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* Many emerging experimental systems that can achieve strong
interactions between photons

* Quantum information processing or strongly correlated
states of light

Cavity QED

Atoms / Fabry- Atoms and solid-state emitters /

Perot cavities nanophotonic cavities Circuit QED
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Beyond cavity i— b

QED

Atoms coupled

to nanofibers Waveguide QED
gases and PhC

waveguides

Atomic Rydberg



* Theoretical complexity of cavity QED vs. non-cavity QED
systems differs dramatically

* Cavity QED: “easy” to solve

Jaynes-Cummings model

H = g(o.4a + ggea’)

Ain

e Limited Hilbert space |e),|g) & ]0),|1),]2), ...

atoms photons

* |nput-output equation: relates observable fields outside the
cavity to dynamics inside

Aout () = a;p (t) + Vica(t)
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* Non-cavity QED systems
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_ Atoms coupled
Atomic Rydberg to nanofibers Waveguide QED
gases and PhC
waveguides

 Common feature: coupling to propagating fields
* One photon already represents an infinite Hilbert space!

f dw f(w)al |vac)



* Possible to prepare strongly correlated states of light?

Crystal of photons?
* Many interesting proposals:

' . . ' Wigner Crystallization of Single Photons in Cold Rydberg Ensembles
Crystallization of strongly interacting |
Johannes Otterbach™
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D. E. CHANG', V.. GRITSEV", G. MORIGI?, V. VULETIC?, M. D. LUKIN' AND E. A. DEMLER"*

Dissipation induced Tonks-Girardeau gas of photons Highly nonlocal Optical nonlinearities in atoms
M. Kiffner! and M. J. Hartmann! trapped near a WaveglIide

“Technische Universitit Minchen, Physik-Department I, James-Franck-Strafle. 85748 Garching, Germany

EpHRAIM SHAHMOON,"*** PyoTrs GRISINS,' Hans PeTER STiMMING,>® lcor MazeTs,*® anp GeErsHoN Kurizki'
Correlated photon dynamics in dissipative Rydberg media

Emil Zeuthen,? * Michael J. Gullans,® Mohammad F. Maghrebi,® and Alexey V. Gorshkov®

* Challenge to analytically solve or numerically verify!
* Continuum, driven, open, out-of-equilibrium, ...



Photon storage (EIT), EPR entanglement of
atomic ensembles and light, spin squeezing, ...

Computational black box for guantum case: discretize space
and solve quantum discretized wave equations

Z1 VA Z3 Z4
|Oz1) |022>
|121> ® 1122) Assign local Hilbert space to each site
|zz1> |222)
+ atoms

* Hilbert space explodes, even for empty space!

* In practice, limited to 2-3 total excitations in system,
excluding quantum jumps

Goal: approach where limit of empty space becomes trivial



* Real degrees of freedom are just the atoms, encoded in a
discrete “spin” Hamiltonian
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* Re-construct quantum field from generalized input-output
equation

Patoms (L) ‘ .W Photodetectors (ET(t)ET(tDE(t)E(t))

* Most systems mappable to effective 1D model with N < 100
atoms

=) =

* Numerically solve for patoms(£) using matrix product states
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* Formalism: quantum atom-light interactions encoded in
(classical) E&M Green’s function

[(Vx V x) — w?e(r,w)/c?|Gap(r,r’, @) =6(r—-1r) Q1

* G describes electric field at point r, of a normalized oscillating
dipole at r’

—.wt
@(( ( ,)r a, f encode vector nature of dipole
. " ) source and field

2.



* Classical scattering from polarizable particles

Ein (T) ./V‘:C"'cd’o v point
ummmwmw It :

£ield (kN‘"'\\

— (ZE(T“;)G —lwt
* Know the radiation pattern for a dipole

 (Can calculate the total field
A A A

E(r,w) = Ejp(r,w) + ayG (r, 1, w)p;(w) ,

Y
Becomes convolution in time domain

* Classical and quantum fields propagate the same way

* Generalized “input-output” equation in time for atoms

~ ~ : Field encoded in atoms!
E(r,t) = Epn(r,t) + pow2yd§ Z G(r,1i, weg) 0ge(t)
i



Substitute field into equations of motion for atoms

* Master equation for atoms alone

Coherent evolution (emission and re-absorption)

Hefs = _P-Odgwgg Z(Re G(Tj: i, weg))aégagje
L,j

Dissipation (spontaneous emission)

p=Llp]= oweg Z(Im G (7,7 weg)) (a'eg OgeP + Pa'eg ge 20' Pa'eg)
Lj

* |Inshort (non-Hermitian Hamiltonian):

ot = —todbuy 3 Gty ugdetyely ammiume
L,J



Atomic ensemble
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~ exp

Abeam Natoms) = exp(—0D)
(Natoms ~ 106,0D < 102)
Write down effective 1D equation: (9; + 8,)E(z,t) ~ iPye (2, t)

Approximate: independent emission into other modes

Idea: invent an equivalent 1D “waveguide” with huge
interaction probability and N ~ 10% atoms

)



* Spin model in 1D

— 2,2 i )
Hegr = _ﬂodoweg Z G(Tj: T, weg)aego'ge »
L,J i,j
Plane wave propagation in 1D

* Single atom:

ilip o o
Hoge = —— Oce ° I1p is single-atom spontaneous emission rate

* Not very physical — photon always emitted into 1D channel
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 Add phenomenological decay rate into other channels

iTip | R
Heft = ——— exp(ik|z; — z;|) gly0) - ol,

L,J i
+ quantum jumps

* Model connects quantitatively to experimental 1D systems

a) £ 1 @
Glass Fiber (5090m . f A
~ A /
ARG ) ~ Towmes Lasers ) -
Atoms - Atoms - PhC QD - PhC Waveguide QED
nanofibers waveguides waveguides

l"m/l"' ~ 0.05 F]_D/F’ ~ 1 FlD/F’ > 10



Apply input-output formalism to calculate fields

. Randomly posmoned two-level atoms, many runs

Linear transmission spectrum
N=10 atoms, r“’ =0.3
Randomly dlstrlbuted oh 100 sites (10 runs)

Transmittance

(0= 0eg)/(Typ +T7)
On resonance:
T =~ exp(—0D)

Establishes connection with free-space ensembles with much
higher Natoms!
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Exact dynamics of spin Hamiltonian on full Hilbert space:
Natoms < 20

Larger systems: use matrix product states

MPS in a nutshell: [} = Z Ciyiyig.iyliriziz . iy) ~ EXxact wavefunction
{i=Td} N\

Rank-N tensor

Re-shape tensor Ciyiyoiny = MEIMU2) | M EN)

azadsz

Representation:

i
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* Exact representation: matrix size D grows exponentially with N
* Approximation: truncate at max size Dx D

* Interpretation:

i1 iZ i3 i4- i5 i6
L R

lY) = Z Sqlap)|ag) Schmidt decomposition

a

* Good representation if s, decays rapidly (low entanglement
entropy)

Sa

* Our case: probably aided by dissipation

I >a



Initial state |y (t,))

Atom #
lp(t, + At)) =
Apply MPO (1 — iHegA) [Y(Lo))
Jump?

* Size of MPS grows after evolution step

Compress
and repeat




e Does the formalism work??

* Few cases of known many-body solutions

* Exception: vacuum induced transparency

. EIectromagneticaIIy induced transparency:

A/ S, L

0,




Does the formalism work??

Few cases of known many-body solutions
* Exception: vacuum induced transparency

Electromagnetically induced transparency:

. L

)

0,

Photon hybridizes with a spin excitation, |g) — |s)

Reduced group velocity v, & .le <« ¢ and transparency window
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probe intensity (arb. units)
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Pulse propagation acquires nonlinearity of atom-cavity
interaction

* Photon number-dependent group velocity, v; X nyy

| initial pulse

n=4 n=3

n=2

o

10

12

* Spatial separation of photon number

Theory: Fleischhauer (PRL, 2010)
Experiment: Vuletic (Science, 2011)



Natoms — 100, FlD — 2, 1-"

Coherent state input:

0.2

0.15

0.1

0.05

= 0.03 (0D=400)

(ETE)

in
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* Natoms = 100,Ip =

o

* Coherent state input:

54 3 2 1 photon
0.04 T T 1T 1715 1 T i T
' I 1 | Lose clean separation of
'+ ! 11and 2 photons due to
0.03f ' 1 1 | absorption I
0.02} 1
%
0.01}
0 t




» Effect of partial absorption

0.04 Y Y Y Y Y ' T T

0.035

0.03F "

0.025

0.02}F

0.015

0.01} 3

0.005

0 ] ] ] L] | t
0 5 10 15 20 25 30 35 40 45

Post-selection — no jumps out of waveguide, N
detected photons in transmission
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Natoms — 100, FlD — 2, 1-" — 1,g — 2,K = 0.03

» Effect of partial absorption

0.025 - . :
BN 1 only
0.02} 11 with jumps |
0.015¢ -
0.01¢ J
0.005¢ -
0 = t
10 20 30 40

Post-selection — jumps/no jumps out of waveguide, 1
detected photon in transmission



* Distortion of a two-photon wavepacket

inside

/
PY(xq1,X3)

Incoming pulse
(starts outside system)




* Distortion of a two-photon wavepacket
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* Promising technique to solve for many-photon dynamics

Effective theories /

. ) Numerical techniques
analytical solutions

H.-P. Buchler, A.
Gorshkov, T. Pohl, ...

 Why does it work, and when does it fail?
* Nature of entanglement growth in dissipative systems

* Atom-light interactions as a quantum spin model
* Other interesting consequences?



