materials responds in a first order approximation in a purely elastic way





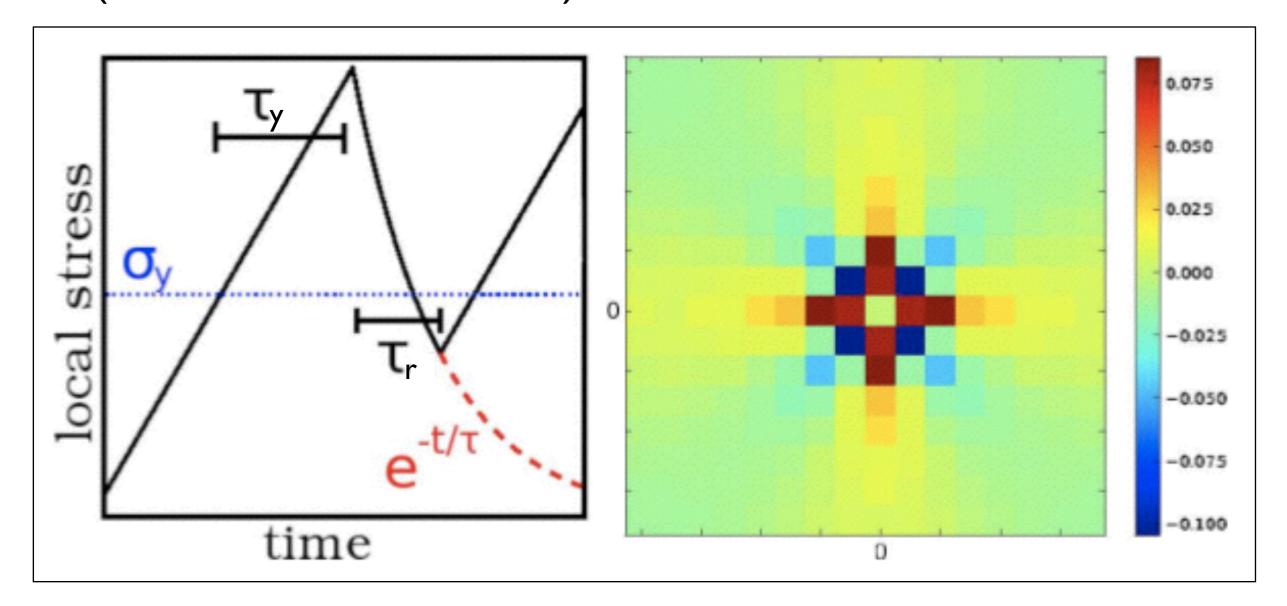
Stress change due to a single plastic event (2d incompressible medium)

J.D. Eshelby (1957)

Transition to shear banding?

G. Picard et. al. (EPJE 2004, PRE 2005)

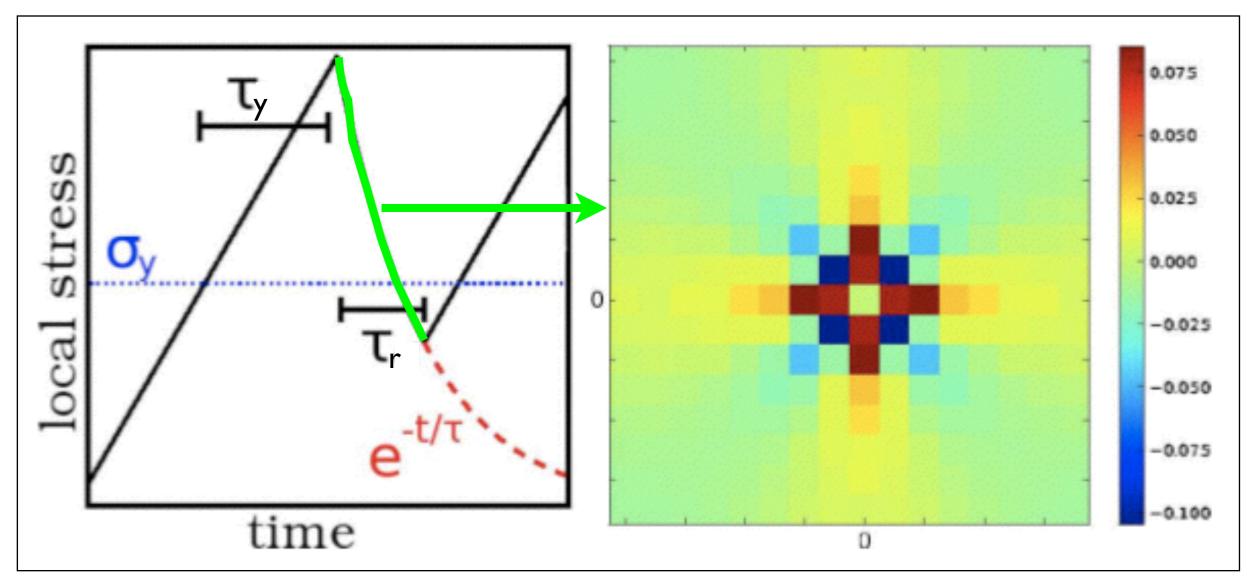
Stress propagator



Transition to shear banding?

G. Picard et. al. (EPJE 2004, PRE 2005)

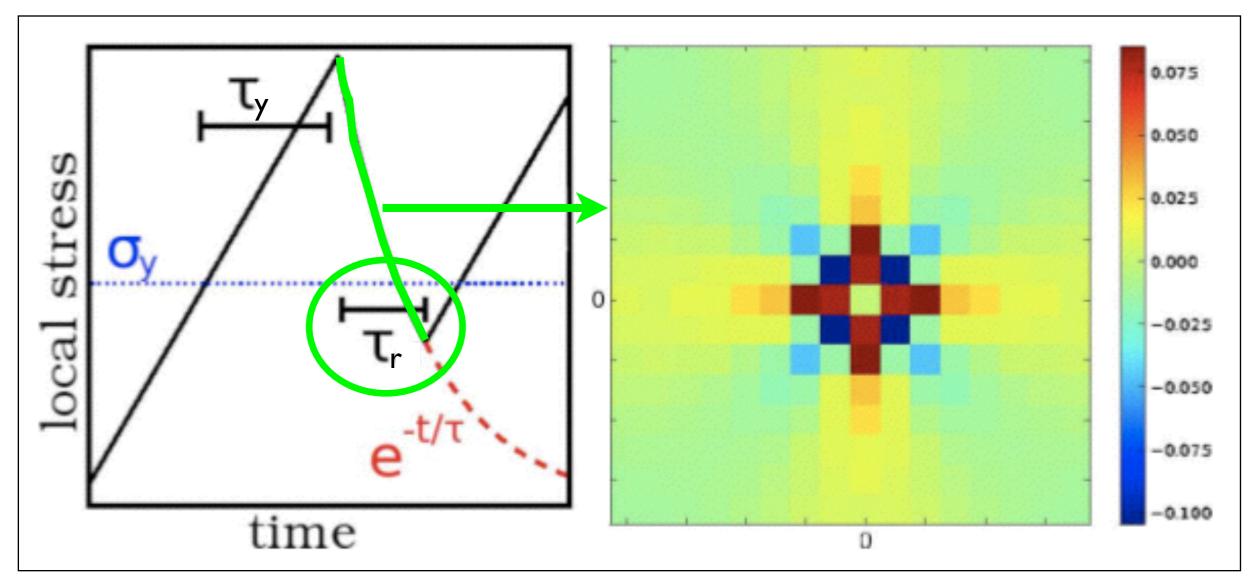
Stress propagator



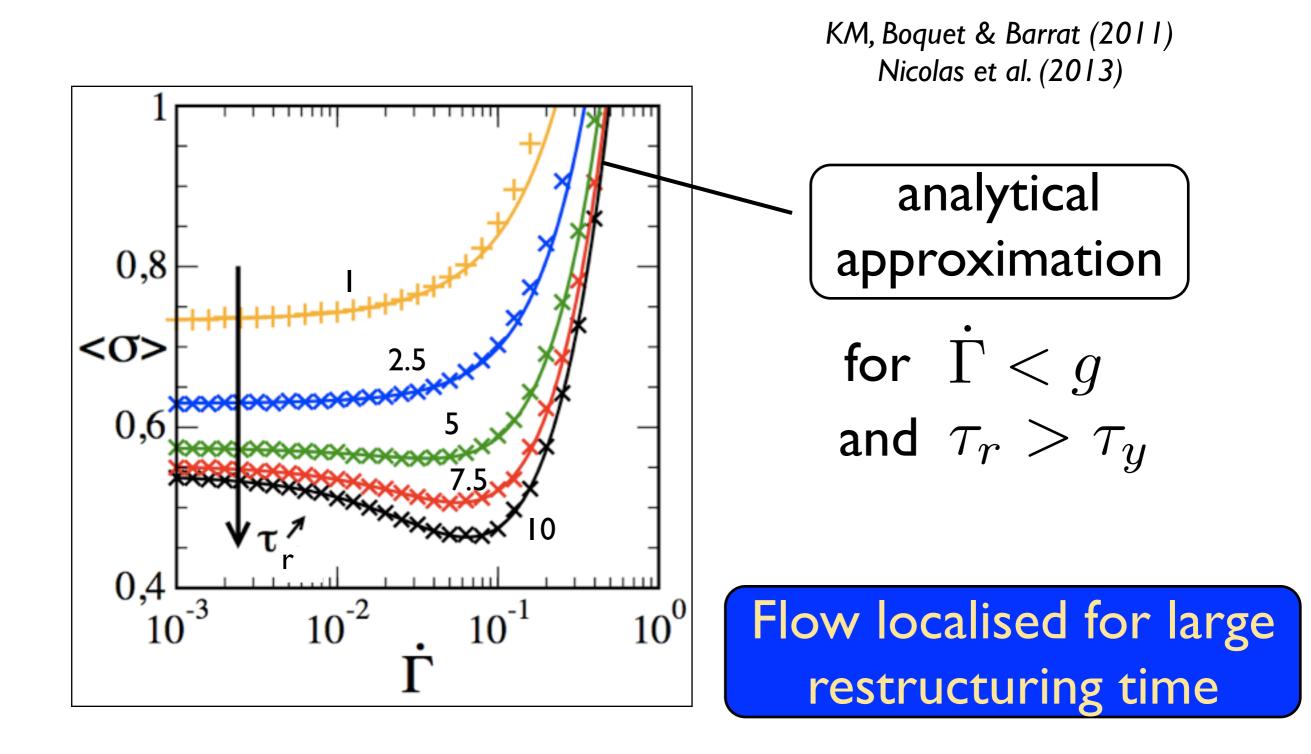
Transition to shear banding?

G. Picard et. al. (EPJE 2004, PRE 2005)

Stress propagator

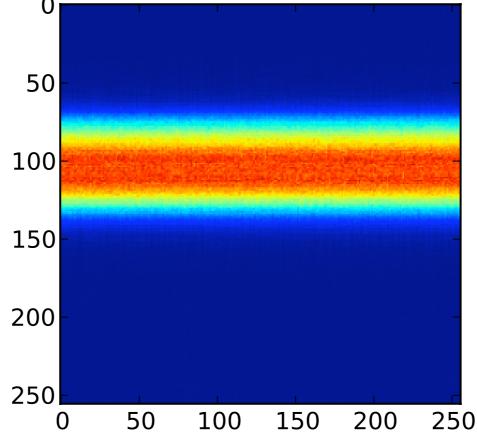


Mean-field predictions



Full spatial model

Cumulated plasticity 0

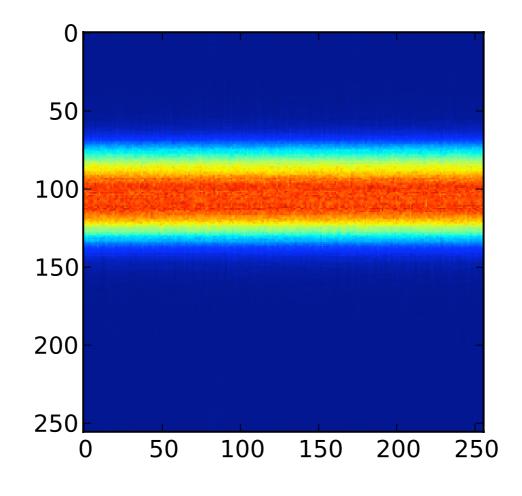


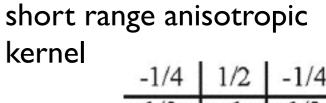
small shear rate,

large restructuring time

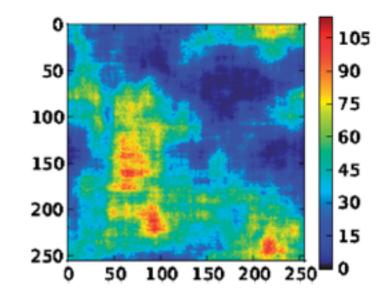
Full spatial model

Cumulated plasticity





-1/4	1/2	-1/4
1/2	-1	1/2
-1/4	1/2	-1/4

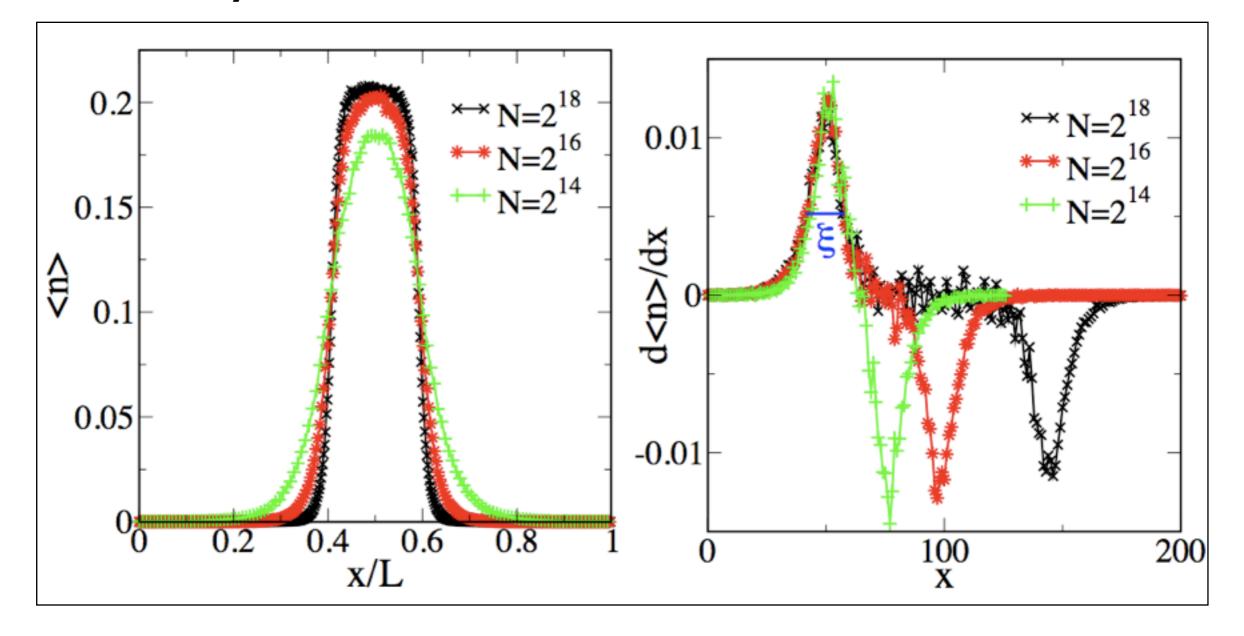


small shear rate, large restructuring time

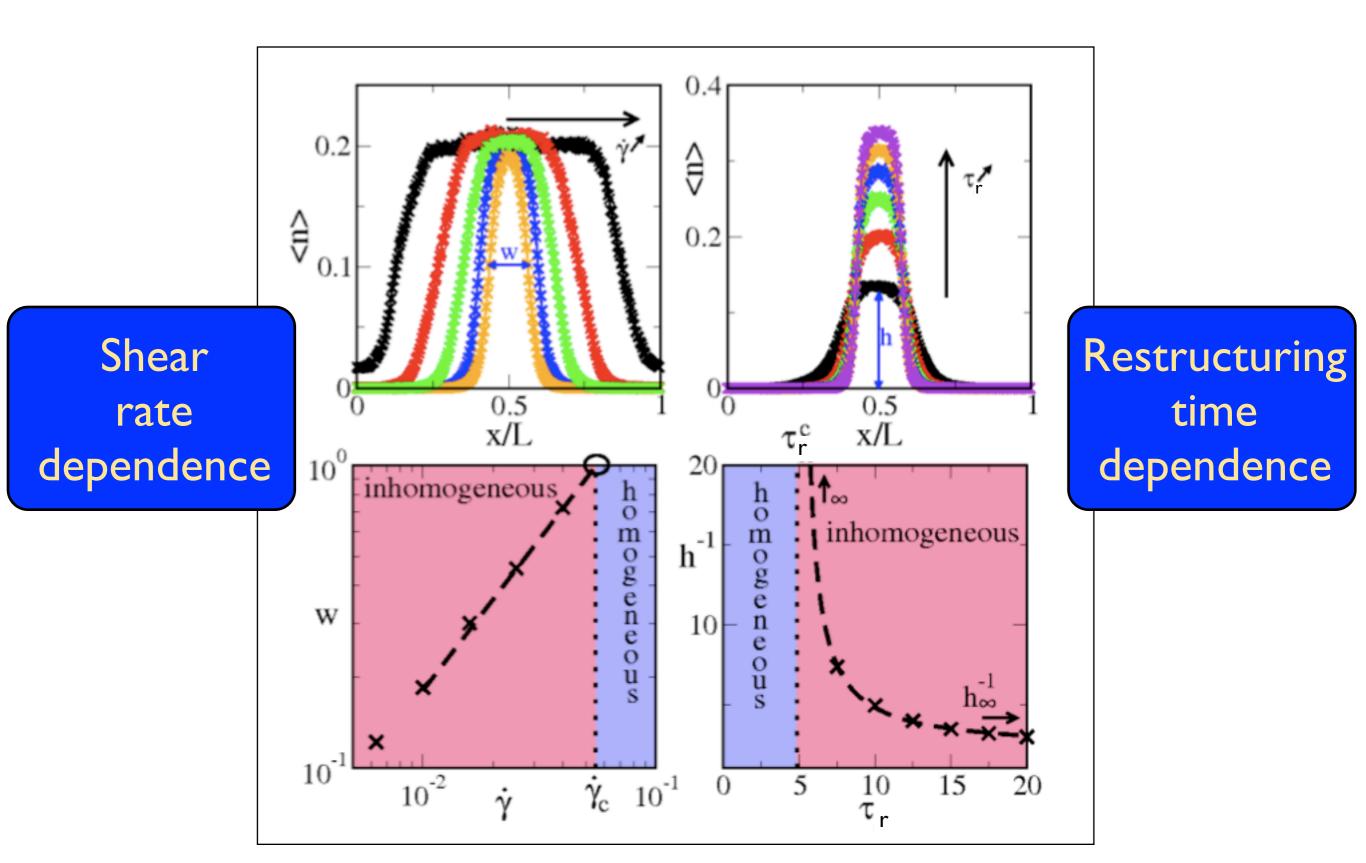
System size dependence

Width scales with system size

Interface width is constant



Steady state band characteristics



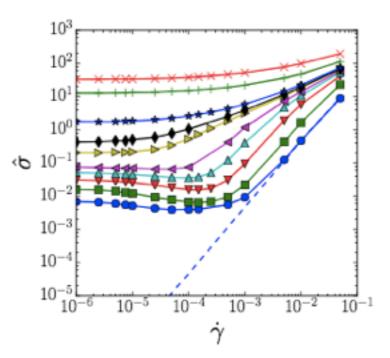
Microscopic interpretation?

Potential and dynamics for particle based simulations?

Attraction alone is not sufficient in the jammed state

Chaudhuri, Berthier & Bocquet, PRE 2012

Only below the critical packing fraction shear bands can be created through an additional attractive force



Irani, Chaudhuri & Heussinger, PRL 2014

Is there a mechanism for dense particle systems?

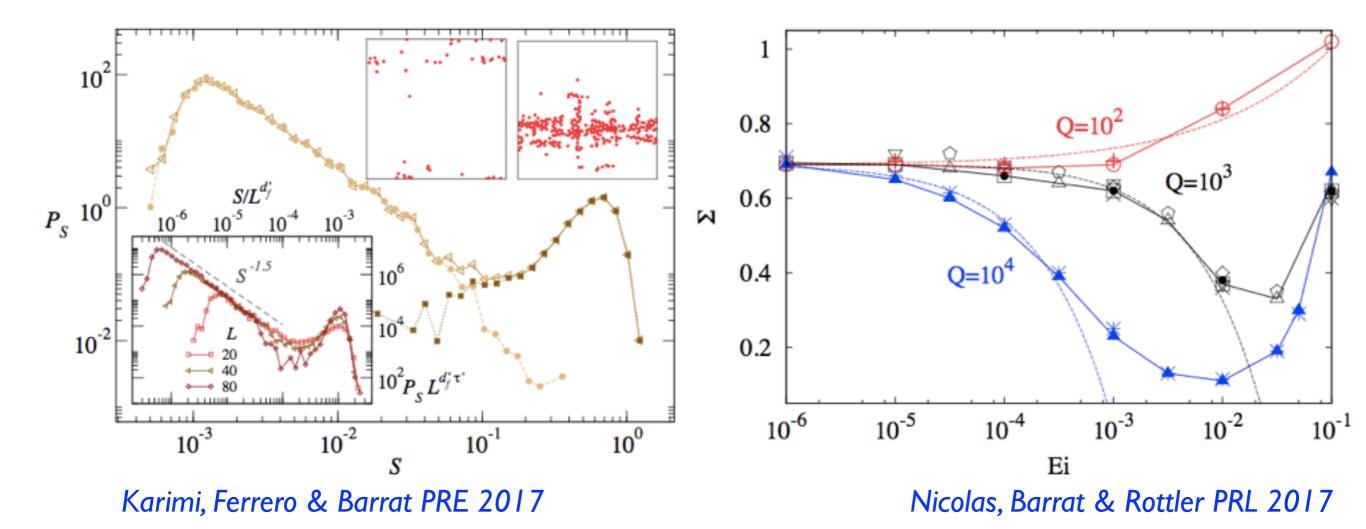
Permanent shear bands due to inertia

Inertia matters

Avalanche statistics depend on inertia

Salerno & Robbins PRE 2013

Flow curve depends on inertia



Model system

Repulsive particles at 0.7 packing fraction, 10% polydispersity Potential:

$$U(r_{ij}) = 4\epsilon \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^6 \right] + \epsilon \quad \text{for } r_{ij} \le 2^{1/6} \sigma_{ij}$$

else $U(r_{ij}) = 0$

Athermal dissipative dynamics

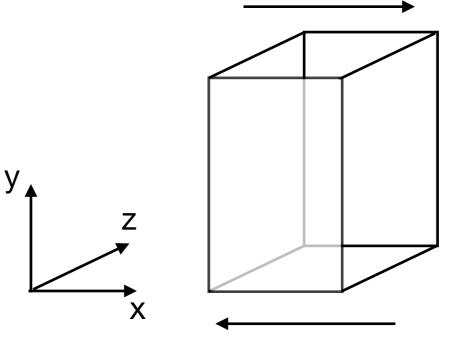
$$m\frac{d^2\vec{r_i}}{dt^2} = \underbrace{-\zeta_{DPD}}_{j(\neq i)} \omega(r_{ij})(\hat{r}_{ij}.v_{ij})\hat{r}_{ij} - \nabla_{\vec{r_i}}U$$

Homogeneous shear with periodic boundary conditions at constant volume

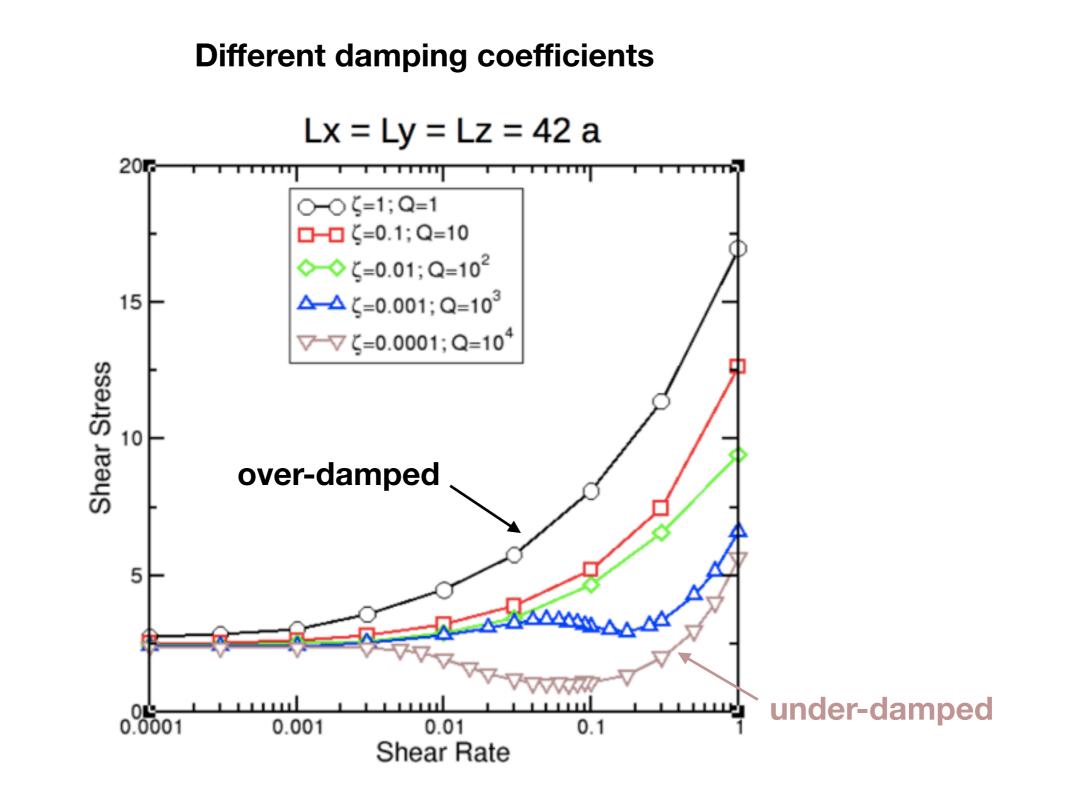
Inertial quality factor

$$Q = \frac{E_i}{W_i} = \frac{\tau_{vib}\dot{\gamma}}{\tau_{diss}\dot{\gamma}}$$

 $Q \leq 1 \;$ "overdamped dynamics"

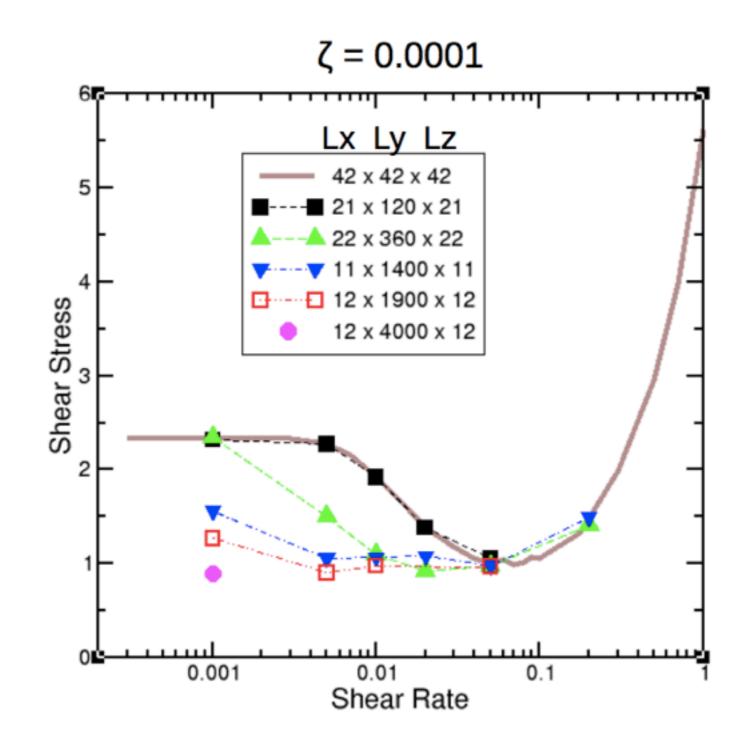


Flow curves



Flow curves

System size dependence for the inertial regime



Formation of shear bands

Start-up flow with instabilities due to stress overshoot

Onset of a second permanent shear band instability

Formation of shear bands

Start-up flow with instabilities due to stress overshoot

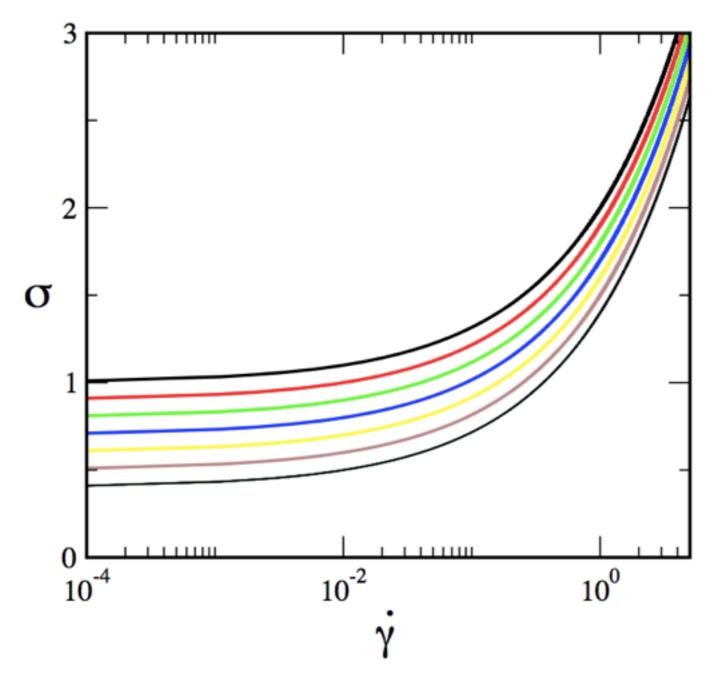
Onset of a second permanent shear band instability

Formation of shear bands

Start-up flow with instabilities due to stress overshoot

Onset of a second permanent shear band instability

Overdamped flow curves at different temperatures



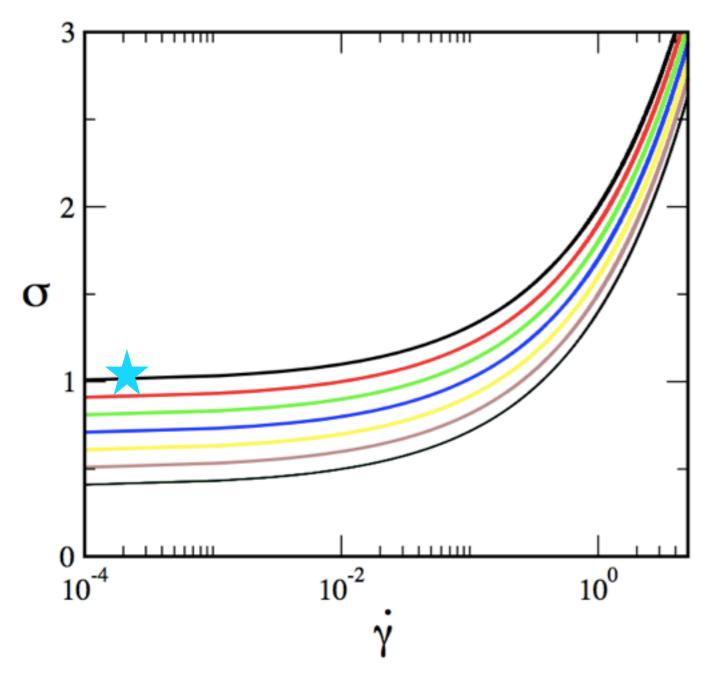
Effective temperature $k_B \tilde{T} = E_{\rm kin}$

depends on driving rate $\tilde{T} = \tilde{T}(\dot{\gamma})$

Resulting in

 $\begin{aligned} &\sigma(\dot{\gamma};Q,T=0) \\ \Leftrightarrow \sigma(\dot{\gamma};Q=1,\tilde{T}(\dot{\gamma})) \end{aligned}$

Overdamped flow curves at different temperatures



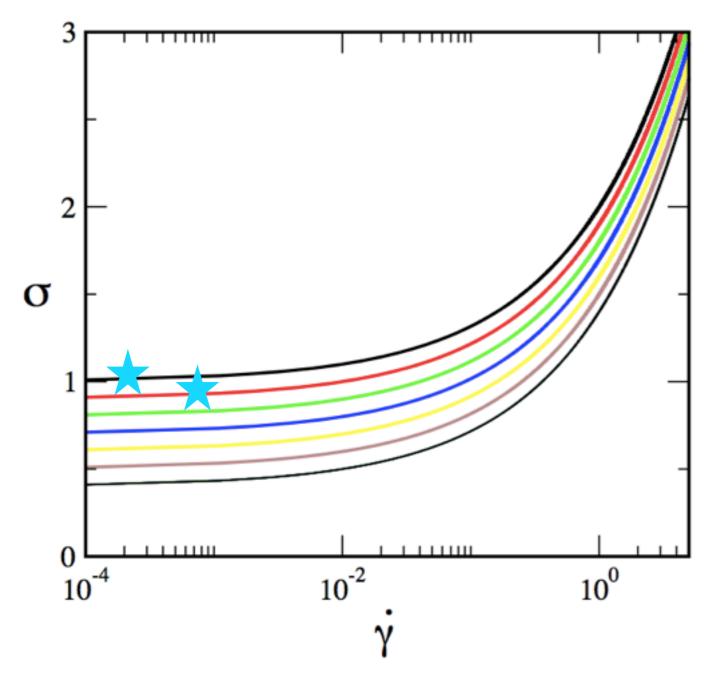
Effective temperature $k_B \tilde{T} = E_{\rm kin}$

depends on driving rate $\tilde{T} = \tilde{T}(\dot{\gamma})$

Resulting in

 $\begin{aligned} \sigma(\dot{\gamma}; Q, T = 0) \\ \Leftrightarrow \sigma(\dot{\gamma}; Q = 1, \tilde{T}(\dot{\gamma})) \end{aligned}$

Overdamped flow curves at different temperatures



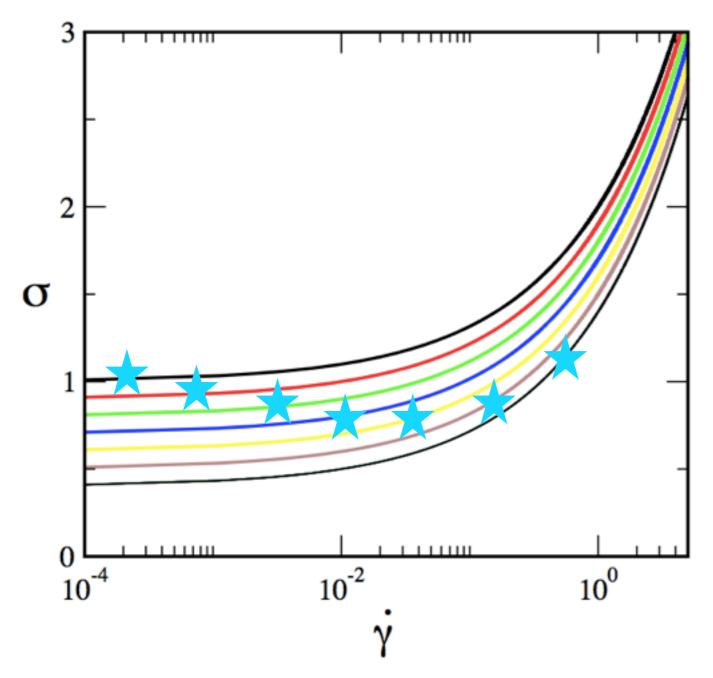
Effective temperature $k_B \tilde{T} = E_{\rm kin}$

depends on driving rate $\tilde{T} = \tilde{T}(\dot{\gamma})$

Resulting in

 $\begin{aligned} &\sigma(\dot{\gamma};Q,T=0)\\ \Leftrightarrow \sigma(\dot{\gamma};Q=1,\tilde{T}(\dot{\gamma})) \end{aligned}$

Overdamped flow curves at different temperatures



Effective temperature $k_B \tilde{T} = E_{\rm kin}$

depends on driving rate $\tilde{T} = \tilde{T}(\dot{\gamma})$

Resulting in

 $\begin{aligned} &\sigma(\dot{\gamma};Q,T=0)\\ \Leftrightarrow \sigma(\dot{\gamma};Q=1,\tilde{T}(\dot{\gamma})) \end{aligned}$

Continuum model

Athermal overdamped dynamics:

$$\sigma(\dot{\gamma}) = \sigma_y + A\dot{\gamma}^{0.5}$$

Athermal underdamped dynamics: $\sigma(\dot{\gamma}, \tilde{T}(\dot{\gamma})) = \sigma_y + A \dot{\gamma}^{0.5} - B \tilde{T}^{\alpha}$

Time evolution for the shear component of the velocity and the effective temperature

$$\rho \frac{\partial v_x}{\partial t} = \frac{\partial \sigma}{\partial y} = \frac{\partial \sigma}{\partial \tilde{T}} \frac{\partial \tilde{T}}{\partial y} + \frac{\partial \sigma}{\partial \dot{\gamma}} \frac{\partial^2 v_x}{\partial y^2}$$
$$c_V \frac{\partial \tilde{T}}{\partial t} = \lambda_T \frac{\partial^2 \tilde{T}}{\partial y^2} + \frac{\partial v_x}{\partial y} \sigma \left(\frac{\partial v_x}{\partial y}, \tilde{T}\right) - \frac{c_V}{\tau} \tilde{T}$$

p density

*c*_V heat capacity

(reminder: x shear, y gradient, z vorticity direction)

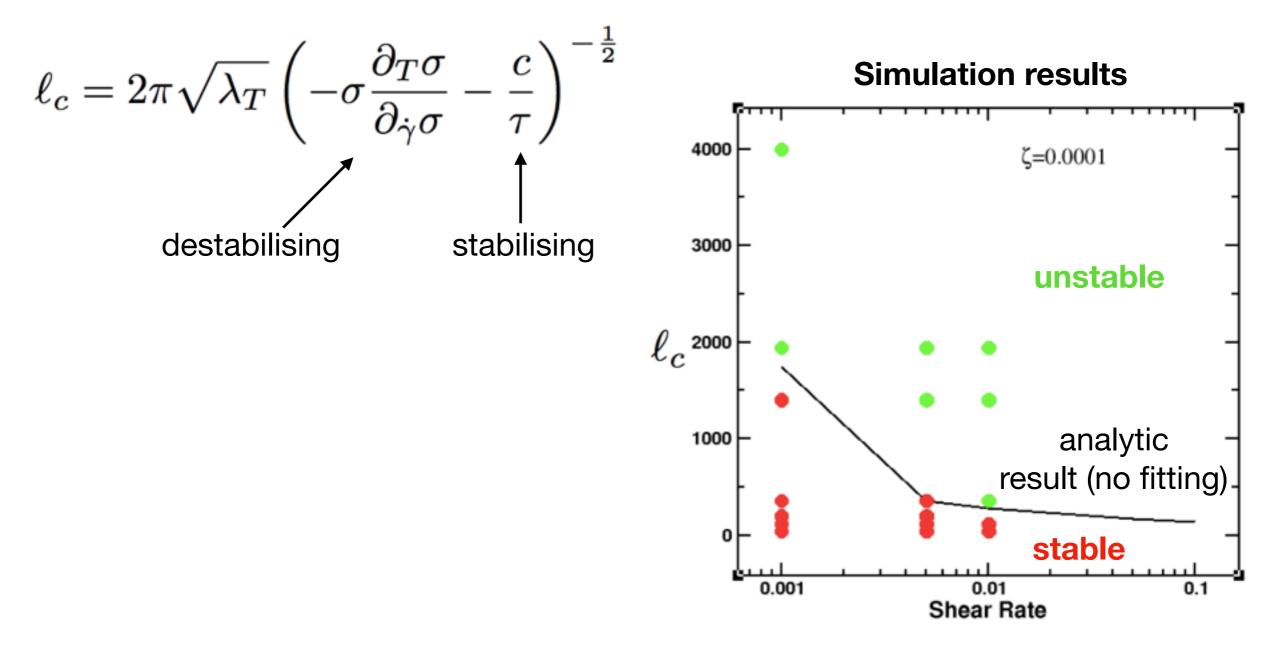
- λ_T thermal conductivity
- au dissipative timescale (thermostat)

Hinkle, Rycroft, Shields & Falk PRE 2017

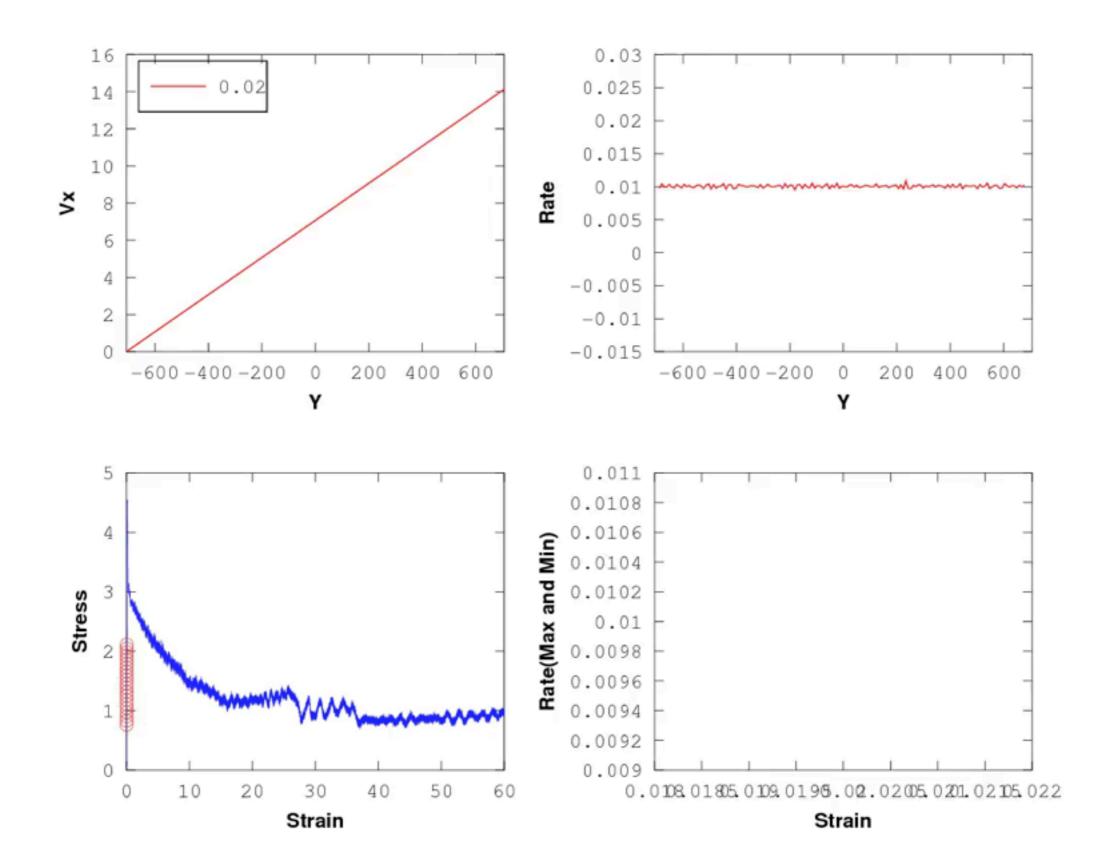
Linear stability analysis

Linear velocity profile stable against small amplitude perturbations?

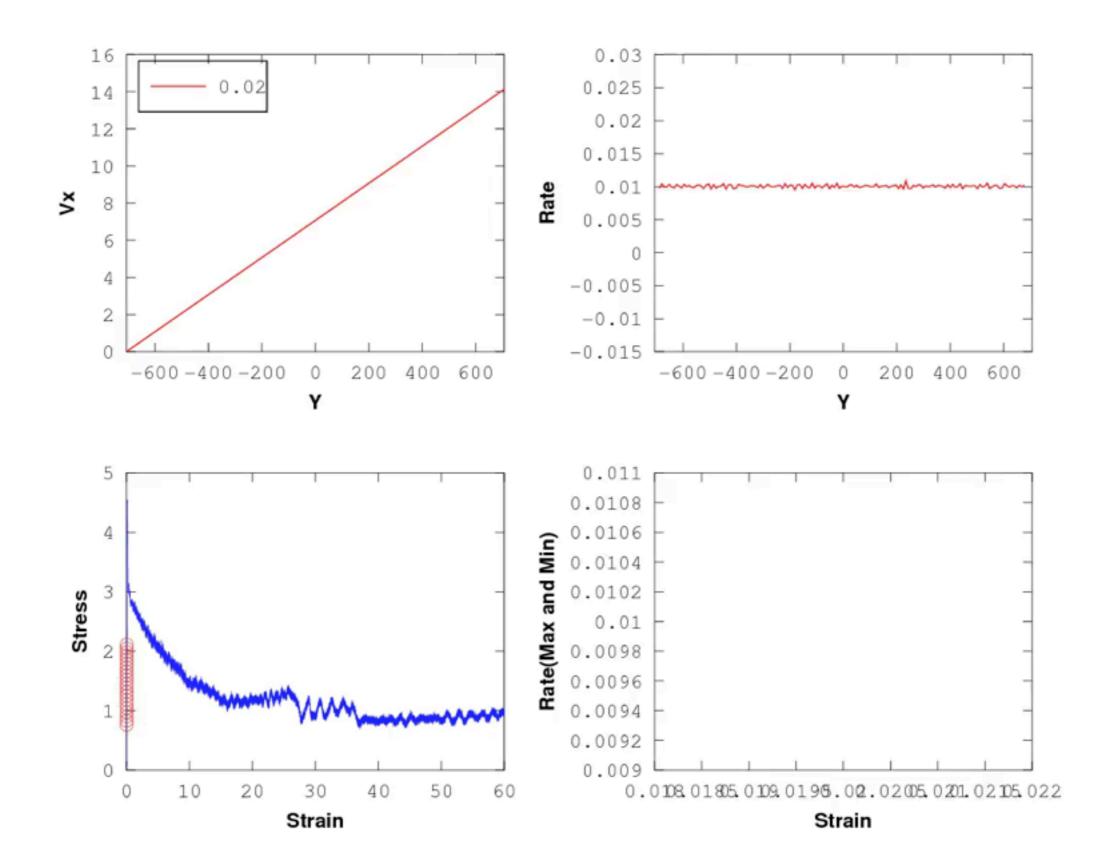
Only below a critical length:



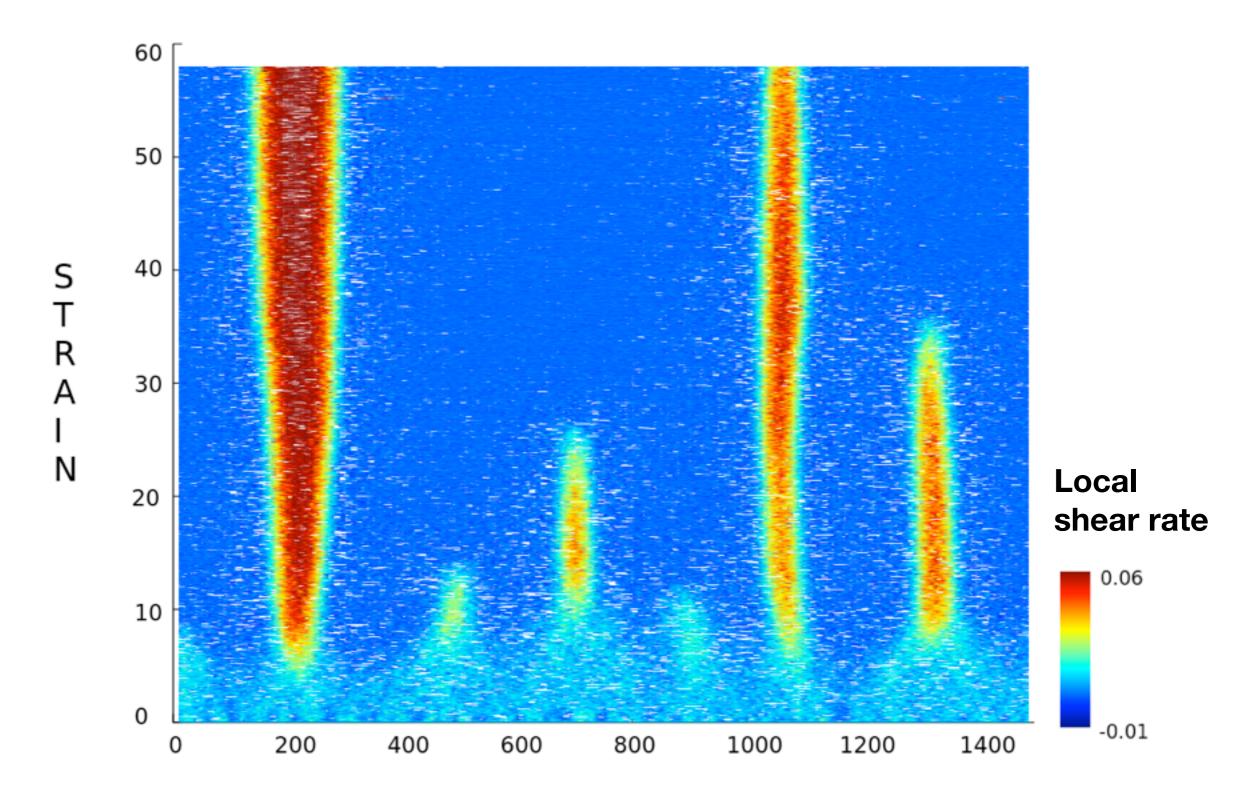
Coarsening dynamics



Coarsening dynamics

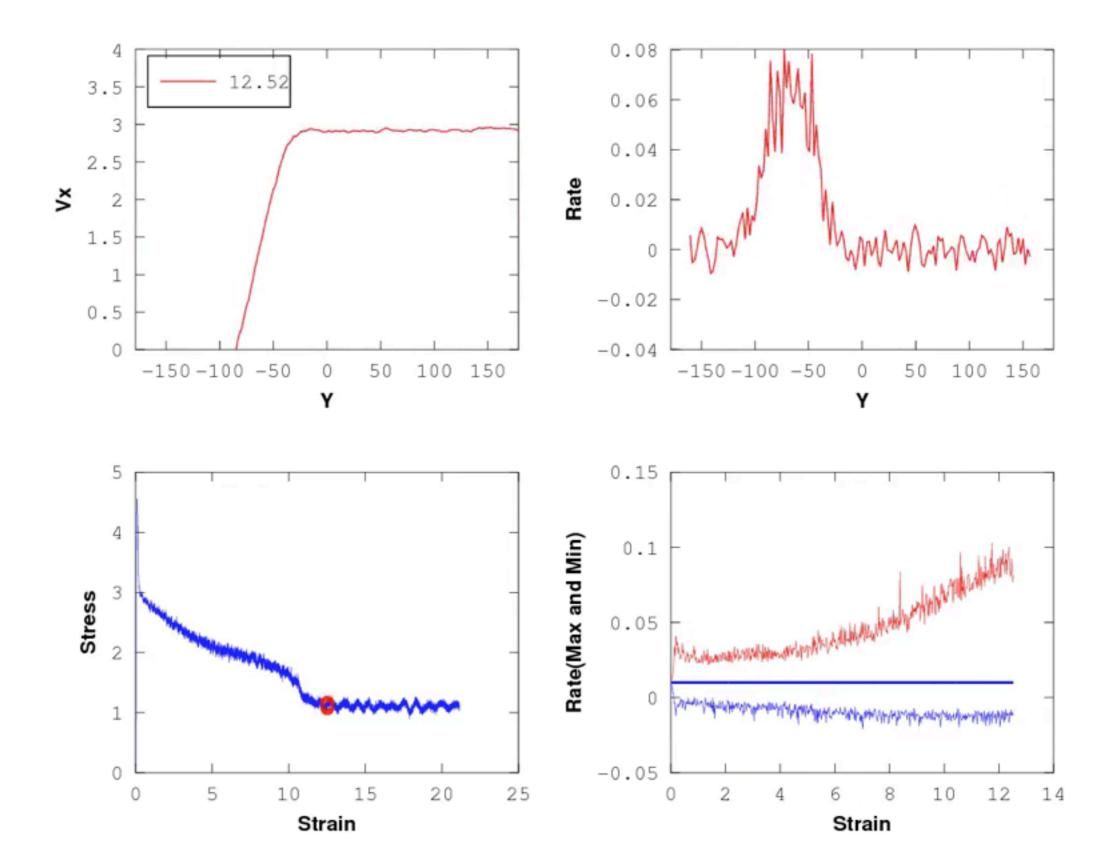


Coarsening dynamics

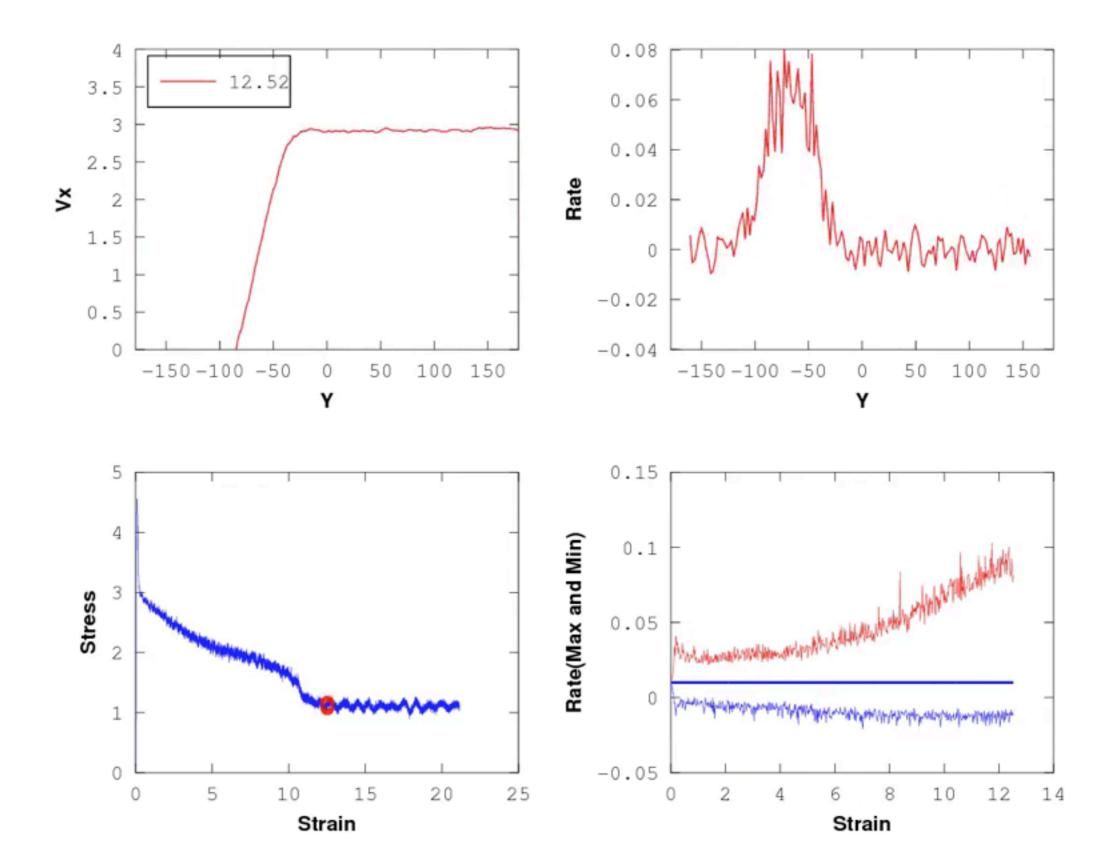


Υ

Reaching the stationary state



Reaching the stationary state



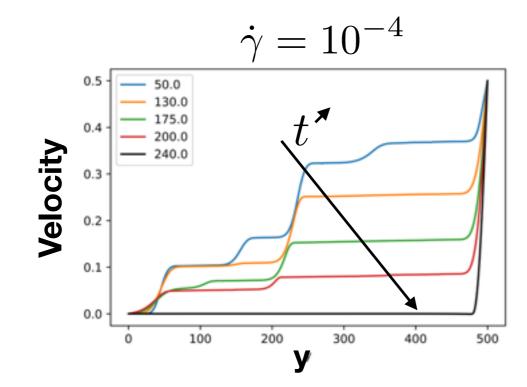
Numerical integration

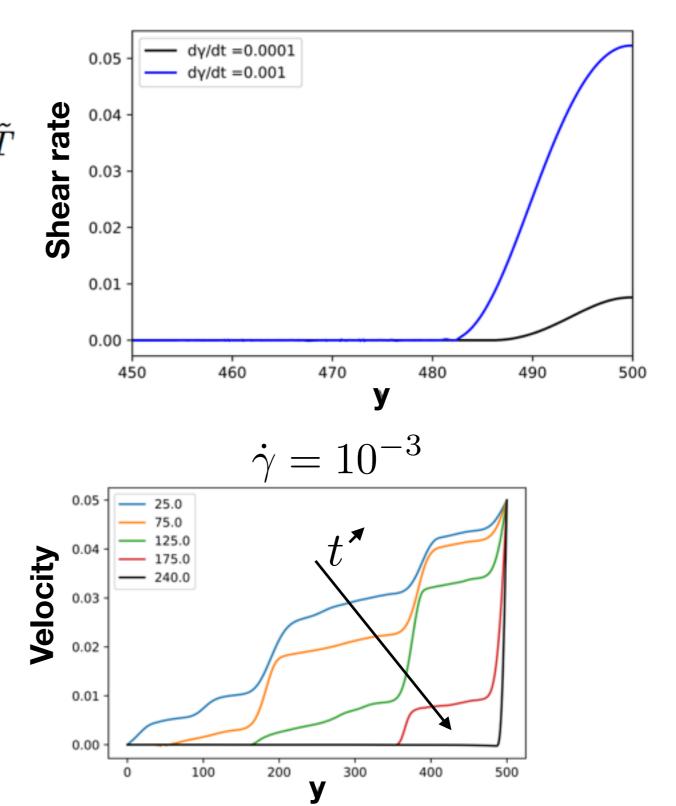
$$\rho \frac{\partial v_x}{\partial t} = \frac{\partial \sigma}{\partial y} = \frac{\partial \sigma}{\partial \tilde{T}} \frac{\partial \tilde{T}}{\partial y} + \frac{\partial \sigma}{\partial \dot{\gamma}} \frac{\partial^2 v_x}{\partial y^2}$$
$$c_V \frac{\partial \tilde{T}}{\partial t} = \lambda_T \frac{\partial^2 \tilde{T}}{\partial y^2} + \frac{\partial v_x}{\partial y} \sigma \left(\frac{\partial v_x}{\partial y}, \tilde{T}\right) - \frac{c_V}{\tau} \hat{T}$$

Boundary conditions:

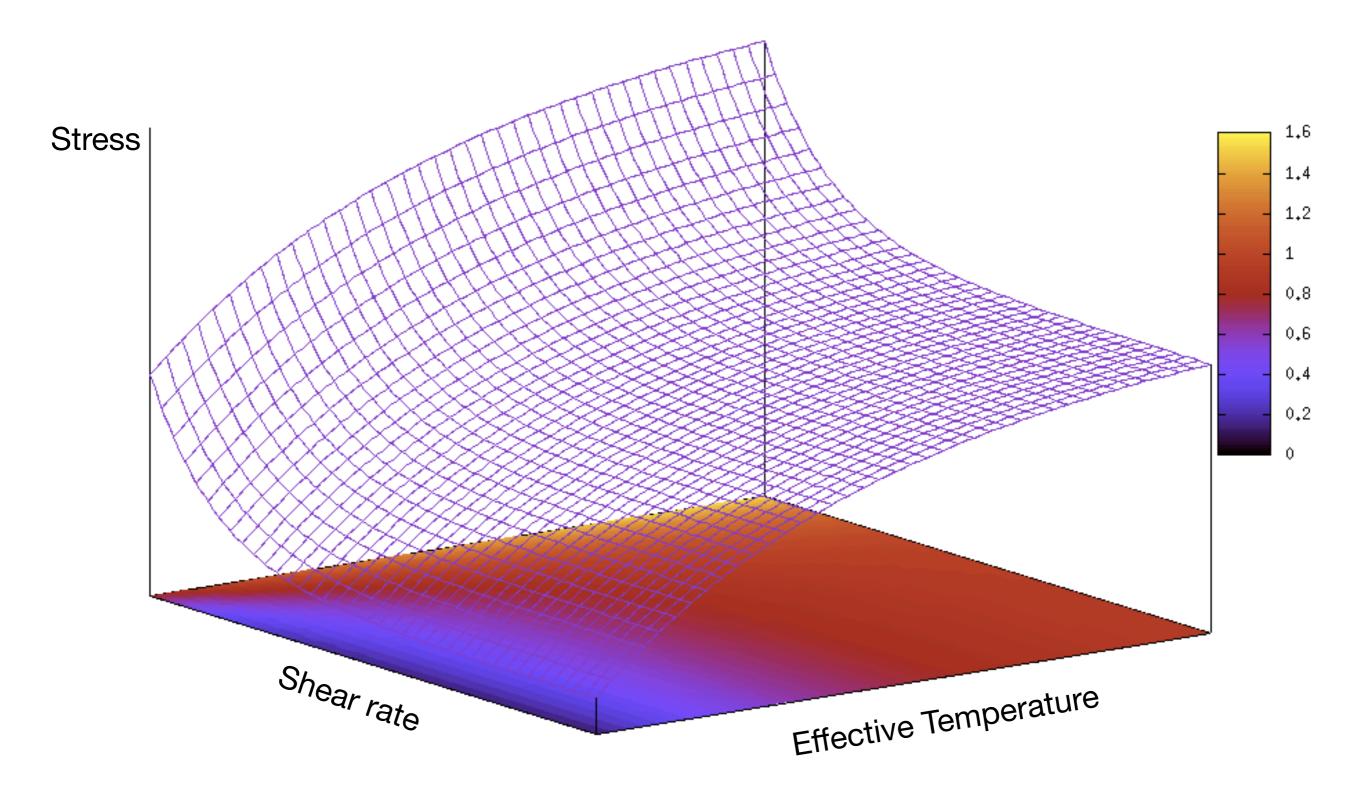
$$v_x(0,t) = 0 \qquad v_x(L_y,t) = \dot{\gamma}L_y$$

No-flux boundary condition for the temperature

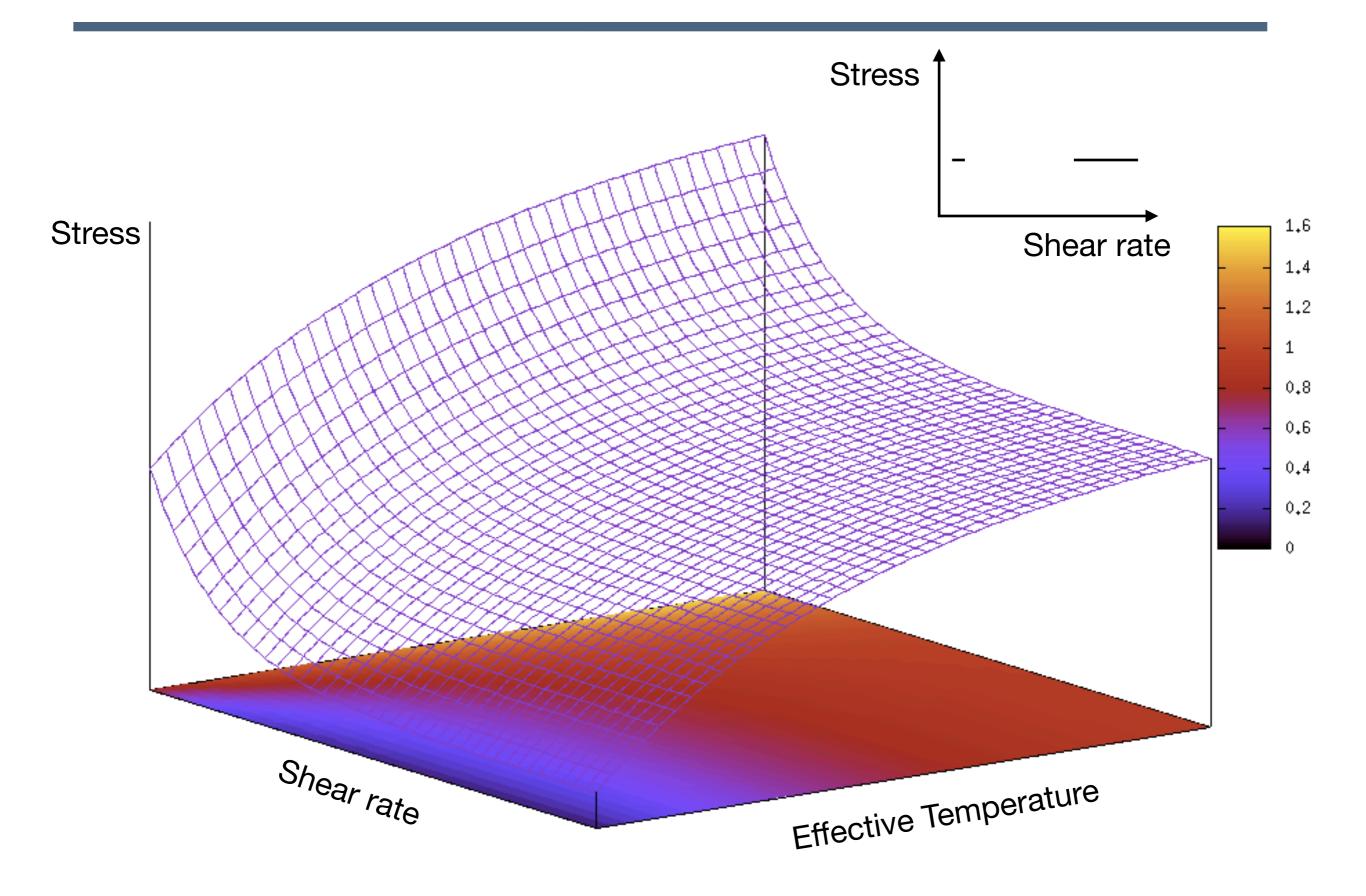




Stress selection rule?



Stress selection rule?



Conclusions

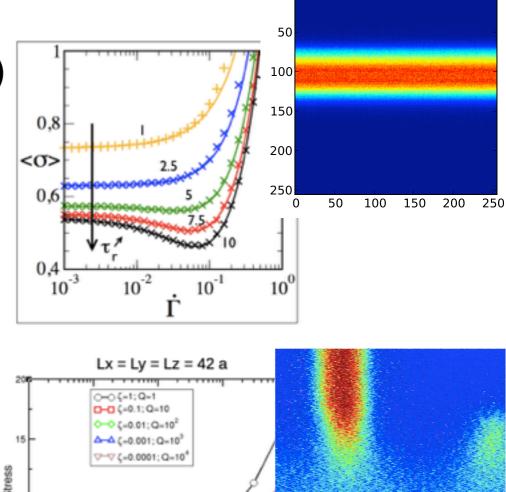
The question of permanent shear band formation in deeply jammed systems is still an open question

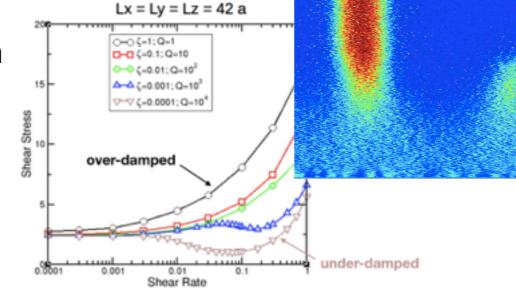
1) A long local restructuring time (local weakening) creates shear bands (lever rule, normal scalings)

But no simulation example of this phenomenon for jammed soft particle systems

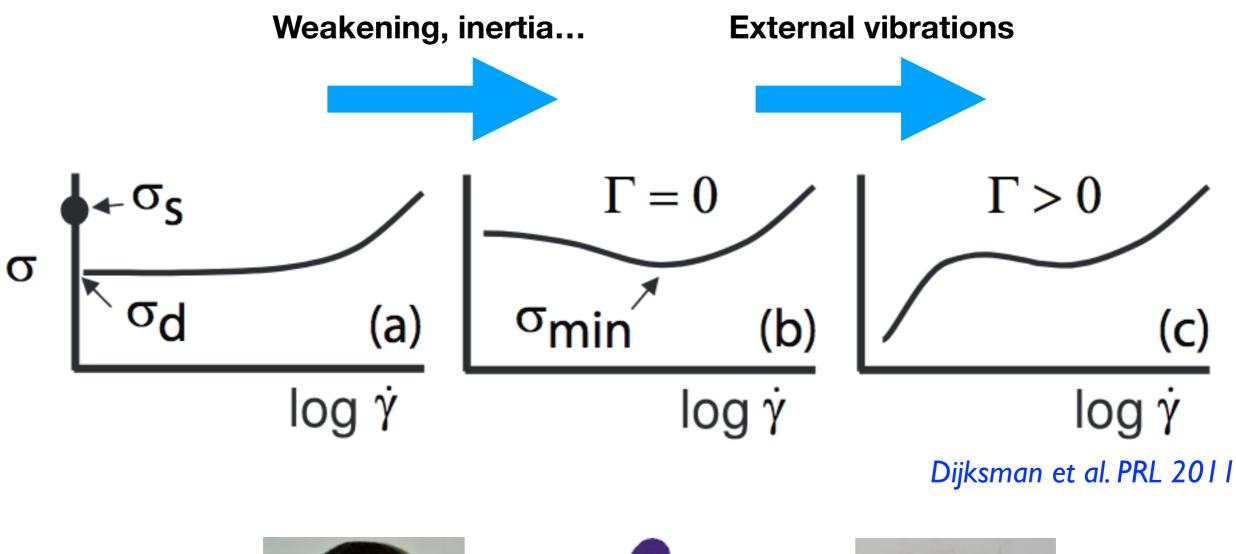
2) Inertia can create (or enhance) the instability in soft jammed particle systems

Here we are able to provide a complete quantitative comparison between continuum equations and microscopic simulations





Outlook



Vishwas Vasisht

CEFIPRA

Magali Le Goff