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Track Flow Field inside 3D Suspension
with ultrasound @ 10,000fps
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Propagating Jamming Front converts fluid into solid
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Strain Rate Tensor from Velocity Field




Shear Jamming Front = locus of maximum shear intensity

Front speed uy = ku, k=1/e > 1
Longitudinal front speed = 2 x transverse front speed

E. Han, |. Peters, HMJ Nature Comm. (2016)



* Asjammed region expands into bulk, stress grows (“added mass”); 1D: 7 « kpu%

see E. Han’s poster

* Once front reaches bottom (or boundaries), solid plug forms

M. Roché et al. (2013)



Jamming under extension

Sayantan

e Solidification instead of necking & snap-off ﬂ
* Force shoots up when fronts reach boundaries



Shear Jamming Fronts
convert unjammed fluid into jammed solid

Extension (3D) Impact (3D)

Majumdar et al., PRE (2017) Han et al., Nat. Comm. (2016)
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Shear jamming in Couette geometry
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Jamming onset requires minimum shear stress

(= sufficiently fast shearing speed)

uy = 0.008 m/s
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State Diagram

based on Couette experiments
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State Diagram

based on Couette experiments

unjammed shear jammed
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State Diagram

based on Couette experiments

unjammed shear jammed
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State Diagram
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State Diagrams

Wyart & Cates (2014)
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State Diagrams

Wyart & Cates (2014)
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e Couette data [Peters et al., 2016]
» parallel plate data (black) [unpubl.]
* Wyart-Cates DST boundary
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parallel plate data (black) [unpubl.]

Couette data [Peters et al., 2016]
Wyart-Cates DST boundary

State Diagrams

Singh, Mari, Denn, Morris (in press)

To)
. . — ©
T T T T T T | o
— l@l
! o
[ o - - 0
3888888888888 ok & 0 c
epgfecececceeexfO+++++ o O
| 000000000000 0RO0B++++ [ 10 S
eo0000000000 ++++++ o ¢
ooooooﬂooo O+++++ o=
oooooomooo XO0O++++ _ % ab
00000++++ 5
©0000000000XX00000+++ o O
20 XOQ00QQH bk - < O-
q o
=
S =
B 1o
— — 1 —_ 1 — L —- 1 _-
P o
(ed) ssaJis Jeays
0
L Duwerssewonond 8 13
S ) .\+ + + e ASa
I@: m (\
E Lxo+ 4+ +
m x 0 ++ +
8
- x® 0 ++ +
a
» O ++ + <
< o —_
%2 ++ 4 =3
J S
Fre o TV TS T Y| B
T-o, 18a, S
4 * L] EN 4 > X XX0O0 ++ +
II 7
L ] ® ® x x X XXO0O0 ++ +
:ﬂ o
o o e x  x x\ xxxx00 ++ + O
L L L] X x x X xXXx00 ++ +
ﬁ_m &)
S
[ ] L ] [ ] X x C X(X x X000 ++ +
Py Py S sk . 5
o © e w ©
— — — m

SSaJls JeaysS




Boundaries shift with ¢_ (u)

Based on Wyart & Cates (2014) Based on Singh, Mari, Denn, Morris (in press)
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=>» Need large u to obtain significant shear jamming region below ¢,



Which particle-scale properties control u?

e Particle size and geometry

e Particle surface roughness

e Particle surface chemistry



Which particle-scale properties control u?

=>» Tailor capacity for hydrogen bonding
to elicit, or suppress, shear jamming

Partic
Partic

Partic

e size and geometry
e surface roughness

e surface chemistry

Nicole James



Pull test for shear jamming
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Adding urea suppresses shear jamming...
...but not DST!

0.8um PMMA/ITA in ag. glycerol
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Urea = chaotrope = chemical agent that disrupts hydrogen bonding



PMMA/ITA particles specifically designed to have surface terminated with COOH groups

Urea couples to COOH =¥ interferes with hydrogen bonding capacity



Deplete hydrogen bonding capacity in cornstarch suspensions

=>» SJ no longer observed...but DST alive & well
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Proposed Scenario

e

Relaxation

Lubricated contacts Frictional contact H-bonding _ _ _
low stresses or rates Lubrication layer is broken enhances friction ~ >tressis removed; particle-particle
b, is key b, is key between particles H-bonds may be replaced by

solvent-particle bonds

Important: H-bonding is reversible
in protic solvents like water




Proposed Scenario

Lubricated contacts Frictional contact H-bonding - Relaxation '
low stresses or rates Lubrication layer is broken enhances friction ~ >tressis removed; particle-particle
b, is key b, is key between particles H-bonds may be replaced by

solvent-particle bonds

* Inter-particle hydrogen bonding enhances contact friction

* This decreases ¢,,(u) & enlarges SJ regime

Conversely:
Reduced hydrogen bonding capacity =» smaller y, larger ¢,,,(u)

7

reduced SJ regime



Move DST-SJ boundary by controlling u via hydrogen bonding capacity

*

Rescaled Stress (1/7)
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* At fixed packing fraction: Onset stress for SJ (and also DST) shifts
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Rescaled Stress (t/7,)
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Measure frictional interactions directly

Extract friction from lateral
deflection force during slow,
100nm AFM scans near apex

>> scale of molecular interactions

Comtet et al. (Nature Comm 8, 2017):
fast oscillatory probe, few nm amplitude

u=0.53

n=0.3




To sum up:

* Ashear-jammed state has a yield stress and acts like a solid
* Ashear-thickening state, incl. DST, is still flowing...thus not jammed

* The transition from unjammed to jammed state occurs via rapidly propagating
fronts that are the locus of intense shear: they transform isotropically
amorphous, unjammed fluid into anisotropic, shear-jammed solid
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amorphous, unjammed fluid into anisotropic, shear-jammed solid

* At fixed packing fraction, the different states of a suspension of hard particles
(shear thinning, Newtonian, shear thickening, shear jammed) appear to be
delineated by stress =» can construct unifying state diagram
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delineated by stress =2 can construct unifying state diagram

* Dense suspensions generically exhibit DST (see Brown et al., Nature Mat., 2010)....but
few show shear jamming. Scenario based on recent models: ¢,,, too close to
o, i.€., friction coefficient u too small.

* Reversible interparticle hydrogen bonding acts to increase effective friction &
elicit shear jamming
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What micro-scale properties set ¢,,(u)?



To sum up:

* A shear-jammed state has a yield stress and acts like a solid
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Particle surfaces / surface chemistry Solvent properties



Opportunities:
Design surface chemistry & solvent to elicit shear jamming

10.0 + OH glass in aq. glycerol
+ CH glass in silicone oil
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What about transient or start-up behavior? Impact, jamming fronts?
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few show shear jamming. Scenario based on recent models: ¢,,, too close to
o, i.€., friction coefficient u too small.

* Reversible interparticle hydrogen bonding acts to increase effective friction &

elicit shear jamming Collaboration with

When exactly are particles in contact, i.e., experience contact frigl Matthieu Wyart
What micro-scale prog 2 extended model

Models & state diagram so far only for steady-state behavior. => poster by Endao Han

What about transient or start-up behavior? Impact, jamming fronts?
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