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• And now for something completely different…metrology

• Focus on bulk rheology for time-evolving or mutating soft matter 
systems (thixotropy, gelation, drying…)

• Experimental protocols that can be used with existing rheometers 
(controlled strain & controlled stress) for rapidly extracting linear 
viscoelastic spectrum of a mutating material

q Calibration and optimization using a simple viscoelastic liquid
q Application to a time-evolving gelling protein gel

• Application of same technique to MD simulations of a particulate gel



A connection to yesterday’s session:
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Sciortino, Nat. Mat. 1 (2002)

Martin et al., Food Hydrocolloids 20(6) (2006)

100 nm

pH, enzymes, …



Acid-Induced Casein Protein Gel
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Sample	preparation (@	T=35°C)

Sodium	
Caseinate
[2	to	8	%]

Glucono-d-lactone
(GDL)

[0.5	to	8	%]
+

Roefs & Van Vliet, Coll. Surf. 40, 161 (1990)
Roefs et al., Neth. Milk Dairy J. 44, 159 (1990)
Lucey & Singh, Food. Res. Int. 7, 529 (1998)
Arshad et al., J. Dairy Sci. 76, 3310 (1993)
Moschakis et al., J. Coll. Int. Sci. 345, 278 (2010)…

Gelation kinetics (@	T=20°C)
Slow	hydrolysis	of	GDL	into	gluconic acid

Isoelectric point	pH~4.6

Casein	dispersion

aggregation
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Gels show Power-Law Creep and Failure
Leocmach et al., PRL (2014)

Keshavarz et al., ACS Macro Let 6 (2017)



Time-Resolved Rheometry 
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• There have been numerous efforts to improve the speed of acquisition 
of linear viscoelastic spectra (esp. for gelling or mutating systems)

• Multi-Wave Analysis
Heyes, Melrose et al. Farad. Trans. 1994 

• Rapid Frequency Sweeps
(Short Time Fourier Transform)
Mours & Winter, Rheol. Acta, 33 1994

• Pseudo-White Noise (Micro-Fourier Rheometer)

• Step Strain; iRheo
Tassieri et al., J.Rheol. 60(4), 2016

Field, Swain & Phan-Thien, JNNFM 1996



The “Chirp”

Abbott, Benjamin P., et al. "Observation of gravitational waves from a 
binary black hole merger." Phys. Review Lett. 116.6 (2016): 061102.

Klauder, John R., et al. "The theory and design of chirp radars." 
Bell Labs Technical Journal 39.4 (1960): 745-808.

Barber, Jesse R., and Akito Y. Kawahara. "Hawkmoths produce anti-bat 
ultrasound." Biology Letters 9.4 (2013): 20130161.

• Radars

• Bats 
echolocation

• Gravitational 
Waves
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The “Chirp” (or ‘swept sine wave’)
Frequency Modulated (FM) signal: 

s(t) = s0 sin[φ(t)],
d
dt
φ(t) =ω (t)

Instantaneous frequency

For an exponential/logarithmic chirp:

Time-Bandwidth Product

TB = (ω 2 −ω1)
2π

T

Larger TB (>100):
• better signal spectrum
• worse temporal resolution 

for time-varying systems
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Post-Process:
DFT input & output
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Can we choose any 
combination of frequency 

range and length?
Ghiringhelli et al., Rheol Acta (2012) 51:413–420
Curtis et al., JNNFM (2015), 222:253-259
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8.5% wt PIB solution in Hexadecane
(semidilute viscoelastic polymer solution)

 

γ 0 = 6%
fs = 500Hz
ω1 = 0.3rad/s
ω 2 = 30rad/s
T = 14s (+1s)
TB ! 66

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  18.189.5.143 On: Mon, 22 Feb 2016
01:48:50

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  18.189.5.143 On: Mon, 22 Feb 2016
01:48:50

Amplitude

1/f

Bats use signals which 
are both frequency and 
amplitude modulated:

FM & AM

Cetaceans do the same!

Altes and Titlebaum, J Acoust. Soc. Am., 48(4), 1014 (1970) Jones, Curr Biology, 15(13), (2005)
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Tukey Window:
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Demonstration: A Non-Gelling System
8.5% wt PIB solution in Hexadecane
(semidilute viscoelastic polymer solution)
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Minimizing Spectral Error using Optimal Windowing

T = 14 s
fs = 500Hz
ω1 = 0.3 rad/s
ω 2 = 300rad/s
γ 0 = 0.06

t1 = 1s
r ∈[0,5]

Specs:

12

 

ε ′G (r) = rms log
′Gchirp (ω i ,r)
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i.

Minimizing Spectral Error using Windowing

T = 14 s
fs = 500Hz
ω1 = 0.3 rad/s
ω 2 = 300rad/s
γ 0 = 0.06

t1 = 1s
r ∈[0,5]

Specs:
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 ε ~ e−2r
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Average over 6 experiments

ii.

  ε(r) ~ ε0 exp(−kr), k ! 2

Two limits:

 ε(r) ~ ε0r
2

 ε ~ r2

For rheometric-type signals an 
Optimally Windowed Chirp (OWCh!) 
has a window ramp of 6% ≤ r ≤ 15%



Gelation & Time-Resolved Rheometry
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 ′G (ω ) = Vωα cos(πα 2)
 ′′G (ω ) = Vωα sin(πα 2)

  
σ spring-pot = V dαγ

dtα

 r = 10% Tukey Window

Biopolymer gel :
Casein 4%-GDL 1%

Confocal Microscopy

Confocal Images by T. Divoux, M. Leocmach and S. Manneville

E-SEM  image of the mature gel

Pre-gelation signal is 
dominated by noise.

 
(TB!66;r=10%)

Slope of the
power law modulus

M. Leocmach

Strength of the gel
“quasi-property”



3-coordinated particle (cross-link)
2-coordinated particle (chain)

short-range 
attraction

bending 
stiffness

• Molecular Dynamics
• ~105,106 particles

• Φ ~ 0.05 - 0.2
• periodic boundaries

Structural heterogeneities developed during 
solidification => mechanical inhomogeneities. 

Internal stress distribution and coexistence of stiffer
regions with softer domains. 
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appropriate quantitative constitutive models o↵ers the
potential to transform rheological studies of soft gels and
advance our fundamental understanding of such versatile
materials.

Here we address two of the most formidable challenges
in computational rheological studies of soft gels, i.e. (i)
performing simulations that adequately probe the very
broad width of their viscoelastic spectrum as well as (ii)
overcoming the poor signal-to-noise ratio, which requires
large ensemble sizes and extensive computing time to ob-
tain converged statistics. These concerns significantly
limit the e↵ectiveness of computational studies. In the
present study, we use the particle gel model introduced
in ref.34, which produces stable porous networks (even
at low volume fractions) that feature extended relax-
ation spectra, microscopic dynamics and mechanics con-
sistent with several observations in colloidal and protein
gels29,34. A typical snapshot of the model gel is shown
in Fig.1 (a), where only the interparticle links are shown
for clarity. We perform a detailed numerical study of
the model rheological response using a Non-Equilibrium-
Molecular-Dynamics approach with overdamped equa-
tions of motion for the particles. To help overcome the
computational challenges mentioned above we use sig-
nal processing sequences adapted from radar chirp se-
quences. Such an approach was first employed com-
putationally by Visscher et al.35 to evaluate the linear
viscoelastic properties of ungelled Brownian dispersions.
We extend this approach and improve the signal-to-noise
ratio by employing amplitude- and frequency-modulated
profiles similar to those used by bats and dolphins in
echolocation36. In particular, we use a novel optimization
scheme based on acoustical and optical signal processing
algorithms that was recently developed for experimen-
tal measurements of linear viscoelasticity37 and which is
employed here for the first time in a numerical study.
The resulting algorithm e↵ectively reduces the time re-
quired to determine the viscoelastic spectrum by two or-
ders of magnitude as well as eliminating ringing artifacts
and fluctuations that otherwise can strongly a↵ect such
calculations35.

These advancements allow us to directly and quanti-
tatively evaluate the complex modulus of the gel G⇤(!)
over a wide range of frequencies ! and show that it can be
compactly described by a fractional Kelvin-Voigt consti-
tutive model (FKVM). The linear viscoelastic response
predicted by the FKVM consists of a plateau in the elas-
tic modulus at low frequencies (the modulus G

0

of the
gel) as well as a broad power-law-like variation in the
loss modulus across a broad range of frequencies, which
reflects the very broad and self-similar spectrum of time-
and length scales over which the internal structures of
the gel can relax residual stresses. Viscoelastic charac-
teristics of this type have been observed experimentally
in a wide range of di↵erent gelled and partially cross-
linked systems (see for example refs.38–40) as well as in
many biological materials41,42 and even capillary-bridged
suspensions43. For polymeric gels and elastomers, molec-

ular models have been developed44,45 that integrate rub-
ber elasticity theories of imperfectly-cross-linked net-
works with reptation dynamics of the dangling chains in
order to describe quantitatively the power-law relaxation
that is observed experimentally. However equivalent mi-
cromechanical models describing similar relaxation dy-
namics in attractive colloidal gels do not yet exist. Our
comparison of the viscoelastic spectrum of the numerical
gel and of the FKVM model is a first step toward con-
structing a constitutive model framework for soft partic-
ulate gels. The FKVM model is parameterized by only
three material constants12 (see Fig.1 (b)) and we show
below that it can provide a quantitative description of
the viscoelastic properties of the attractive colloidal gels
simulated numerically over 4.5 decades of dimensionless
frequency (or Deborah number). Because of the compu-
tational e�cacy of the Optimized Windowed Chirp algo-
rithm we can thus rapidly evaluate the complex modulus
of a large number of simulated gels. The analysis provides
scaling relationships that bring quantitative insight into
how microscopic properties such as the viscous dissipa-
tion associated with damped particle motion and particle
mass a↵ect the macroscopic linear viscoelastic properties
of the resulting gels.
The remainder of this article is structured as follows.

In section II, we outline the damped molecular simulation
scheme and the gel preparation protocol. Section IIIA
is dedicated to a detailed comparison between the Op-
timally Windowed Chirp method and traditional small
amplitude oscillatory shear (SAOS) protocols which use
discrete input frequencies to determine G⇤(!). The frac-
tional Kelvin-Voigt model (FKVM) is introduced in sec-
tion III B and used to quantify the dependence of the gel
complex modulus on the key parameters of the model in
section III C. The study is concluded with a discussion in
section IV.

II. NUMERICAL MODEL

A. Equations of motion

We perform molecular dynamics simulations of a model
colloidal gel composed of N particles each with a mass
m and diameter d in a cubic simulation box of size L.
The particles interact through a potential composed of
two terms:

U(r
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denoting the position vector of
the i-th particle, and ✏ the strength of the attraction that
sets the energy scale. Typical values of d and ✏ for col-
loidal particles range respectively from d ' 10 to 100 nm
and from ✏ ' 10 to 100 k

B

T , with k

B

the Boltzmann
constant and T the absolute temperature. The first con-
tribution to U is a two-body potential à la Lennard-Jones,
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materials.

Here we address two of the most formidable challenges
in computational rheological studies of soft gels, i.e. (i)
performing simulations that adequately probe the very
broad width of their viscoelastic spectrum as well as (ii)
overcoming the poor signal-to-noise ratio, which requires
large ensemble sizes and extensive computing time to ob-
tain converged statistics. These concerns significantly
limit the e↵ectiveness of computational studies. In the
present study, we use the particle gel model introduced
in ref.34, which produces stable porous networks (even
at low volume fractions) that feature extended relax-
ation spectra, microscopic dynamics and mechanics con-
sistent with several observations in colloidal and protein
gels29,34. A typical snapshot of the model gel is shown
in Fig.1 (a), where only the interparticle links are shown
for clarity. We perform a detailed numerical study of
the model rheological response using a Non-Equilibrium-
Molecular-Dynamics approach with overdamped equa-
tions of motion for the particles. To help overcome the
computational challenges mentioned above we use sig-
nal processing sequences adapted from radar chirp se-
quences. Such an approach was first employed com-
putationally by Visscher et al.35 to evaluate the linear
viscoelastic properties of ungelled Brownian dispersions.
We extend this approach and improve the signal-to-noise
ratio by employing amplitude- and frequency-modulated
profiles similar to those used by bats and dolphins in
echolocation36. In particular, we use a novel optimization
scheme based on acoustical and optical signal processing
algorithms that was recently developed for experimen-
tal measurements of linear viscoelasticity37 and which is
employed here for the first time in a numerical study.
The resulting algorithm e↵ectively reduces the time re-
quired to determine the viscoelastic spectrum by two or-
ders of magnitude as well as eliminating ringing artifacts
and fluctuations that otherwise can strongly a↵ect such
calculations35.

These advancements allow us to directly and quanti-
tatively evaluate the complex modulus of the gel G⇤(!)
over a wide range of frequencies ! and show that it can be
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0

of the
gel) as well as a broad power-law-like variation in the
loss modulus across a broad range of frequencies, which
reflects the very broad and self-similar spectrum of time-
and length scales over which the internal structures of
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gel and of the FKVM model is a first step toward con-
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how microscopic properties such as the viscous dissipa-
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Colombo et al., PRL 2013; Soft Matter 2014, JOR 2014.
Bouzid et al. Nat. Comm 2017, Langmuir 2017

Chirps in Numerical Simulations Of A Model Soft Gel
E-SEM  image of the mature gel



• Self-assembly by slow cooling (kBT/ε ~0.5 -> 0.05 ):
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DISCUSSION

Our analysis provides a new, vivid microscopic pic-
ture for the hypothesis underlying recent theories of
aging in soft solids [27, 28] and has implications for a
potentially wider range of materials. The control param-
eter k

B

T/✏ simply reflects the ratio between the time
scales governing stress relaxation respectively through
thermal fluctuations (⌘�3

/k

B

T ) and elastic recovery
(⌘�3

/✏) in the material (⌘ being the viscous damping).
Hence it can help identify the conditions for which
the elastically driven intermittent dynamics emerge in
di↵erent jammed solids. Indeed, the mechanisms we
propose help rationalize several experimental obser-
vations [36, 39, 40, 45–47] in very di↵erent materials,
ranging from biologically relevant soft solids to metallic
glasses. In a quasi-equilibrium scenario, enthalpic and
thermal degrees of freedom may still couple and stress
correlations decay relatively fast. When the material
is deeply quenched and jammed, instead, recovering
the coupling between the distinct degrees of freedom
and restoring equilibrium will require time scales well
beyond the ones accessible in typical experiments or
simulations. The result will be intermittent dynamics
and compressed exponential relaxations. The competi-
tion between thermal and enthalpic stresses illustrated
in this work suggests di↵erent scenarios for the energy
landscape underlying the aging of soft jammed materi-
als. When thermal fluctuations screen the long-range
elastic strain transmission, microscopic rearrangements
may open paths to deeper and deeper local minima in
a rugged energy landscape. Compressed exponential
dynamics, instead, evoke the presence of flat regions
and huge barriers, with the possibility of intermittent
dynamics, abrupt rearrangements and avalanches [27].
Investigating how such di↵erent dynamical processes
couple with imposed deformations will provide a new
rationale, and have important implications, for designing
mechanics, rheology and material performances.

METHODS

Numerical model and viscoelastic parameters.

The particles in the model gel interact through a poten-
tial composed of two terms, the first force contribution
derives from a Lennard-Jones like potential of the form :

U2(r) = A
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The second contribution confers an angular rigidity to
the inter particles bonds and takes the form :
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The strength of the interaction is controlled by ⇤(r) and
vanishes over two particles diameters :

⇤(r) = r

�10
⇥
1� (r/2)10

⇤2
⇥(2� r). (3)

where ⇥ denotes the Heaviside function. The evolution
of the gel over time is obtained by solving the following
Langevin equation:
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where � is the particle diameter, ⇠(t) is a random white
noise that models the thermal fluctuations and is re-
lated to the friction coe�cient ⌘

f

by means of its vari-
ance h⇠

i

(t)⇠
j

(t0)i = 2⌘
f

k

B

T �

ij

�(t � t

0). In order to be
in the overdamped regime of the dynamics ⌘

f

is set to
10, and the timestep dt used for the numerical integra-
tion is dt = 0.005. The parameters of the potential are
chosen such that the disordered thin percolating network
starts to self assemble at k

B

T/✏ = 0.05. One convenient
choice to achieve this configuration is given by this set
of parameters: A = 6.27, a = 0.85, B = 67.27, ✓ = 65o

and w = 0.3. The system is composed of N = 62500
particles in a cubic simulation box of a size L = 76.43�
with periodic boundary conditions, the number density
N/L

3 is fixed at 0.14, which corresponds approximatively
to a volume fraction of 7%. All initial gel configurations
are the same, prepared with the protocol described in
[34], which consists in starting from a gas configuration
(k

B

T/✏ = 0.5) and letting the gel self-assemble upon slow
cooling down to k

B

T/✏ = 0.05. We then quench this gel
configuration by running a simulation with the dissipa-

tive dynamics m

d

2ri
dt

2 = �rriU � ⌘

f

dri
dt

until the kinetic
energy drops to zero(10�24). All simulations have been
performed using a version of LAMMPS suitably modified
by us [48].

Stress calculation and cutting strategy. We let
the initial gel configuration evolve with eq.(4) for each
of the di↵erent values of k

B

T/✏ considered here, while
using the following procedure to cut network connections.
At each timestep, we characterize the state of stress of
a gel configuration by computing the virial stresses as
�

↵�

= � 1
V

P
i

w

i

↵�

, where the Greek subscripts stand for

the Cartesian components x, y, z and w

i

↵�

represents the
contribution to the stress tensor of all the interactions

• Draw down the kinetic energy to reach a local minimum: 
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a b

FIG. 1. (a) Snapshot of the colloidal gel network extracted
from the simulation and formed at a number density ⇢ = 0.14,
which corresponds to a volume fraction � ' 7.3%. Each bond
is represented by a segment, when the distance d

ij

between
two particles i and j is d

ij

 1.3d. (b) Schematic of the me-
chanical model of the gel. The model is composed of a mass
M connected to a spring of sti↵ness G

0

in parallel with a
springpot, or fractional viscoelastic element, characterized by
two parameters: a quasi-property V (in Pa·s↵) and a dimen-
sionless exponent ↵.

U
2

, which consists of a repulsive core and a narrow at-
tractive well that can be expressed in the following di-
mensionless form :
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where r is expressed in units of d, while a and A are di-
mensionless parameters that control the width and the
depth of the potential respectively. The second contribu-
tion to U is a three-body term U

3

that confers an angular
rigidity to the inter-particle bonds, which prevents the
formation of dense clusters. It takes the following form:
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where B, ✓ and u are dimensionless parameters. The
radial modulation ⇤(r) that controls the strength of the
interaction reads:

⇤(r) = r

�10

⇥
1� (r/2)10

⇤
2 H(2� r) (4)

where H denotes the Heaviside function, which ensures
that U

3

vanishes beyond the diameter of two particles. In
conclusion, the potential energy (Eq. 1) depends para-
metrically on five dimensionless quantities, which are
fixed to the following values: A = 6.27, a = 0.85,
B = 67.27, ✓ = 65� and u = 0.3. Tuning these pa-
rameters leads to a vast zoology of stable and porous
microstructures, in the following these values are cho-
sen such that a disordered and thin percolating network
starts to self-assemble for low particle volume fractions
(� . 0.1) at ✏ = 20k

B

T , where k

B

is the Boltzmann

constant and T is the absolute temperature. The self-
assembly, the aging and the mechanical properties un-
der external deformation of the resulting gel-like net-
work structure have been studied extensively29,33,34,46

and exhibit several mechanical features consistent with
the response measured in soft particulate gels in various
experiments47–51.

B. Initial configuration

The system is composed of N particles in a cubic sim-
ulation box of size L with periodic boundary conditions.
The initial gel configuration is prepared with the protocol
described in29, which consists in starting from a gaseous
configuration at k

B

T /✏ = 0.5 and letting the gel self-
assemble upon slow cooling down to k

B

T /✏ = 0.05. The
kinetic energy is then completely drawn from the system
(down to 10�24) by means of a dissipative microscopic
dynamics:
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where ⌘

f

is the damping coe�cient associated with cou-
pling of the particle motion to the surrounding fluid.
The timestep �t used for the numerical integration is
�t = 0.005. Distances are expressed in terms of the parti-
cle diameter d, the energy in terms of the strength of the
attraction ✏ and the time in the units of the characteris-
tic timescale ⌧

0

=
p
md

2

/✏. All data discussed here refer
to a number particle density N/L

3 = 0.14, which corre-
sponds to an approximate solid volume fraction � ' 7.3,
and to N = 19652 and L = 52d (except to investigate the
system size dependence where the number particle den-
sity has slightly been changed and set to N/L

3 = 0.16).
All simulations have been performed using a version of
LAMMPS suitably modified by us52.

C. Mechanical test and stress calculation

To determine the gel mechanical viscoelastic proper-
ties, the particles are submitted to a continuous shear
strain �(t) in the xy plane according to the following
equation:
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The specific form of �̇(t) will be introduced in the next
section, and we use Lees-Edwards boundary conditions
while applying the deformation53. At the volume frac-
tion used here, the gels are very soft due to the sparsely
connected structure even in presence of relatively strong
(with respect to k

B

T ) interparticle interactions, hence
we focus on the e↵ect of the imposed deformation and
neglect the role of thermal fluctuations in the structural

• Athermal oscillatory shear: 
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FIG. 1. (a) Snapshot of the colloidal gel network extracted
from the simulation and formed at a number density ⇢ = 0.14,
which corresponds to a volume fraction � ' 7.3%. Each bond
is represented by a segment, when the distance d

ij

between
two particles i and j is d

ij

 1.3d. (b) Schematic of the me-
chanical model of the gel. The model is composed of a mass
M connected to a spring of sti↵ness G

0

in parallel with a
springpot, or fractional viscoelastic element, characterized by
two parameters: a quasi-property V (in Pa·s↵) and a dimen-
sionless exponent ↵.
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tractive well that can be expressed in the following di-
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where r is expressed in units of d, while a and A are di-
mensionless parameters that control the width and the
depth of the potential respectively. The second contribu-
tion to U is a three-body term U

3

that confers an angular
rigidity to the inter-particle bonds, which prevents the
formation of dense clusters. It takes the following form:
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where B, ✓ and u are dimensionless parameters. The
radial modulation ⇤(r) that controls the strength of the
interaction reads:

⇤(r) = r
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where H denotes the Heaviside function, which ensures
that U

3

vanishes beyond the diameter of two particles. In
conclusion, the potential energy (Eq. 1) depends para-
metrically on five dimensionless quantities, which are
fixed to the following values: A = 6.27, a = 0.85,
B = 67.27, ✓ = 65� and u = 0.3. Tuning these pa-
rameters leads to a vast zoology of stable and porous
microstructures, in the following these values are cho-
sen such that a disordered and thin percolating network
starts to self-assemble for low particle volume fractions
(� . 0.1) at ✏ = 20k

B

T , where k

B

is the Boltzmann

constant and T is the absolute temperature. The self-
assembly, the aging and the mechanical properties un-
der external deformation of the resulting gel-like net-
work structure have been studied extensively29,33,34,46

and exhibit several mechanical features consistent with
the response measured in soft particulate gels in various
experiments47–51.

B. Initial configuration

The system is composed of N particles in a cubic sim-
ulation box of size L with periodic boundary conditions.
The initial gel configuration is prepared with the protocol
described in29, which consists in starting from a gaseous
configuration at k

B

T /✏ = 0.5 and letting the gel self-
assemble upon slow cooling down to k

B

T /✏ = 0.05. The
kinetic energy is then completely drawn from the system
(down to 10�24) by means of a dissipative microscopic
dynamics:
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where ⌘

f

is the damping coe�cient associated with cou-
pling of the particle motion to the surrounding fluid.
The timestep �t used for the numerical integration is
�t = 0.005. Distances are expressed in terms of the parti-
cle diameter d, the energy in terms of the strength of the
attraction ✏ and the time in the units of the characteris-
tic timescale ⌧
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/✏. All data discussed here refer
to a number particle density N/L

3 = 0.14, which corre-
sponds to an approximate solid volume fraction � ' 7.3,
and to N = 19652 and L = 52d (except to investigate the
system size dependence where the number particle den-
sity has slightly been changed and set to N/L

3 = 0.16).
All simulations have been performed using a version of
LAMMPS suitably modified by us52.

C. Mechanical test and stress calculation

To determine the gel mechanical viscoelastic proper-
ties, the particles are submitted to a continuous shear
strain �(t) in the xy plane according to the following
equation:
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The specific form of �̇(t) will be introduced in the next
section, and we use Lees-Edwards boundary conditions
while applying the deformation53. At the volume frac-
tion used here, the gels are very soft due to the sparsely
connected structure even in presence of relatively strong
(with respect to k

B

T ) interparticle interactions, hence
we focus on the e↵ect of the imposed deformation and
neglect the role of thermal fluctuations in the structural

thermal fluctuations
Damping coefficient

+ Lees-Edwards boundary conditions
virial stress

�(t) = �0 sin!t

191 cumulative shear strain by a quantity δγ by first applying an
192 instantaneous affine deformation Γδγ, corresponding to simple
193 shear in the xy plane, to all particles:

δγ
′ = Γ =δγ

⎛
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195 The Lees-Edwards boundary conditions are updated as well, to
196 comply with the increase in the cumulative strain.40 The
197 configuration {ri′} is no longer a minimum of the potential
198 energy (being the material amorphous),41 and the deformation
199 step induces unbalanced internal forces. Hence we relax the
200 affinely deformed configuration by letting the system free to
201 evolve in time while keeping the global strain constant

″ = ′δr ri t i;202 (7)

203 where δt; is the time evolution operator for the Langevin
204 dynamics (eq 5) and a specified time interval δt. After n steps,
205 the cumulative strain is γn = n δγ and the gel configuration is

= Γδ δγr r( )i n t
n

i, ,0;
206 (8)

207 where {ri,0} denotes the configuration of the starting inherent
208 structure.
209 The procedure just outlined is similar to the athermal
210 quasistatic (AQS) approach extensively used to investigate the
211 deformation behavior of amorphous solids,42−44 the main
212 difference being that, instead of using an energy minimization
213 algorithm after each affine deformation step, here we follow the
214 natural dynamics of the system (with viscous energy
215 dissipation) for a prescribed time interval δt. Such approach,
216 therefore, allows us to define a finite shear rate γ ̇ = δγ/δt for the
217 deformation we apply.
218 Disregarding effects due to the particle inertia, the micro-
219 scopic dynamics (eq 5) introduce a natural time scale τ0 = ξd2/
220 ϵ, corresponding to the time it takes a particle subjected to a
221 typical force ϵ/σ to move a distance equal to its size. In all
222 simulations discussed here we fix the elementary strain
223 increment δγ = 10−2, and choose the relaxation interval δt to
224 obtain a shear rate γṡ = 10−5τ0

−1. Indicatively, if we consider a
225 typical aqueous solution of colloidal particles with a diameter d
226 ≈ 100 nm and an interaction energy ϵ ≈ 10kBT

45 the
227 characteristic time is τ0 ≈ 10−4 s; in such a system the rate we
228 have investigated here would correspond to 0.1 s−1.
229 We compute the global stress tensor σαβ using the standard
230 virial equation46 at the end of each deformation step

∑σ = ∂
∂αβ α

β

=V
U
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i
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i
i

1231 (9)

232 in which V is the volume of the system and α,β stand for the
233 Cartesian components {x, y, z}. In the following we use σ to
234 indicate the shear component σxy in the mechanical tests. Since
235 the velocities of the particles are small (vi ≲ 10−5d/τ0) in the
236 calculation of the stress tensor we ignore the kinetic term mvi

αvi
β

237 and any contribution due to the viscous forces appearing in eq
238 5.
239 With the approach just described we obtain the load curve of
240 the material at different shear rates and analyze the underlying
241 microscopic processes, in terms of local stresses and strains and
242 of structural modifications of the gel.
243 Oscillatory Rheology Tests. For each of the gel
244 configurations, in addition to the transient step−strain tests,

245we investigate the linear and nonlinear viscoelastic properties
246by measuring the frequency and the strain dependence of the
247first-harmonic storage G′ and loss modulus G″.23,47 The
248computational scheme in this case consists of imposing an
249oscillatory shear strain on the system, i.e., the shear strain is
250modulated periodically according as γ(t) = γ sin(ωt). The
251equation of motion is
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253and we use Lees-Edwards boundary conditions as in the step−
254strain deformation test. By monitoring the shear stress response
255of the material σ(t) over time, we can extract the viscoelastic
256moduli. The storage and loss moduli can be computed from the
257stress response with the following expressions:
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260where σ̅ and γ ̅ are the Fourier transforms of respectively the
261shear stress and the strain. For a fixed strain amplitude γ in the
262linear response regime, we vary the frequency ω to explore the
263linear viscoelastic spectrum. For a fixed frequency ωτ0 = 10−3,
264for which the material response is dominated by its elastic
265component for all volume fractions considered here, we have
266then varied the strain amplitude γ from 1%, which is in the
267linear response regime, to 400%, i.e., in the nonlinear regime
268preceding yielding.
269All simulations were performed using the LAMMPS
270molecular dynamics source code,48 which we have suitably
271extended to include the interaction (eq 1). The gel consists of
272N = 1.08 × 105 particles in a cubic simulation boxes with linear
273size L = 102.6d, 90d, 81.44d, 71.44d corresponding to
274approximate volume fractions ϕ ≃ 0.05, 0.075, 0.10, 0.15.

275■ RESULTS AND DISCUSSION
276The mechanical tests just described help us characterize the
277linear and nonlinear rheological response of the gels. Here we
278combine such information with a microscopic analysis on the
279different network topologies corresponding to different volume
280 f1fractions in the model. Figure 1 provides an overview of the gel
281mechanics obtained from the different tests performed at ϕ =
28210%: the load curve (a) of the material obtained from the step−
283strain simulations indicates a linear elastic response at small
284deformations, followed by a nonlinear regime until the material
285starts to yield. At the low shear rate considered here, the
286yielding is accompanied by a significant strain localization and
287damage of the gel structure, as described in ref 21. The linear
288oscillatory response in a frequency sweep (b) shows that G′ ≫
289G″ for ω < 10−2 τ0

−1 and reaches a constant value G0 in the limit
290of vanishing frequency. Varying the strain amplitude in the
291oscillatory tests, we obtain the strain−sweep (c) which shows
292how above a critical strain amplitude the material is strain-
293stiffening, with G′ significantly growing while we do not detect
294any significant increase in the dissipative response.
295Having defined σc as the critical stress above which the
296system exhibits a strain stiffening, we identify the corresponding
297critical strain γc in the stress strain curve. From the material

298
response σ(γ), we compute the differential modulus ≡ σ

γ
∂
∂K .
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Optimized Windowed Chirp Simulations
• Optimized Chirp (OWCh) response can also be exploited in numerical simulations
• Rapidly evaluate the full linear viscoelastic spectrum of attractive colloidal gel

kBT ε = 0.05τ 0 = md2 ε

Factor of 50X speed up in computation time
on a 20 core machine

G0

τ 0ωmin = 5 ×10
−4 τ 0ωmin = 18
TB ≈1.8 ×105

1 core

20 core



Linear Viscoelastic Response

G0

Loss modulus

Storage modulus

Broad power law frequency response in (both) dynamic moduli
Resonance from finite mass of system: results in “creep ringing” in constant stress (creep) simulations

kBT ε = 0.05 τ 0 = md2 ε

N = 19652

L≈ 52d
φ ≈ 7.3%

0.53

• Rapidly evaluate the full linear viscoelastic spectrum of attractive colloidal gel
• Power-law features over broad range of intermediate frequencies



Elastic Solid
↵ = 0 ! V = G
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“Lumped Parameter” Model for Attractive Colloidal Gel
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• Viscoelastic response of the gel can be compactly described by a fractionally-
damped spring mass oscillator system:

′G (ω )
G0

= 1− ω ω n( )2 + ω ω n( )α ξ cos(πα 2)

′′G (ω )
G0

= ω ω n( )α ξ sin(πα 2)

 
ω n =

G0

M
; ξ = V

M αG0
2−α

 V,α

Frequency Response of a Fractionally-Damped 
Spring-Mass Oscillator

- - - - Loss modulus

––– Storage modulus

0

B. Keshavarz, M. Bouzid, M. Geri  et al.,  
J. Rheology (submitted), 2018

Viscous Liquid
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Rescaled Universal Response
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• Simulations for different particle mass, viscosity coefficient can be rescaled onto single 
universal curve

~ η f
α M( )1/(2−α )

Use Chirp protocol to now ask:
• How does the plateau 

modulus scale with 
q the volume fraction of 

particles in the box?
q the strength of the 

individual bond connector 
energies?

• How does the fractional 
relaxation exponent scale 
with:

q fractal dimension of 
network?

q Preparation history? 
(quench)



Conclusions & Outlook
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Texp ≈ 2π ω1

 TB = T ( f2 − f1) = T (ω 2 −ω1) 2π ≫1

t [s]
0 5 10 15

γ
(t
)

-0.06

-0.03

0

0.03

0.06

INPUT
r = 0.1

• A truly “Optimized” Windowed Chirp function (OWCh)
q Combine exponential swept sine function with a Tukey window (r ≈ 0.1) 

to minimize spectral power leakage into side lobes of FFT. 
q Total signal length: 
q Time Frequency bandwidth:

• Validated by experiments on
q non-gelling viscoelastic fluid
q Acid-catalyzed casein gel 
q MD simulations of colloidal 

attractive gel
q Suspensions?

• Remaining experimental questions:
q How do mechanical bandwidth

issues of the motor constrain ω2 ?
q Limits of the time resolution?
q How do the error measures grow 

with mutation number of the system? Mu*=
Texp
τmu

= f1
−1

(d lnG* dt)−1
= 2π
ω1

d lnG*

dt
≤ ?

Geri et al., to be submitted to Phys. Rev. Applied, 2017



Subtleties in Cheese Science
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Van Vliet & Walstra (2003)

Martin et al., Food Hydrocolloids 20(6) (2006)

Rennet

Cheese Curds

Sodium Caseinate

No Calcium Phosphate


