The Plot Thickens: From Discontinuous Shear Thickening to Shear Jamming

Heinrich Jaeger University of Chicago

S. Waitukaitis & HMJ, Nature (2012)

Impact at 4m/s

Track Flow Field inside 3D Suspension with ultrasound @ 10,000fps

Endao Han

Propagating Jamming Front converts fluid into solid

m/s

Strain Rate Tensor from Velocity Field

Shear Jamming Front = locus of maximum shear intensity

Front speed $u_f = ku_0$ $k = 1/\varepsilon \gg 1$ Longitudinal front speed $\approx 2 \text{ x}$ transverse front speed

E. Han, I. Peters, HMJ Nature Comm. (2016)

- As jammed region expands into bulk, stress grows ("added mass"); 1D: $\tau \propto k \rho u_0^2$
- Once front reaches bottom (or boundaries), solid plug forms

M. Roché et al. (2013)

see E. Han's poster

Jamming under extension

Sayantan

- Solidification instead of necking & snap-off
- Force shoots up when fronts reach boundaries

Shear Jamming Fronts convert unjammed fluid into jammed solid

Majumdar et al., PRE (2017)

Impact (3D)

Han et al., Nat. Comm. (2016)

Ivo Peters

Shear jamming in Couette geometry

Jamming onset requires minimum shear stress (= sufficiently fast shearing speed)

 $u_d = 0.008 \text{ m/s}$

30 fps

 $u_d = 0.8 \text{ m/s}$

3000 fps

based on Couette experiments

I. Peters, S. Majumdar, HMJ, Nature (2016)

I. Peters, S. Majumdar, HMJ, Nature (2016)

E. Brown & HMJ, JOR (2012)

I. Peters, S. Majumdar, HMJ, Nature (2016)

Wyart & Cates (2014)

Boundaries shift with $\phi_m(\mu)$

 \rightarrow Need large μ to obtain significant shear jamming region below ϕ_0

Which particle-scale properties control μ ?

- Particle size and geometry
- Particle surface roughness
- Particle surface chemistry

Which particle-scale properties control μ ?

- Particle size and geometry
- Particle surface roughness
- Particle surface chemistry

Tailor capacity for hydrogen bonding to elicit, or suppress, shear jamming

Nicole James

Pull test for shear jamming

Adding urea suppresses shear jamming... ...but not DST!

N. James et al., arXiv:1707.09401

Urea = chaotrope = chemical agent that disrupts hydrogen bonding

PMMA/ITA particles specifically designed to have surface terminated with COOH groups

Urea couples to COOH \rightarrow interferes with hydrogen bonding capacity

Deplete hydrogen bonding capacity in cornstarch suspensions

→ SJ no longer observed...but DST alive & well

Proposed Scenario

 $\begin{array}{c} \text{Lubricated contacts} \\ \text{low stresses or rates} \\ \varphi_0 \text{ is key} \end{array}$

Frictional contact Lubrication layer is broken ϕ_m is key

H-bonding enhances friction between particles Relaxation Stress is removed; particle-particle H-bonds may be replaced by solvent-particle bonds

Important: H-bonding is reversible in protic solvents like water

Proposed Scenario

- Inter-particle hydrogen bonding enhances contact friction
- This decreases $\phi_m(\mu)$ & enlarges SJ regime

Conversely:

Reduced hydrogen bonding capacity \rightarrow smaller μ , larger $\phi_m(\mu)$

reduced SJ regime

Move DST-SJ boundary by controlling μ via hydrogen bonding capacity

Get ϕ_m , ϕ_0 , and au^* from steady-state rheometry!

➔ See Nicole James preprint & poster

• At fixed packing fraction: Onset stress for SJ (and also DST) shifts

Pull test = facile method for detecting shift in SJ onset

Measure frictional interactions directly

Extract friction from lateral deflection force during slow, 100nm AFM scans near apex >> scale of molecular interactions

Comtet et al. (Nature Comm 8, 2017): fast oscillatory probe, few nm amplitude

- A shear-jammed state has a yield stress and acts like a solid
- A shear-thickening state, incl. DST, is still flowing...thus not jammed
- The transition from unjammed to jammed state occurs via rapidly propagating fronts that are the locus of intense shear: they transform isotropically amorphous, unjammed fluid into anisotropic, shear-jammed solid

- A shear-jammed state has a yield stress and acts like a solid
- A shear-thickening state, incl. DST, is still flowing...thus not jammed
- The transition from unjammed to jammed state occurs via rapidly propagating fronts that are the locus of intense shear: they transform isotropically amorphous, unjammed fluid into anisotropic, shear-jammed solid
- At fixed packing fraction, the different states of a suspension of hard particles (shear thinning, Newtonian, shear thickening, shear jammed) appear to be delineated by stress → can construct unifying state diagram

- A shear-jammed state has a yield stress and acts like a solid
- A shear-thickening state, incl. DST, is still flowing...thus not jammed
- The transition from unjammed to jammed state occurs via rapidly propagating fronts that are the locus of intense shear: they transform isotropically amorphous, unjammed fluid into anisotropic, shear-jammed solid
- At fixed packing fraction, the different states of a suspension of hard particles (shear thinning, Newtonian, shear thickening, shear jammed) appear to be delineated by stress → can construct unifying state diagram
- Dense suspensions generically exhibit DST (see Brown et al., Nature Mat., 2010)....but few show shear jamming. Scenario based on recent models: ϕ_m too close to ϕ_0 , i.e., friction coefficient μ too small.
- Reversible interparticle hydrogen bonding acts to increase effective friction & elicit shear jamming

- A shear-jammed state has a yield stress and acts like a solid
- A shear-thickening state, incl. DST, is still flowing...thus not jammed
- The transition from unjammed to jammed state occurs via rapidly propagating fronts that are the locus of intense shear: they transform isotropically amorphous, unjammed fluid into anisotropic, shear-jammed solid
- At fixed packing fraction, the different states of a suspension of hard particles (shear thinning, Newtonian, shear thickening, shear jammed) appear to be delineated by stress → can construct unifying state diagram
- Dense suspensions generically exhibit DST (see Brown et al., Nature Mat., 2010)....but few show shear jamming. Scenario based on recent models: ϕ_m too close to ϕ_0 , i.e., friction coefficient μ too small.
- Reversible interparticle hydrogen bonding acts to increase effective friction & elicit shear jamming

When exactly are particles in contact, i.e., experience contact friction? What micro-scale properties set $\phi_m(\mu)$?

- A shear-jammed state has a yield stress and acts like a solid
- A shear-thickening state, incl. DST, is still flowing...thus not jammed
- The transition from unjammed to jammed state occurs via rapidly propagating fronts that are the locus of intense shear: they transform isotropically amorphous, unjammed fluid into anisotropic, shear-jammed solid
- At fixed packing fraction, the different states of a suspension of hard particles (shear thinning, Newtonian, shear thickening, shear jammed) appear to be delineated by stress → can construct unifying state diagram
- Dense suspensions generically exhibit DST (see Brown et al., Nature Mat., 2010)....but few show shear jamming. Scenario based on recent models: ϕ_m too close to ϕ_0 , i.e., friction coefficient μ too small.
- Reversible interparticle hydrogen bonding acts to increase effective friction & elicit shear jamming

When exactly are particles in contact, i.e., experience contact friction?

What micro-scale properties set $\phi_m(\mu)$?

Particle surfaces / surface chemistry

Solvent properties

Opportunities: Design surface chemistry & solvent to elicit shear jamming

- A shear-jammed state has a yield stress and acts like a solid
- A shear-thickening state, incl. DST, is still flowing...thus not jammed
- The transition from unjammed to jammed state occurs via rapidly propagating fronts that are the locus of intense shear: they transform isotropically amorphous, unjammed fluid into anisotropic, shear-jammed solid
- At fixed packing fraction, the different states of a suspension of hard particles (shear thinning, Newtonian, shear thickening, shear jammed) appear to be delineated by stress → can construct unifying state diagram
- Dense suspensions generically exhibit DST (see Brown et al., Nature Mat., 2010)....but few show shear jamming. Scenario based on recent models: ϕ_m too close to ϕ_0 , i.e., friction coefficient μ too small.
- Reversible interparticle hydrogen bonding acts to increase effective friction & elicit shear jamming

When exactly are particles in contact, i.e., experience contact friction? What micro-scale properties set $\phi_m(\mu)$? Models & state diagram so far only for steady-state behavior.

What about transient or start-up behavior? Impact, jamming fronts?

- A shear-jammed state has a yield stress and acts like a solid
- A shear-thickening state, incl. DST, is still flowing...thus not jammed
- The transition from unjammed to jammed state occurs via rapidly propagating fronts that are the locus of intense shear: they transform isotropically amorphous, unjammed fluid into anisotropic, shear-jammed solid
- At fixed packing fraction, the different states of a suspension of hard particles (shear thinning, Newtonian, shear thickening, shear jammed) appear to be delineated by stress → can construct unifying state diagram
- Dense suspensions generically exhibit DST (see Brown et al., Nature Mat., 2010)....but few show shear jamming. Scenario based on recent models: ϕ_m too close to ϕ_0 , i.e., friction coefficient μ too small.
- Reversible interparticle hydrogen bonding acts to increase effective friction & elicit shear jamming
 Collaboration with

When exactly are particles in contact, i.e., experience contact frict Ma What micro-scale prop

Models & state diagram so far only for steady-state behavior. What about transient or start-up behavior? Impact, jamming fronts?

- Matthieu Wyart→ extended model
- ➔ poster by Endao Han

- A shear-jammed state has a yield stress and acts like a solid
- A shear-thickening state, incl. DST, is still flowing...thus not jammed
- The transition from unjammed to jammed state occurs via rapidly propagating fronts that are the locus of intense shear: they transform isotropically amorphous, unjammed fluid into anisotropic, shear-jammed solid
- At fixed packing fraction, the different states of a suspension of hard particles (shear thinning, Newtonian, shear thickening, shear jammed) appear to be delineated by stress → can construct unifying state diagram
- Dense suspensions generically exhibit DST (see Brown et al., Nature Mat., 2010)....but few show shear jamming. Scenario based on recent models: ϕ_m too close to ϕ_0 , i.e., friction coefficient μ too small.
- Reversible interparticle hydrogen bonding acts to increase effective friction & elicit shear jamming

When exactly are particles in contact, i.e., experience contact friction? What micro-scale properties set $\phi_m(\mu)$? Models & state diagram so far only for steady-state behavior.

What about transient or start-up behavior? Impact, jamming fronts?