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While the jamming events in region B are sparsely dis-
tributed and seem to occur randomly in time, they become
very regular with a well-defined frequency at r ! 0:2p?, re-
gime C Fig. 2(f). This is visible macroscopically as periodic
jerks of the rheometer top plate. The minimum shear rate
reached during a jamming event is variable, Fig. 2(c), while
the shear rate in the flowing state is approximately the same
and corresponds to the right-hand limit of the horizontal lines
in Fig. 2(f). These oscillations remain over long times and
only change over the course of hours (presumably as the
sample dries out). The frequency of the oscillations increases
linearly with the applied stress, Fig. 3(a). Each sudden
decrease in _c is accompanied by a localized deformation of
the air-sample interface. A small area of the interface compa-
rable to the gap height bulges out slightly, while the sur-
rounding area curves slightly inward. The interface recovers
a smooth profile as the plate accelerates back to the steady-
state value. Note that these localized jams are not an artifact
of the cross-hatched plates; they start to appear at the same
stresses with smoother surfaces, albeit in the presence of sig-
nificant wall slip, as well as in Couette geometries [Fig.
4(b)].

In region D, Fig. 2(f), periodic jamming coexists tempo-
rally with bursts of unpredictable fluctuations, as shown in

Fig. 2(e). During the periodic intervals, the air-sample inter-
face behaves the same as in region C, with short-lived, static
jammed regions appearing at the same time as the drop in
shear rate. During the random bursts, more irregular surface
deformations are observed that are long lived and move
around the interface opposite to the direction of flow [see
Figs. 3(b)–3(d)]. Usually, only one or two transient deforma-
tions appear during each intermittent event and disappear
when the periodic oscillations resume.

At the highest stresses r=p? ! 1, in region E, Fig. 2(f), the
periodic jamming and unjamming are absent, and only
random-looking fluctuations are observed, Fig. 2(e). This
behavior, and the series of events at lower stresses that pre-
cede it, are similar to the development of rheochaos as
observed in micellar systems [2]. We leave it to future work
to establish whether the flow is really chaotic in a technical
sense; for our purposes, what matters is that it is unsteady,
not readily predictable, and without obvious periodic fea-
tures. In region E, the first normal stress difference is perma-
nently large and positive and anticorrelated with the shear
rate. Very recently, unstable flow, sudden jams and a transi-
tion to what appears to be rheochaos have been observed in
2D computer simulations of inertial frictional grains [22].
Although the origin of the sigmoidal flow curves is different,

FIG. 2. (a)–(e) Apparent shear rate as a function of time for increasing stress, on the left y axis. The thin black lines show the normal pressure nf/rxy on the
right y axis. (f) Apparent shear stress as a function of rim shear rate _cR in absolute and reduced units for corn starch at a mass fraction of /w¼ 0.52, corre-
sponding to a volume fraction just above /m in WC theory. Horizontal lines: raw _cR data at different applied rxy in the stable (dark blue), periodic (red), inter-
mittent (green), and chaotic (cyan) regimes. Symbols: average _cR.
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in viscosity with shear rate gradually becomes larger with
increasing packing fraction, and it is usually found that the
shear thickening regime starts at a critical stress τmin which
is roughly independent of packing fraction (Gopalakrishnan
and Zukoski 2004, Laun 1984, Maranzano and Wagner 2001a,
Wagner and Brady 2009). Below this stress, shear thinning or a
Newtonian regime may be found, depending on the suspension.

3.2. Discontinuous shear thickening

In many shear thickening fluids, the viscosity increase with
shear rate continues to become steeper with increasing packing
fraction, up to the point that the viscosity and shear stress
appear to jump discontinuously by orders of magnitude beyond
a certain shear rate (such as the red curve in figure 2). In
such cases it is often said that the shear thickening evolves
from continuous to discontinuous shear thickening with
increasing packing fraction. This so-called Discontinuous
Shear Thickening (DST) has the most dramatic increase in
viscosity of any type of shear thickening, and includes the
prototypical example of cornstarch in water as well as many
other densely packed hard-particle suspensions (Barnes 1989,
Bender and Wagner 1996, Bertrand et al 2002, Boersma et
al 1990, Brown and Jaeger 2009, Brown et al 2010a, 2010b,
Egres and Wagner 2005, Egres et al 2006, Fall et al 2008,
Frith et al 1996, Hoffman 1972, 1974, 1982, Laun 1994, Lee
and Wagner 2006, Lootens et al 2003, 2005, Maranzano and
Wagner 2001a, 2001b, 2002, Metzner and Whitlock 1958,
O’Brien and Mackay 2000, Shenoy and Wagner 2005), and
solutions of micelles (Hofmann et al 1991, Liu and Pine 1996).
An example of the evolution from continuous to discontinuous
shear thickening with packing fraction is shown in figure 3.

The DST suspensions mentioned above tend to have
several rheological properties in common that provide
considerable insight into the possible mechanisms and help
distinguish different phenomena. One such property is that
the DST regime tends to occur in a well-defined range of
shear stress. The onset of the shear thickening regime can be
characterized by the same critical stress τmin that is roughly
independent of packing fraction as with continuous shear
thickening (see figure 3(b)). Once started, the viscosity
or shear stress increase does not continue indefinitely with
increasing shear rates. Instead, the shear thickening regime
ends at a maximum stress scale τmax, also roughly independent
of packing fraction (Brown and Jaeger 2009, Frith et al 1996,
Maranzano and Wagner 2001a, Shenoy and Wagner 2005).
Above this stress, shear thinning, cracking, and breakup of the
suspension are often observed (Laun 1994).

A second common property has to do with the scaling
of the slope of τ (γ̇ ) in the shear thickening regime. The
apparently discontinuous jump in the viscosity or shear stress
with shear rate tends to be observed only over a range of
packing fractions a few per cent below a critical packing
fraction φc in very densely packed suspensions, typically
around φc ≈ 0.6 for nearly spherical particles (Brown and
Jaeger 2009, Egres and Wagner 2005, Maranzano and Wagner
2001a). This critical packing fraction corresponds to the
jamming transition, above which the system has a yield stress
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Figure 3. Representative viscosity curves showing the evolution of
DST with increasing packing fraction. The suspension consists of
cornstarch in a solution of 85% glycerol and 15% water by weight,
with different mass fractions φm (proportional to φ) shown in the
key. (a) Shear stress τ versus shear rate γ̇ , in which shear
thickening is defined by the region with slope greater than 1. The
evolution to apparently discontinuous viscosity curves can be seen
as the mass fraction increases toward φc. Above φc, the suspension
becomes a yield stress fluid. (b) Same data, replotted as viscosity η
versus τ . The latter format better shows the gradual evolution of the
increasing slope in the shear thickening regime, confined in the
stress range between τmin and τmax. When plotted as η(τ ), a slope
greater than zero corresponds to shear thickening, and a slope of 1
corresponds to a discontinuous jump in τ (γ̇ ). Figure based on
Brown and Jaeger (2012). Reproduced with permission. Copyright
2012 American Institute of Physics.

like a solid (Liu and Nagel 1998). The value of φc can vary with
particle shape and a number of other suspension properties, but
the proximity to this point generally controls the slope of shear
thickening regime like a second order phase transition; the
slope of τ (γ̇ ) diverges at φc (Brown and Jaeger 2009, Brown
et al 2010b). This critical point will be discussed in more detail
in section 6.

3.3. Local versus global descriptions of rheology and
nomenclature

There is a major distinction between the local relation linking
shear stress and shear rate and the energy dissipation rate
measured by a rheometer for DST suspensions just described.
It has been found that the local shear stresses between
neighboring particles are frictional and thus proportional to
the local normal stress, which can depend on the boundary
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FIG. 6. (Color online) (a) Flow curve: stress vs shear rate for the
suspension at ϕ = 58% in the confocal cone-plate rheometer. Inset:
the fluorescence intensity vs the distance to the cone center when
the imposed stress is fixed at σ = 40 Pa. (c, d) Two confocal images
taken at a magnification of 63× are typical for low (σ = 10 Pa)
and intermediate (σ = 40 Pa) stress, respectively. The images taken
at other magnifications show similar results. (b) The calibrated
fluorescence intensity changes over the controlled stress sweep
(30 points per decade and 3 s per data point). I0: The saturated
fluorescence intensity. (e) Confocal image taken at σ = 40 Pa for ϕ =
56% suspension. The size of the images (c–e) is 100 µm × 100 µm.

due to a large measured area). The homogeneous stress
distribution field is confirmed by the fluorescence intensity
profiles at different positions along the cone radius [Fig. 6(a),
inset], indicating no shear banding in the vorticity direction.
This happens in spite of the fact that the overall fluorescence
intensity does increase with increasing the imposed shear
stress [Fig. 6(b)], showing that these molecules can be used to
monitor flows for non-Newtonian fluids.

Figure 6(b) records the calibrated fluorescence intensity
over the stress sweep process for the concentrated suspen-
sion at ϕ = 58% as well as for the diluted suspension at
ϕ = 56%. In both cases, the fluorescence first increases mildly

in the Newtonian regime upon increasing stress, indicating no
effective frictional contact network between particles. In the
thickening regime the fluorescence for ϕ = 56% suspension
increases faster but still continuously. This is very much
consistent with the continuous shear thickening behavior of
Fig. 1, suggesting friction is indeed at the origin of shear
thickening. For the ϕ = 58% suspension, the fluorescence
increases abruptly and almost discontinuously; the S-shaped
curve is then caused by a sudden mobilization of a frictional
force network between particles: Due to the controlled stress,
the only way that the system can respond to the increased
effective viscosity is to decrease the shear rate, causing the
negative slope part of the S-shaped curve. For the highest
stresses, the fluorescence in both cases saturates (all molecules
already operate at their maximum quantum efficiency).

Recent simulation results [13,20] also reveal the existence
of an S-shaped flow curve and similarly to what is observed
here, the authors argue that the underlying cause is a frictional
network that is a monotonic function of the intensity of stress
chains. The interpolation between the two states (Newtonian
state and thickened state) is then simply a stress-based mixing
rule. In this case, a macroscopic “phase separation” (i.e., vor-
ticity banding) does not show up, in line with our observations.
The viscosity (stress) fluctuation shown in Fig. 4(b) is likely
due to building and release of local stress in the formation of
the percolating frictional network.

In summary, we experimentally study the S-shaped flow
curve of concentrated granular suspensions and directly
observe frictional rheology, in agreement with recent theory
and (stress controlled) simulations. We conclude that friction
is at the origin of shear thickening.

For the S-shaped flow curve, when a constant stress
is applied in between the high- and low-stress branches,
our visualization experiments suggest that the flow remains
homogeneous during the transition from the Newtonian to the
shear thickened state, in line with the idea that a frictional force
network forms dynamically in the flow; once this network
percolates, the shear thickened regime is reached.

We thank NanoNextNL and FOM/NWO for the financial
support of the present research work.
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_γðr;ΩÞ. These values are compared in Fig. 3(a) with the
local rheology data obtained from macroscopic rheometry
using Eqs. (1) and (3) to evaluate the local stress and strain
rate near the inner cylinder. Clearly, in the shear-thinning
regime, the stationary local response within the gap
matches our macroscopic measurements.
This local homogeneous response is observed so long as

the maximal local strain rate, which is reached at the inner
cylinder, lies below the _γDSTðϕ0Þ value identified in macro-
scopic rheometry [Fig. 1(c)]. Homogeneity and locality
then enable us to estimate the critical rotation rate at which
DST is expected as ΩDSTðϕ0Þ≃ 8 rpm.
A sudden transition occurs as soon as Ω crosses

ΩDSTðϕ0Þ. As shown in Fig. 2(a), the flow then abruptly
stops in a large region. Namely, the velocity profile jumps
from one of the rightmost curves, corresponding to homo-
geneous flows, to the leftmost one, i.e., the most strongly
localized flow. Note that measuring a single velocity profile
requires accumulating MRI data over ∼30 s, which corre-
sponds here to a strain of order 50. Upon crossing

ΩDSTðϕ0Þ, the first measurable velocity profile is already
localized. The flow subsequently remains steady over
thousands units of strains. DST is thus clearly concomitant
with shear localization.
AsΩ increases further, the velocity profiles progressively

extend to the right (i.e., towards the outer cylinder). In all
cases, the system remains separated into a flowing layer near
the inner cylinder and a jammed region near the outer one.
The fractionof thegap that is jammed is reported onFig. 3(b):
it jumps at ΩDSTðϕ0Þ and then slowly decreases.
Comparing these velocity profiles [Fig. 2(a)] with local

density data [Fig. 2(b)], we find that, quite strikingly, the
flow localization at Ω ¼ 10 rpm≳ ΩDSTðϕ0Þ is associated
with the sudden emergence of density inhomogeneities.
Namely, the volume fraction decreases in the flowing layer,
while it increases in the jammed region, as required by the
conservation of particle number. As Ω increases beyond
ΩDSTðϕ0Þ, the progressive extension of the flowing layer is
accompanied by a broadening of the low-density region. At
high strain rates, the density saturates, in the flowing layer,
at a packing fraction ϕmin ≃ 33%≲ 35%≃ ϕRLP and, in
the jammed region, at ϕ ∼ ϕRCP. It is noteworthy that the
density profile can achieve multiple forms depending on
shear history [24].
Let us emphasize that the change of density created by

the DST transition is irreversible. Indeed, once a stationary
profile ϕðr;Ω1Þ had been produced by ramping Ω up to
some arbitrary Ω1 > ΩDST, we found that the density
profile remained the same under any subsequent lowering
of Ω. This irreversibility shows up in our macroscopic
rheometry setup (the small Couette cell) as illustrated in
Fig. 1(d) where we plot the torque T vs Ω during (i) an
initial up ramp that drives the system through the DST
transition followed by (ii) a down ramp. The torques
measured during the up and down ramps clearly lie on
different branches. However, if we subsequently (iii) rein-
crease Ω, torque TðΩÞ tracks the data previously obtained
on the down ramp. Hence, we reason that on the down (ii)

(a)

(b)

FIG. 2. Steady MRI data for a ϕ0 ¼ 43.9% cornstarch suspen-
sion and different rotational velocities Ω. (a) Velocity profiles.
(b) Density profiles; solid lines indicate ϕRLP and ϕRCP.

(a) (b)

FIG. 3 (color online). (a) Comparison of local rheometry data
obtained from MRI measurements (open symbols) and near the
inner cylinder in macroscopic rheometry (filled symbols) in
homogeneous conditions. Upper data: ϕ ¼ 43.9%; lower data:
ϕ ≈ 33.5%. (b) From the velocity profiles [Fig. 2(a)]: fraction of
the gap which is jammed vs Ω.
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Goals & outline

DST under steady shear stress
perform long rheological experiments
perform local measurements at “mesoscale”

 check for gradient and/or vorticity banding
 understand the origin of unsteady dynamics

1. Experimental system & setup

2. Dynamics of the global rheology

3. Spatiotemporal measurements

4. Comparison with model and simulations



Dense cornstarch suspension

Christianson et al.,
Food Struct. 1, 13-24 (1982) 

optical 
microscopy

Morphology and Rheology of Corn Starch 

conditions for granule isolation and preparation 
for microscopic examination are quite similar to 
those used earlier for wheat starch (Bowler et 
al., 1980). Therefore, a comparison can be 
mane. 

Raw corn starch granules appear basically 
spherical, with some granules having faceted 
sides (Fig. lA). It is difficult to make 
interpretations on changes in radial swelling of 
these granules. Fig. lB shows granules cooked 
at 65°C for 15 minutes. For example swelling 
measurements by filtration of this sample 
(Fig. lB) give a swelling Q value of about 3.5, 
which would correspond to an average diameter 
change of 50% for spherical particles; yet very 
little swelling can be seen when these granules 
are compared to the original granules. At 67°C, 
swelling continues producing thick ridges (about 
3.5 (Fig. lC and lD). These ridges become 
thinner (less than 2 and more numerous, 
making the granules more complex geometrically 
at 70°C (Fig. 2A and 2B). The size of the 
swollen granules is greatly increased at 70°C as 
compared to 67°C. These granules have been 
heated to the midpoint of the gelatinization 
range where most of the granules have lost their 
birefringence. These progressive shape changes 
can also be detected in the light microscope 
using Normanski shadowing even before the 
granules are freeze dried and, therefore, can 
not be considered artifacts of freeze drying. 

15 

Uncooked corn 
starch granules (A), and 
granules isolated from a 
5 % dispersion cooked for 
15 minutes at 65°C (B), 
and 67°C (C) and (D). 

Sterling (1978) has postulated that the 
molecular structure of the branched and unbranched 
components is responsible for this radial 
contraction and tangential expansion. In 
agreement with his views, it appears that 
different portions of the granule swell 
differently depending on the molecular ordering 
of the starch within the granules. The amorphous 
regions swell and expand at 67°C. The thick 
ridges showed birefringence under polarized 
light which could be due either to unswollen 
starch or starch in a state of strain. At 70°C, 
swelling of the more ordered regions occurs, 
along with the progressive loss of birefringence. 
At this temperature, the ridges are thinner and 
indentations are shallower. At 70°C, about 10% 
of the starch has been solubilized, leaving the 
more compacted amylopectin as the granule's 
major structural component. Thus the collapsed 
regions could result from loss of solubilized 
amylose. When the ridges are observed under a 
polarizing light microscope, residual 
birefringence is seen on the edges of the ridges. 
Such birefringence can be generated even in an 
initially isotropic polymer by the diffusion 
process of solvent entering or leaving the 
polymer in the sample (Drechsel et al., 1953). 

As the cooking temperature is raised to 
75°C, the granules develop more ridges (Figs. 2C 
and 2D). At 80°C, the granules appear to go 
through a transition of melting or softening 

SEM polydisperse, anisotropic grains
median diameter a = 13 μm 
standard deviation = 7 μm
porous + absorbs moisture
weakly adhesive

density-matched suspension
in water + CsCl at 46:54% wt.

(density = 1.63)
!w = 41%  ⇔  ! ≈ 47%
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sharp DST transition 
at σc ≈ 12 Pa

flow curve under increasing stress

cornstarch size distribution (Sigma) 



ultrasound probeinner spindle (rotor)outer cup (stator)

Experimental setup
small-gap Couette geometry

“smooth” Delrin
rotor ∅ 46 mm, stator ∅ 50 mm
gap e = 2 mm ≈ 150 a
height H = 63 mm ≈ 5,000 a
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Dynamics of the global shear rate
long steps at constant stress (up to 3,000 s per stress value)
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Dynamics of the global shear rate
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Statistics of the shear rate increments

regime I
σ =16 Pa

regime II
σ =100 Pa
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FIG. 2. Statistical properties of the shear rate above �
c

at low stress (regime II) and high stress (regime III). a) Probability
density functions (pdf-s) of the increments of �̇(t) for two imposed stresses, 16 Pa (left) and 100 Pa (right), and several time
lags �t (color scale). A 10

p
10 vertical shift has been applied between successive density functions. b) Corresponding second

(variance), third (skewness) and fourth (kurtosis) momentum of the distributions for 16 Pa (dark blue) and 100 Pa (green).
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FIG. 3. Highlighting spatio-temporal patterns during imposed stress steps, for � = 12 Pa. a) Dynamics of �̇(t) from rheology
(dark thick line) and �̇
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(t) from ultrasound – corrected from the time-averaged slip – (bright thin line). b) Spatio-temporal
diagrams of the measured local intensity I(r, z, t) along the z-direction. c,d) Spatio-temporal diagrams of the measured local
velocity v(r, z, t) respectively averaged in z and r. The orange solid line features �̇
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a discrete vorticity band whereas the blue dashed lined features �̇
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FIG. 2. Statistical properties of the shear rate above �
c

at low stress (regime II) and high stress (regime III). a) Probability
density functions (pdf-s) of the increments of �̇(t) for two imposed stresses, 16 Pa (left) and 100 Pa (right), and several time
lags �t (color scale). A 10

p
10 vertical shift has been applied between successive density functions. b) Corresponding second

(variance), third (skewness) and fourth (kurtosis) momentum of the distributions for 16 Pa (dark blue) and 100 Pa (green).
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FIG. 3. Highlighting spatio-temporal patterns during imposed stress steps, for � = 12 Pa. a) Dynamics of �̇(t) from rheology
(dark thick line) and �̇

US

(t) from ultrasound – corrected from the time-averaged slip – (bright thin line). b) Spatio-temporal
diagrams of the measured local intensity I(r, z, t) along the z-direction. c,d) Spatio-temporal diagrams of the measured local
velocity v(r, z, t) respectively averaged in z and r. The orange solid line features �̇

vb

on a time interval corresponding to
a discrete vorticity band whereas the blue dashed lined features �̇

d

on a time interval during which no peculiar events are
suspected. e,f) Intensity I(t) and normalized velocity v/v

Rot

(t) averaged over r and z along the vorticity band propagating
along the vector T. v

Rot

is the velocity of the rotor. g) Normalized velocity profiles v(r)/v
Rot

averaged along the colored
lines at di↵erent stages of the event. Thin blue line, velocity profile before event. Dashed tan line, acceleration preceding
the event. Thick orange line, sudden deceleration during the event. Red thin line, relaxation to the initial velocity profile.
h) 2nd momentum of the distribution of ��̇ associated with entire time series (black diamonds) and restricted to the two
distinct patterns: h��̇2

vb

i (orange squares), h��̇2

d

i (blue circles). The gray thick line is the reconstruction of h��̇2i using a linear
combination of h��̇2

d

i and h��̇2

vb

i.

              regime I
Δt ≲ 0.4 s: intermittent, ballistic-like
0.4 ≲ Δt ≲ 4 s: non-Gaussian, diffusive-like
Δt ≳ 4 s: Gaussian, uncorrelated dynamics

        regime II
Δt ≲ 1 s: Gaussian, ballistic-like
Δt ≳ 1 s: Gaussian, uncorrelated

“turbulent” rather than “chaotic” dynamics 
but what does short-time intermittency correspond to? 

what do the various timescales correspond to?



Ultrasonic imaging under shear
top		
view

128 channels at 160 MHz 
(Open S, Lecœur Electronique) 

128 transducers at 15 MHz 
(Imasonic) 

 plane wave emissions up to 20,000 fps 
 128 back-scattered speckle signals 
 standard parallel beam-forming 
 resolution: δr=100 μm, δz=250 μm

 1D cross-correlation along r 
 calibration in a Newtonian fluid 
 2D velocity maps vθ(r,z,t)

⇒

z

r

Gallot et al., Rev. Sci. Instr. 84, 045107 (2013)

in dilute hollow glass beads in water

ultrasound ROI: 2 mm x 32 mm

stator rotor
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Spatiotemporal patterns in regime I

homogeneous flow, no jammed phase, slip 
strong correlation between global and 

local measurements 
intermittent propagating events
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FIG. 13. Relaxation dynamics for stress steps (9 Pa ! 100 Pa). Top panel, shear stress as a function of the shear strain
�. Bottom panel, shear rate �̇ as a function of �. Gray dots, experimental data from 10 steps. Thick black line, average
experimental data. Thin green line, exponential fit at short time scales, starting from � = 0.043. The short characteristic
relaxation strain is �

0

= 0.034. Dashed orange line, exponential fit at longer time scales. The long characteristic strain is
�1 = 0.75.
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Intermittent events in regime I
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FIG. 2. Statistical properties of the shear rate increments ��̇(�t, t) above �c at low stress (regime II) and high stress (regime
III). a) Probability density functions (pdf-s) of the increments of �̇(t) at � = 16 Pa (left) and 100 Pa (right), and several time
lags �t (color scale). A 10

p
10 vertical shift has been applied between successive pdf. b) Corresponding second (variance),

third (skewness) and fourth (kurtosis) momentum of the distributions for � = 16 Pa (dark blue) and 100 Pa (green).
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FIG. 3. Highlighting spatio-temporal patterns during imposed stress steps, for � = 12 Pa. a) Di↵usive pattern. From Top
to bottom : dynamics of �̇d(t) from rheology (thick line) and kB �̇B(t) from ultrasound (thin line) ; spatio-temporal diagrams
of the measured local velocity v(r, z, t) respectively averaged in r and z. b) Ballistic pattern associated with �̇vb(t). Same
legend as in a). c) Second moment of the distribution of ��̇ from the entire series (black diamonds) and restricted to the two
distinct patterns: h��̇2

vbi (orange squares), h��̇2

di (blue circles). The gray XXX thick line is the reconstruction of h��̇2i using a
linear combination of h��̇2

di and h��̇2

vbi. d) Normalized velocity v(z, t)/v
Rot

(t) averaged over r then averaged along the vorticity
band propagating along the vector T defined in Panel b). v
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The second pattern is associated with peaks in the fluc-
tuations of �̇

vb

, Fig. 3b. h��̇2

vb

i displays a ballistic scaling,
Fig. 3c. This feature is associated with sudden accelera-
tion and deceleration of the rotor on time scales around
0.5 s. Locally this corresponds to a discrete vorticity
band that propagates with a velocity c

vb

⇠ 10 mm/s
along T in the z-direction. Contrary to the vorticity
bands observed in a solution of wormlike micelles [26],
this vorticity band is localized in the azimuthal plan.
The vorticity band is associated with peculiar velocity
profiles along the temporal direction. The profile is com-
posed of a front and a tail separated by an interface of
width �

vb

⇠ 1 mm. Compared to the average velocity
of the suspension, the vorticity band has a front which
moves ⇠ 20 % faster and a tail that moves ⇠ 20 % slower,
Fig. 3d. We note that the local velocity profiles along the
r-direction indicate an homogeneous flow and shows no
sign or shear banding or arrest, Fig. 3e.

We use these two patterns as a projection basis to
sort the dynamics of �̇ during the entire duration of
the step stress experiment, Fig. 8. We can fit h��̇2i
with a linear combination of h��̇2

vb

i and h��̇2

d

i: h��̇2i =
↵h��̇2

vb

i+�h��̇2

d

i. This demonstrates retrospectively that
singling out those two patterns is su�cient to reconstruct
the entire DST dynamics at imposed stress.

This analysis is repeated on the entire stress series,
Fig. 4. As the stress increases, we observe that oc-
currence of the vorticity band increases. Their velocity
also slightly increases from ⇠ 10 mm/s to ⇠ 20 mm/s.
Surprisingly, the linear combination of h��̇2

vb

i and h��̇2

d

i
to reconstruct h��̇2i still works in regime III. This sug-
gest that discrete vorticity bands interact very little with
each other. In regime II, the di↵usive patterns domi-
nate the dynamics whereas in regime III, the vorticity
bands tend to overlap and, eventually, solely account for
the dynamics, Fig. ??b. the superposition of discrete
shear vorticity band and their low interaction participate
to the gaussianisation of the statistic of �̇ (Fig.2a-right
panel) and the decorrelation of local and global shear
rate, XXXFig12.

IV. DISCUSSION

Our experiments clearly show that the instability ob-
served in the DST regime manifests itself by discrete vor-
ticity bands. This is compatible with the general frame-
work of the Wyart-Cates model [10], which stipulates
that DST leads to an instability, the nature of which is
unknown. This instability may at first glance take many
forms.

Our results clearly disagree with several theories ex-
plaining discontinuous shear thickening. It is unlikely
that our bands are related to the formation of macro-
scopic, kinetically frozen particle clusters [7, 27, 28] since
our bands generally induce local particle depletion. We
also do not observe the macroscopic phase separation in
the r direction suggested by Fall et al. [22]. While our
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FIG. 4. Characterization of the dynamics as a function of
the applied stress. a) Propagation velocity of events. Error
bars represent the standard deviation in our statistics. b)
Occurrence frequency fe of single (or multiple) events (visible
using ultrasound echography). Circles, short time series (⇠
40 s). Squares, longer time series (⇠ 750 s). c) Coe�cients ↵
(diamonds) and � (circles) of the projection of h��2i on the
patterns h��̇2

vbi and h��̇2

di defined in Figure 3.

apparent shear-thinning velocity profiles hint at global
particle migration under shear, we never observe locally
arrested flows even during intense shear rate fluctuations
or during shear bands. Our local velocity profiles v(r, t)
rather keep a fixed shape regardless of the large-scale
shear rate or slip dynamics. Migration-induced local jam-
ming is then insu�cient to explain our experimental find-
ings.
The complex time dynamics we observe is in qualita-

tive agreement with [14, 15]. Rather than interpreting
time dynamics in terms of chaos, we successfully ratio-
nalized it using a simple two dimensional basis of pat-
terns. This approach was only possible thanks to long
step stress experiments and local insight of the flow.
Rathee et al. [16] focuses on the local stress dynamics at
the stator and show that large stress fluctuations prop-
agating in random directions. This may be a surface
signature of the birth of the discrete vorticity bands we
observe in the bulk.
Theoretical arguments [14] refute the possibility of sta-

ble, homogeneous vorticity bands. Were vorticity bands
stable, the particle pressure in both bands would be equal
to stabilize the band interface. According to the Wyart-
Cates model, this would lead to identical shear stresses,
and thus an absence of bands. Our experiment sug-
gest stress homogeneity should be included in the Wyart-
Cates model to observe our result.
Our conclusion is that our result could be explained

band speed

event frequency

quiescent vs event

event

quiescent

short-time intermittency is due to isolated propagating bands 
long-time Gaussian dynamics suggests non-interacting bands

  broad peak in the PSD 
 around ~0.1 Hz

cut-off in the PSD
at ~0.3 Hz

cell height ~ band width
speed  ~30 mm.s-1

one timescale ~1-2s

cell height ~60 mm
band width ~10 mm

speed  ~15 mm.s-1  
slow timescale ~4 s 

fast timescale ~0.5 s
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propagating vorticity bands predicted by model & simulations 

⇒ slip events as an indirect signature of such vorticity bands?
Chacko, Fielding, Mari & Cates, in preparation (2018)

prediction #1: analytical upper bound
for the propagation speed 

NONMONOTONIC FLOW CURVES OF SHEAR THICKENING . . . PHYSICAL REVIEW E 91, 052302 (2015)

γ̇/
γ̇ 0

η/
η 0

γ

σ
/σ
0

n c

exponential fit

FIG. 5. (Color online) Typical strain response to a step increment
of applied stress in the region dγ̇ ∗/dσ < 0. These curves are obtained
by averaging 100 simulations at φ = 0.58, for which we impose
a stress σ/σ0 = 2 for strains γ < 2 and increment to σ/σ0 = 3 at
γ = 2 (top panel). The average contact number per particle nc and
the viscosity η increase (middle panels), with an exponential-like
relaxation, but the shear rate γ̇ has a nonmonotonic behavior, first
increasing and then relaxing to a lower value (bottom panel). The
dashed line is a fit to an exponential relaxation, giving a relaxation
strain of c−1 ≈ 0.023 for these conditions. Hence at short time scales,
and in particular on the inertial time scale, the shear rate increases
with the shear stress and the system is mechanically stable.

just after the perturbation at γ = γ step cannot have its origin
from contacts, because the microstructural reorganization
needed to accommodate the stress change through a contact
network takes time to build up. The initial stress response
is of hydrodynamic origin, and this component of the stress
increases only upon an increase of the shear rate. As a
consequence, if the Reynolds number is small enough, on the
inertial time scale the suspension always behaves like a stable
fluid that flows faster with increased applied stress.

V. DISCUSSION

Our numerical simulations and the linear stability analysis
indicate that it may be possible to observe the S-shaped
rheology in experiments, and S-shaped flow curves have

recently been observed for a neutrally-buoyant suspension of
spheres [11], although the simulation does not capture the
hysteresis and rate-dependent onset of the reentrant portion
of the flow curve seen in these experiments. In some stress-
controlled experiments the DST shows up in the γ̇ (σ ) curve
as an intermediate plateau with dγ̇ /dσ = 0. The Reynolds
numbers involved in these experiments are often within the
range for which our stability analysis predicts a stable uniform
shear flow, so deep stable S-shaped flow curves would be
noticed in the experimental data. For polymer beads in glycol
[15] and comb-polymer-coated poly(methyl methacrylate)
beads in various organic solvents [16] at volume fractions
similar to the ones studied in this article, experiments show
first a decrease and then a plateau for the shear rate above the
discontinuous shear thickening onset stress. For precipitated
calcium carbonate suspensions, a linear decrease of the shear
rate is sometimes observed [31,32]. A recent experiment on
fluidized gypsum suspensions in water [17] shows the arching
flow curves associated with shear jamming resembling the
ones we obtain in this work for φ > 0.58. It then seems that
the decreasing flow curve is stable under some conditions,
but that most of the time it is hidden by another phenomenon
leading to a shear rate plateau.

Our stability analysis is highly restrictive, and the absence
of nonmonotonic flow curves in some experiments could be
a consequence of another type of instability. To this end, a
stability analysis extended to at least two dimensions would
be valuable, but for now we are limited by the rather simplistic
constitutive connection between the microstructure and the
rheology. Furthermore, the “order parameter” f is a scalar,
and we neglect the volume fraction field and its fluctuations.
Finally, another important point may be the neglect of the
small but finite macroscopic elasticity, which can stem from a
conservative interaction between particles or a finite Brownian
motion: this elasticity can sometimes cause an instability [33].
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γ0 ~ 0.034 from response to step-stress 
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�. Bottom panel, shear rate �̇ as a function of �. Gray dots, experimental data from 10 steps. Thick black line, average
experimental data. Thin green line, exponential fit at short time scales, starting from � = 0.043. The short characteristic
relaxation strain is �

0

= 0.034. Dashed orange line, exponential fit at longer time scales. The long characteristic strain is
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<I(r,z,t)>r

local volume fraction from speckle intensity: I increases with ! 

Saint Michel et al., Phys. Rev. Applied 8, 014023 (2017)

prediction #2: vorticity bands ⇒ (tiny) local volume fraction variations 

compatible with 

propagating local 
variations of Φσ =80 Pa
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Conclusions & open questions

DST in cornstarch under steady shear stress  

unsteady yet homogeneously sheared flow 

signal analysis ⇒ ballistic vs diffusive dynamics 

ultrasound ⇒ travelling slip bands (not stick-slip) 

compatible with recent model & simulations 
if local slip is assumed to reflect local stress variations

wall slip = lubrication or sliding friction?  
measurements of Φ(r,z,t) (X-ray) and σ(r,z,t) (BSM)? 
size dependence      chaos only in “small” systems?  
evidence for vertical displacements?  
azimuthal extension of the bands? 
what happens to the bands at the cell boundaries? 
what about the bottom of the Couette cell? 
what about other concentrations? other systems?
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FIG. 2. Statistical properties of the shear rate increments ��̇(�t, t) above �c at low stress (regime II) and high stress (regime
III). a) Probability density functions (pdf-s) of the increments of �̇(t) at � = 16 Pa (left) and 100 Pa (right), and several time
lags �t (color scale). A 10

p
10 vertical shift has been applied between successive pdf. b) Corresponding second (variance),

third (skewness) and fourth (kurtosis) momentum of the distributions for � = 16 Pa (dark blue) and 100 Pa (green).
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FIG. 3. Highlighting spatio-temporal patterns during imposed stress steps, for � = 12 Pa. a) Di↵usive pattern. From Top
to bottom : dynamics of �̇d(t) from rheology (thick line) and kB �̇B(t) from ultrasound (thin line) ; spatio-temporal diagrams
of the measured local velocity v(r, z, t) respectively averaged in r and z. b) Ballistic pattern associated with �̇vb(t). Same
legend as in a). c) Second moment of the distribution of ��̇ from the entire series (black diamonds) and restricted to the two
distinct patterns: h��̇2

vbi (orange squares), h��̇2

di (blue circles). The gray XXX thick line is the reconstruction of h��̇2i using a
linear combination of h��̇2

di and h��̇2

vbi. d) Normalized velocity v(z, t)/v
Rot

(t) averaged over r then averaged along the vorticity
band propagating along the vector T defined in Panel b). v

Rot

is the velocity of the rotor. e) Normalized velocity profiles
v(r, z, t)/v

Rot

(t) averaged along the colored lines at di↵erent stages of the event as marked in Panel d). Blue line and red
line are respectively velocity profile well before and after the discrete vorticity band. Dashed gray line and gold solid line are
respectively the fastest and the slowest velocity profiles.
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