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Input:  

- photons in a single  
  transverse channel 

- no-backscattering as  
  atomic cloud is smooth 

- chiral-one-dimensional 
  photons

Interacting Rydberg slow light polaritons

Firstenberg et al 2013
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Figure 1 | Photons with strong mutual attraction in a quantum nonlinear
medium. a, b, A linearly polarized weak laser beam near the transition
| gæ R | eæ at 780 nm is sent into a cold rubidium gas driven by a control laser
near the transition | eæ R | ræ at 479 nm. Strong nonlinear interactions between
s1-polarized photons are detected using photon–photon correlation functions
of the transmitted light for a set of different polarization bases, as determined by
a quarter-wave plate (QWP), a half-wave plate (HWP) and a polarizing beam
splitter (PBS). Here s2 photons serve as a phase reference. c, Transmission
spectra (top) and phase shift (bottom) fors1 photons with an incoming rate of
Ri 5 0.5ms21 (blue squares) or Ri 5 5ms21 (green circles), for a control field
red-detuned by D/2p5 15 MHz. The blue line shows the theoretical spectrum.
The spectrum at high probe rate approaches that of the undriven two-level

system (dashed grey; see also Supplementary Fig. 2). The solid vertical line
corresponds to the EIT resonance. d, Photon bunching and two-photon bound
state. Theoretically predicted photon–photon correlation function in the
Schrödinger equation approximation (top, blue line) for D/2p5 14 MHz, with
a potential well of width 2rB (bottom, green line). The bound state (bottom, red)
and the superposition of scattering states (bottom, black) form the initial
wavefunction, y 5 1 (bottom, dashed blue). The two-photon bound state
results in the observed bunching in the correlation function, g 2ð Þ

zz< yj j2 (top,
grey circles), where time has been converted into distance using the group
velocity, vg. The boundary effects resulting from the finite extent of the atom
cloud become important for | r | $ 5rB.
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Figure 2 | Propagation of
interacting photon pairs.
a, b, Measured second-order
correlation function (a) and
nonlinear phase shift (b) of
interacting photon pairs at D 5 2.3C.
The photons are detected at times t1

and t2. c, Second-order correlation
function displayed as a function of
the time difference, | t | 5 | t1 2 t2 | ,
between the photons, showing the
transition from antibunching on
resonance (D 5 0, green) to
bunching at large detuning
(D 5 2.3C, blue). Points are
experimental data; lines are full
numerical simulations. All g 2ð Þ

zz

measurements are rescaled by their
value at t . 1.5ms (Supplementary
Information). d, Nonlinear phase
shift versus | t | for two different
detunings (D 5 1.5C, purple, and
D 5 2.3C, blue). The 1 s.d. error is
630 mrad, dominated by photon
shot-noise.
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Media: 

- cold atomic gases 
- strongly interacting slow light polaritons 
  in one-dimension

Readout: 

- detection transmitted photons 
- photon correlations



Slow light polaritons

Electromagnetic induced 
transparency (EIT) 

- photons in an atomic media 

- three level setup for the atoms 

- dark state 

coupling  
laser

probe  
field

- coupling laser 
- probe field 
- losses only from  
  intermediate p-level

- dissipation free state 
- polariton: superposition  
  of photon and excited state

⌦|G, 1i � g|S, 0ip
⌦2 + g2



- slow light  (~ 1 m/s) 
- single photon storage (a few seconds) 
- light pulse to width of 

Slow light polaritons

photon wave packet slowed down and compressed 
within the media

Is it possible to induce a strong 
interaction between the photons? 

20µm

- yes, if we use Rydberg states  
  as an excited state 
- Rydberg slow light polaritons



Rydberg excitations
Rydberg-Rydberg interaction 

- strong van der Waals interactions  
  for s-wave states 

- dipole-dipole interactions in  
  presence of an electric field

- depending on n  
  attractive or repulsive 

- C6 � n11

Blockade phenomena 

- once a Rydberg atom is excited, 
  further excitatons are shifted out 
  of resonance 

- Blockade radius 

Exp: T. F. Gallagher, Charlottesville; M. Weidemüller, Freiburg; P. Pillet, Orsay; Rolston, JQI; van den Heuvell, 
Amsterdam; P. Gould, Storrs; T. Pfau Stuttgart, A. Browaeys, P. Grangier, Orsay; M. Saffman. 
Th: Robicheaux and Hernández, Ates, Pohl, Pattard, Rost, Stanojevic, Côté, Lukin, Fleischhauer, Cirac, Zoller,
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Interacting Rydberg slow light polaritons
(Firstenberg et al 2013)
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Figure 1 | Photons with strong mutual attraction in a quantum nonlinear
medium. a, b, A linearly polarized weak laser beam near the transition
| gæ R | eæ at 780 nm is sent into a cold rubidium gas driven by a control laser
near the transition | eæ R | ræ at 479 nm. Strong nonlinear interactions between
s1-polarized photons are detected using photon–photon correlation functions
of the transmitted light for a set of different polarization bases, as determined by
a quarter-wave plate (QWP), a half-wave plate (HWP) and a polarizing beam
splitter (PBS). Here s2 photons serve as a phase reference. c, Transmission
spectra (top) and phase shift (bottom) fors1 photons with an incoming rate of
Ri 5 0.5ms21 (blue squares) or Ri 5 5ms21 (green circles), for a control field
red-detuned by D/2p5 15 MHz. The blue line shows the theoretical spectrum.
The spectrum at high probe rate approaches that of the undriven two-level

system (dashed grey; see also Supplementary Fig. 2). The solid vertical line
corresponds to the EIT resonance. d, Photon bunching and two-photon bound
state. Theoretically predicted photon–photon correlation function in the
Schrödinger equation approximation (top, blue line) for D/2p5 14 MHz, with
a potential well of width 2rB (bottom, green line). The bound state (bottom, red)
and the superposition of scattering states (bottom, black) form the initial
wavefunction, y 5 1 (bottom, dashed blue). The two-photon bound state
results in the observed bunching in the correlation function, g 2ð Þ

zz< yj j2 (top,
grey circles), where time has been converted into distance using the group
velocity, vg. The boundary effects resulting from the finite extent of the atom
cloud become important for | r | $ 5rB.

0 0.5 1 1.5 2

–0.4

–0.2

0

0.2

0 0.5 1 1.5
0

0.5

1

1.5

2

0.8

1

1.2

0 0.2 0.4
0

0.5

1

1.5

0 0.2 0.4

0

–π/4

–π/8

a

b

c

d

t 2 
(μ

s)

t1 (μs)

g++
(2)

g +
+(
W)

(2
)

%W% (μs)

0

0.5

1

1.5

2

t 2 
(μ

s)

t1 (μs)

I (rad)

%W% (μs)

I
(W

) (
ra

d)

2

Figure 2 | Propagation of
interacting photon pairs.
a, b, Measured second-order
correlation function (a) and
nonlinear phase shift (b) of
interacting photon pairs at D 5 2.3C.
The photons are detected at times t1

and t2. c, Second-order correlation
function displayed as a function of
the time difference, | t | 5 | t1 2 t2 | ,
between the photons, showing the
transition from antibunching on
resonance (D 5 0, green) to
bunching at large detuning
(D 5 2.3C, blue). Points are
experimental data; lines are full
numerical simulations. All g 2ð Þ

zz

measurements are rescaled by their
value at t . 1.5ms (Supplementary
Information). d, Nonlinear phase
shift versus | t | for two different
detunings (D 5 1.5C, purple, and
D 5 2.3C, blue). The 1 s.d. error is
630 mrad, dominated by photon
shot-noise.
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Figure 1 | Photons with strong mutual attraction in a quantum nonlinear
medium. a, b, A linearly polarized weak laser beam near the transition
| gæ R | eæ at 780 nm is sent into a cold rubidium gas driven by a control laser
near the transition | eæ R | ræ at 479 nm. Strong nonlinear interactions between
s1-polarized photons are detected using photon–photon correlation functions
of the transmitted light for a set of different polarization bases, as determined by
a quarter-wave plate (QWP), a half-wave plate (HWP) and a polarizing beam
splitter (PBS). Here s2 photons serve as a phase reference. c, Transmission
spectra (top) and phase shift (bottom) fors1 photons with an incoming rate of
Ri 5 0.5ms21 (blue squares) or Ri 5 5ms21 (green circles), for a control field
red-detuned by D/2p5 15 MHz. The blue line shows the theoretical spectrum.
The spectrum at high probe rate approaches that of the undriven two-level

system (dashed grey; see also Supplementary Fig. 2). The solid vertical line
corresponds to the EIT resonance. d, Photon bunching and two-photon bound
state. Theoretically predicted photon–photon correlation function in the
Schrödinger equation approximation (top, blue line) for D/2p5 14 MHz, with
a potential well of width 2rB (bottom, green line). The bound state (bottom, red)
and the superposition of scattering states (bottom, black) form the initial
wavefunction, y 5 1 (bottom, dashed blue). The two-photon bound state
results in the observed bunching in the correlation function, g 2ð Þ

zz< yj j2 (top,
grey circles), where time has been converted into distance using the group
velocity, vg. The boundary effects resulting from the finite extent of the atom
cloud become important for | r | $ 5rB.
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Figure 2 | Propagation of
interacting photon pairs.
a, b, Measured second-order
correlation function (a) and
nonlinear phase shift (b) of
interacting photon pairs at D 5 2.3C.
The photons are detected at times t1

and t2. c, Second-order correlation
function displayed as a function of
the time difference, | t | 5 | t1 2 t2 | ,
between the photons, showing the
transition from antibunching on
resonance (D 5 0, green) to
bunching at large detuning
(D 5 2.3C, blue). Points are
experimental data; lines are full
numerical simulations. All g 2ð Þ

zz

measurements are rescaled by their
value at t . 1.5ms (Supplementary
Information). d, Nonlinear phase
shift versus | t | for two different
detunings (D 5 1.5C, purple, and
D 5 2.3C, blue). The 1 s.d. error is
630 mrad, dominated by photon
shot-noise.
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Photonic bound state 

- low intensity coherent light  
  on EIT resonance 

- two-photon correlations after  
  the media

characteristic correlations  
as expected for a bound state

Theorie: - full numerical simulations  
  for two photons 
- approximative equation derived by 
  comparison with full solution



Outline

Many-body theory 

- microscopic derivation 
- two-photon: bound states 
  and scattering states 

Three-body interactions 

- demonstration of strong influence

Applications 

- extension into two-dimensions 
- multi-mode cavity 
- phase gates



Microscopic Hamiltonian

- restriction to a single transverse mode  
- continuous distribution of atoms 
- photonic density much smaller  
  than atomic density

kinetic energy  
for photons

: creation operator for the  
  excitation into p-level

 †
e(z)

 †
p(z)

 †
s(z) : creation operator for the  

  excitation into s-level

: photon creation operator  
  with transverse mode

- rotating frame and rotating wave approximation 

- chiral photonic field 

- collective  
  coupling: 

- detuning: 

u?(x)e
ikczno back scattering as spatial variations 

are smooth on the photonic wave length

g = g0
p
n

� = � � i�

atomic 
density

decay from  
p-level

H0 = ~
Z

dz

0

@
 †
e

 †
p

 †
s

1

A

0

@
�ic@z g 0

g � ⌦
0 ⌦ 0

1

A

0

@
 e

 p

 s

1

A



Hamiltonian

light mode

p-level

Rydberg state

Non-interacting polaritons 

- dispersion for slow light polariton 

slow light 
velocity: 

effective  
mass:

H0 =
X

q,↵20,±1

✏↵q ̄
†
↵q ̃↵q

 ̃↵q =
X

�2{e,p,s}

U�
↵ (q) �q



Non-interacting polaritons 

- dispersion for slow light polariton 

Hamiltonian

slow light 
velocity: 

effective  
mass:

H0 =
X

q,↵20,±1

✏↵q ̄
†
↵q ̃↵q

 ̃↵q =
X

�2{e,p,s}

U�
↵ (q) �q

slow light polariton
upper bright  

polariton

lower bright  
polariton



Microscopic Hamiltonian

Hint =
1

2

Z
dzdz0V (z � z0) †

s(z) 
†
s(z

0) s(z
0) s(z)

Interaction Hamiltonian 

- strong van der Waals interaction 
  between Rydberg atoms : attractive as well as repulsive  

  interactions are possible

H = H0 +Hint

: three bosonic fields  
  with quartic interaction 

: energy and momentum conservation 

: broken Galilei/Lorenz invariance

V (z) =
C6

z6



Goal

Is there a many-body theory  
for slow light polaritons alone?

Two-polariton problem 

- scattering properties 
- two-photon bound states

- effective interaction  
  potential 

- pseudo-potential for  
  slow light polaritons 

- many-body theory  
  in dilute regime 

- three-body interactions 
  as small correction

In analogy:

- interactions in cold atoms  
  are determined by  
  s-wave scattering length

Veff(r) =
4⇡~2as

m
�(r)@rr



Two-body problem
Two-body probem 

- general equation involves  
  9 wave functions 

- fixed energy and center  
  of mass momentum: 

- T-matrix for the Rydberg part: 
   resummation of all ladder diagrams 

- two-particle propagator

 ↵�(z, z
0) ↵,� 2 {e, p, s}

Tkk0(K,!) = Vk�k0 +

Z
dq

2⇡
Vk�q �q(K,!)Tqk0(K,!)

�q (K,!) =
X

↵,�2{0,±1}

Ū↵
s (p)U

s
↵(p)Ū

�
s (p

0)Us
�(p

0)

~! � ✏↵(p)� ✏�(p0) + i⌘
,

~K~!

p = K/2 + q

p0 = K/2� q



Two-particle propagator
General behavior 

�q = �̄+
↵

~!̄ � ~2q2/m+ i⌘
+

↵B

~!̄B � ~2q2/m+ i⌘

- saturation for large  
  relative momenta 

- pole for propagation of  
  slow light polariton: 

- resonant excitation into 
  two bright polaritons

�̄(!) =
1

~
�� !

2 � ⌦2

��!

!
�
�� !

2

�
+ 2⌦2

↵(K,!)!̄(K,!)

↵B(K,!)!̄B(K,!)



Two-particle propagator

Effective interaction  
potential 

�q = �̄+
↵

~!̄ � ~2q2/m+ i⌘
+

↵B

~!̄B � ~2q2/m+ i⌘

- T-matrix equation

Tkk0(K,!) = Vk�k0 +

Z
dq

2⇡
Vk�q �q(K,!)Tqk0(K,!)

= V eff
k�k0 +

Z
dq

2⇡
V eff
k�q [�q(K,!)� �̄(!)]Tqk0(K,!)



Two-particle propagator

Effective interaction  
potential 

V eff(r) =
V (r)

1� �̄(!)V (r)

saturation on the  
blockade radius 

resonance feature for two-Rydberg  
excitations possible

⇠ = (|C6|�̄)1/6

�q = �̄+
↵

~!̄ � ~2q2/m+ i⌘
+

↵B

~!̄B � ~2q2/m+ i⌘



Two-particle propagator

�q = �̄+
↵

~!̄ � ~2q2/m+ i⌘
+

↵B

~!̄B � ~2q2/m+ i⌘

Influence of resonant excitation  
into bright polaritons 

- second pole vanishes for 

- extremely small for many  
  experimentally relevant regimes

- low momenta and  
  energy regime 

- far detuning

⇣(K,!) =
p
|(!̄↵2

B)/(!̄B↵2)|



Effective Schrödinger equation

Effective Schrödinger equation 

- wave function two polaritons   

- Schrödinger equation for  
  two-polariton wave function

~!̄ (r) =

�~2
m
@2r + ↵Veff(r)

�
 (r)

overlap of polaritons  
into Rydberg state

massive  
particles

on-shell  
condition

- parameters depend on total  
  energy and center of mass ↵(K,!)!̄(K,!)

effective  
interaction



Low energy and momentum regime

Interaction strength:

� =
p

|~2�̄/(↵m)|

⇠/�

⇠ = (|C6�̄|)1/6
de-Broglie wavelength

blockade radius

Scattering properties 

- weak interactions 

- repulsive interaction 

- attractive interaction

zero crossing for the  
1D scattering length

scattering resonances 
for each additional bound  
state appearing

a1D =
3

⇡

✓
� �̄5

C6

◆1/6 ~2
↵m

“universal” low energy scattering length



Far detuned regime  (           )

Bound state structure 

- bound state energy depends 
  on interaction strength and 
  center of mass momentum 

- requires self-consistent 
  evaluation 

- appearance of several  
  bound states 

- bound states have a higher 
  group velocity higher than

⇠/� = 0.5



Many-body theory
Effective theory for Rydberg 
slow light polaritons

higher body  
interactions

H =

Z
dx †

✓
�i~vg@z �

~2
2m

@2z

◆
 

+
1

2

Z
dxdy V

eff(x� y) †(x) †(y) (y) (x) + . . .

kinetic energy

two-body interaction

- Lieb-Liniger model 

- Super Tonks-Girardeau

a1D < 0

a1D > 0

Validity:

- low energy and  
  momentum regime 

- three-body interaction

- suppressed for  
  weak interactions: 
- suppressed in  
  dilute regime: nd⇠ ⌧ 1

⇠/� ⌧ 1



Many-body theory
Experimental probe 
of many-body interactions?

higher body  
interactions

H =

Z
dx †

✓
�i~vg@z �

~2
2m

@2z

◆
 

+
1

2

Z
dxdy V

eff(x� y) †(x) †(y) (y) (x) + . . .

two-body interaction

parameter regime, where mass  
can be negelected

Exact solvable theory for 
arbitrary input 
(Bienias, HPB, arXiv 2016) 

- two photon solution 

- effective interaction  
  accessible in homodyne 
  detection

�

out(x, y, t) = e

�i'(x�y)
�

in(x� ct

0
, y � ct

0)



Outline

Many-body theory 

- microscopic derivation 
- two-photon: bound states 
  and scattering states 

Three-body interactions 

- demonstration of strong influence

Applications 

- extension into two-dimensions 
- multi-mode cavity 
- phase gates



Three-body interactions
Simple estimation of interaction strength inside the 
blockade radius: (far detuned regime               )

ng2
⌦2(n�1)

(g2 + ⌦2)n
Probablity to find 1 Rydberg  
state and (n-1) Photons:

�~g2
�

Dispersive energy shift of a photon  
inside the blockade regime:

Total dispersive  
energy shift: �~g2

�
ng2

⌦2(n�1)

(g2 + ⌦2)n
(n� 1)

Two-body: 

|� � ⌦|

Three-body  
interactions: =

6~⌦2

�

g6

(⌦2 + g2)3
�6~⌦2

�

⌦2g4

(⌦2 + g2)3
+3

2~⌦2

�

g4

(⌦2 + g2)2

�2~⌦2

�

g4

(⌦2 + g2)2

repulsive and very strong for slow light polaritons

(Jachymski, Bienas, HPB, PRL 2016; see also Gullans et al, PRL 2016) 



Single mode cavity
Energy shift for two 
polaritons in a cavity 

- large cavity mode:

atomic  
clould

cavity  
modeRydberg  

polaritonsw0 � ⇠

 w0 !

↵ =
g2

⌦2 + g2
: Probability for the polariton  
  in the Rydberg state

Effective  
interaction

n(x)
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I. TWO-BODY INTERACTION

In the first part, we derive Eq. (1) for the two body interaction from the main text. We denote the function
describing the photonic mode by h(x). The stationary Schrödinger equation for the di↵erent parts with two, one and
zero photons can then be written as
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Here the equations are given in units of g⌦/�, which naturally appear in the coupling terms. The photonic mode is
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(x)h(x) by ! + 2⌫. The right side is a small contribution for
a cavity mode much larger than the blockade radius. Therefore, expanding the left hand side for small !, we obtain
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In leading order, �
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⇡ h(x)2⌫ and we recover the e↵ective interaction potential from the main text.

II. THREE-BODY INTERACTION

Next, we can derive Eq. (2) from the main text for the three-body interaction. Again, we denote the function
describing the photonic mode by h(x), and the total wave function can be decomposed into parts containing three,
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Three-body interaction
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Three-body interactions

Three body interactions 
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Three-body bound states
Rydberg slow light 
polaritons in 1D 

- experimental observation of  
  two-body bound states 

- two-body interactions provide 
  also three-body bound state 
  (Lieb-Liniger model) 

- for     - function interaction 

- strong modifications by  
  three-body interaction
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Figure 1 | Photons with strong mutual attraction in a quantum nonlinear
medium. a, b, A linearly polarized weak laser beam near the transition
| gæ R | eæ at 780 nm is sent into a cold rubidium gas driven by a control laser
near the transition | eæ R | ræ at 479 nm. Strong nonlinear interactions between
s1-polarized photons are detected using photon–photon correlation functions
of the transmitted light for a set of different polarization bases, as determined by
a quarter-wave plate (QWP), a half-wave plate (HWP) and a polarizing beam
splitter (PBS). Here s2 photons serve as a phase reference. c, Transmission
spectra (top) and phase shift (bottom) fors1 photons with an incoming rate of
Ri 5 0.5ms21 (blue squares) or Ri 5 5ms21 (green circles), for a control field
red-detuned by D/2p5 15 MHz. The blue line shows the theoretical spectrum.
The spectrum at high probe rate approaches that of the undriven two-level

system (dashed grey; see also Supplementary Fig. 2). The solid vertical line
corresponds to the EIT resonance. d, Photon bunching and two-photon bound
state. Theoretically predicted photon–photon correlation function in the
Schrödinger equation approximation (top, blue line) for D/2p5 14 MHz, with
a potential well of width 2rB (bottom, green line). The bound state (bottom, red)
and the superposition of scattering states (bottom, black) form the initial
wavefunction, y 5 1 (bottom, dashed blue). The two-photon bound state
results in the observed bunching in the correlation function, g 2ð Þ

zz< yj j2 (top,
grey circles), where time has been converted into distance using the group
velocity, vg. The boundary effects resulting from the finite extent of the atom
cloud become important for | r | $ 5rB.
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Figure 2 | Propagation of
interacting photon pairs.
a, b, Measured second-order
correlation function (a) and
nonlinear phase shift (b) of
interacting photon pairs at D 5 2.3C.
The photons are detected at times t1

and t2. c, Second-order correlation
function displayed as a function of
the time difference, | t | 5 | t1 2 t2 | ,
between the photons, showing the
transition from antibunching on
resonance (D 5 0, green) to
bunching at large detuning
(D 5 2.3C, blue). Points are
experimental data; lines are full
numerical simulations. All g 2ð Þ

zz

measurements are rescaled by their
value at t . 1.5ms (Supplementary
Information). d, Nonlinear phase
shift versus | t | for two different
detunings (D 5 1.5C, purple, and
D 5 2.3C, blue). The 1 s.d. error is
630 mrad, dominated by photon
shot-noise.
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- three body bound state  
  for arbitrary interacitons 

- characteristic shape on short  
  distances due to repulsion
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Three-body correlations

Intensity correlations for the 
transmitted light 

- g2   characteristic peak for 
  two-body bound state 

- g3  characteristic behavior of the  
  bound state in the bunching of    
  photons
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Figure 1 | Photons with strong mutual attraction in a quantum nonlinear
medium. a, b, A linearly polarized weak laser beam near the transition
| gæ R | eæ at 780 nm is sent into a cold rubidium gas driven by a control laser
near the transition | eæ R | ræ at 479 nm. Strong nonlinear interactions between
s1-polarized photons are detected using photon–photon correlation functions
of the transmitted light for a set of different polarization bases, as determined by
a quarter-wave plate (QWP), a half-wave plate (HWP) and a polarizing beam
splitter (PBS). Here s2 photons serve as a phase reference. c, Transmission
spectra (top) and phase shift (bottom) fors1 photons with an incoming rate of
Ri 5 0.5ms21 (blue squares) or Ri 5 5ms21 (green circles), for a control field
red-detuned by D/2p5 15 MHz. The blue line shows the theoretical spectrum.
The spectrum at high probe rate approaches that of the undriven two-level

system (dashed grey; see also Supplementary Fig. 2). The solid vertical line
corresponds to the EIT resonance. d, Photon bunching and two-photon bound
state. Theoretically predicted photon–photon correlation function in the
Schrödinger equation approximation (top, blue line) for D/2p5 14 MHz, with
a potential well of width 2rB (bottom, green line). The bound state (bottom, red)
and the superposition of scattering states (bottom, black) form the initial
wavefunction, y 5 1 (bottom, dashed blue). The two-photon bound state
results in the observed bunching in the correlation function, g 2ð Þ

zz< yj j2 (top,
grey circles), where time has been converted into distance using the group
velocity, vg. The boundary effects resulting from the finite extent of the atom
cloud become important for | r | $ 5rB.
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interacting photon pairs.
a, b, Measured second-order
correlation function (a) and
nonlinear phase shift (b) of
interacting photon pairs at D 5 2.3C.
The photons are detected at times t1

and t2. c, Second-order correlation
function displayed as a function of
the time difference, | t | 5 | t1 2 t2 | ,
between the photons, showing the
transition from antibunching on
resonance (D 5 0, green) to
bunching at large detuning
(D 5 2.3C, blue). Points are
experimental data; lines are full
numerical simulations. All g 2ð Þ
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measurements are rescaled by their
value at t . 1.5ms (Supplementary
Information). d, Nonlinear phase
shift versus | t | for two different
detunings (D 5 1.5C, purple, and
D 5 2.3C, blue). The 1 s.d. error is
630 mrad, dominated by photon
shot-noise.
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Outline

Many-body theory 

- microscopic derivation 
- two-photon: bound states 
  and scattering states 

Three-body interactions 

- demonstration of strong influence

Applications 

- extension into two-dimensions 
- multi-mode cavity 
- phase gates



Optical multi mode cavity: - several transverse near  
  degenerate modes

Exp: Confocal cavity 
- harmonic oscillators  
  for photons 
- only even oscillator  
  functions

Extension into two dimensions

- kinetic energy of the polaritons:

cavity mode spectrum  
reduced  by  
slow light velocity

- interaction energy

effective interaction

A. Sommer, H.P. Büchler, J. Simon, arXiv 2016.



The design of the cavity 
determines the kinetic 
energy of the photons:

Extension into two dimensions

Example: Confocal cavity 

- dominating interaction energy 

- harmonic oscillators  
  for photons 

- only even oscillator  
  functions 

- ordered structure for  
  strong interactions 

Ring cavity with a phase shift 

2

Our proposed approach employs photons in a family
of near-degenerate resonator modes to mimic the physics
of a two dimensional gas of massive particles in a trap.
The modes must be nearly degenerate so that photons
can be coupled between them via Rydberg-mediated in-
teractions, giving rise to photon-photon collisions. In
practice, such a setup would consist of a high-finesse op-
tical cavity to engineer the photonic modes, along with
a gas of laser-cooled atoms within the cavity to mediate
photon-photon interactions (Fig. 1). In what follows we
provide a formalism that describes the dynamics of the
photons as massive trapped particles in the presence of
synthetic magnetic fields; introduce coupling to the Ry-
dberg EIT medium, and compute a renormalized photon
mass and interparticle potential; and perform numeri-
cal experiments demonstrating that few-body phenom-
ena such as crystallization and Laughlin droplet forma-
tion are directly observable in such a system.

I. CAVITY PHOTONS AS PARTICLES

It is a remarkable property of nearly degenerate optical
cavities that the behaviour of a photon in the transverse
plane is well described as a massive particle in an exter-
nal potential in two dimensions. This behaviour can be
understood in both geometric and wave optics pictures.
We begin with geometric optics to provide intuition.

In a degenerate cavity, precise tuning of the geome-
try causes light rays to retrace the same paths repeat-
edly, resulting in a fixed set of intersection points with a
transverse plane. Tuning slightly away from degeneracy
leads to imperfect repetition of the ray paths, causing
the intersection points to precess and trace out the path
of a particle moving in two dimensions. In the case of
a near-planar Fabry-Pérot cavity with spherical mirrors,
where the radius of curvature of the mirrors greatly ex-
ceeds the distance between the mirrors, the particle ex-
ecutes harmonic oscillation, as show in Fig. 2a. The
transverse oscillation frequency !? depends on the cav-
ity geometry, and is independent of the light wavelength.
Near degeneracy, !? becomes much smaller than the fre-
quency of round trips, allowing one to coarse-grain over
the longitudinal motion and consider purely transverse
two-dimensional motion.

In the wave optics picture, a photon lives in modes
with three quantum numbers: one longitudinal and two
transverse. For cavities that are short compared with
their mirror radii of curvature, the transverse mode spac-
ing is much smaller than the longitudinal mode spacing,
so coarse-graining over the optical round-trip amounts
to considering only a fixed longitudinal quantum num-
ber. In particular, two-mirror Fabry-Pérot cavities ex-
hibit Hermite-Gauss (HG) eigenmodes [42], with frequen-
cies !mn = !?(m+n+1)+const for the transverse modes
HGmn, illustrated in Fig. 2b. In the transverse plane of
the cavity waist, the HG modes have the same form as
the eigenfunctions of the two-dimensional harmonic os-

FIG. 2. Photons in near-degenerate cavities as parti-
cles in two dimensions. a, Light rays (blue) intersect the
transverse plane of the cavity at slightly di↵erent locations
after each round trip, owing to the curvature of the mirrors.
The intersection points trace out the motion of an e↵ective
particle undergoing harmonic oscillation. The cavity eigen-
modes in the wave picture correspond to the wavefunction
of the particle. b, Mode spectrum of a near-planar cavity
within a manifold of transverse modes. The splitting between
levels is small compared to the cavity free spectral range (not
shown), and approaches zero in the planar limit. c, Schematic
of a helical running-wave cavity that induces an image rota-
tion by an angle �. d, Frequency spectrum in a single lon-
gitudinal mode of a helical, showing the shift of the mode
frequencies proportional to the angular momentum l. Modes
with negative l are shifted upward in frequency, while modes
with positive l are shifted downward towards degeneracy with
the TEM

00

mode, forming a Landau level.

cillator, with an oscillator length of w
0

/
p
2, where w

0

is the cavity waist size (1/e2 intensity radius). This
energy- and mode spectrum corresponds to that of the
quantum harmonic oscillator, thus the photons in the
cavity may be viewed as 2D particles near the quantum
ground state of a harmonic trap. The photon “mass”
then arises from the analogy to zero-point motion, corre-
sponding to the 1/e2 intensity radius of the lowest cavity
mode w2

0

= �
⇡

p
L(2R� L), where L is the cavity length,

R is the radius of curvature of the cavity mirrors, and �
is the wavelength of the light. The photon mass is then
m

ph

= 2~/(w2

0

!?) for HG modes. In the special case of
a near-planar cavity, the mass reduces to the relativistic
expression m

ph

= ~!?/c
2, with c the speed of light [38].

More exotic cavity geometries give rise to more com-
plex transverse dynamics of the photons in the focal
plane. Of particular interest are geometries that pro-
duce an image rotation on each round-trip, arising from
a running-wave geometry with either intra-cavity dove
prisms, or non-planar geometry (Fig. 2c). Neglect-
ing astigmatism, such helical cavities exhibit Laguerre-

- low energy photonic modes are 
  Laughling  states 

- topological states of matter? 

- novel states of matter?

A. Sommer, H.P. Büchler, J. Simon, arXiv 2016.



Conclusions
Theoretical framework for analyzing 
Rydberg slow light polaritons

- effective theory for slow light  
  polaritons alone 

- two-particle properties 

- low energy many-body Hamiltonian

Three-body interaction
- correction to many-body theory 

- applications on bound states  
  and correlations

Applications

- tool engineer interesting states 
  of quantum matter in 2D 


