Optical manipulation of electronic bands using Floquet-Bloch States

Motivation

Can we use light excitation to create and manipulate new phases of quantum materials?

Cuprates

Different types of light matter interaction

Can we preserve and utilize the coherence?

Outline

+ Coherent light matter interaction in solids

+ Observation of Floquet-Bloch states in TIs

+ Breaking valley degeneracy in TMDs with light

+Outlook

Outline

+ Coherent light matter interaction in solids

+ Observation of Floquet-Bloch states in TIs

+ Breaking valley degeneracy in TMDs with light

+Outlook

How to preserve coherence?

E Atoms

Foley & Tansley (1986)

Bloch States

+ Spatially periodic: H(r + R) = H(r) $\Psi_{nk}(r) = e^{ik \cdot r} u_{nk}(r)$ $u_{nk}(r + R) = u_{nk}(r)$ k and k + nG $(G = 2\pi/R)$ + Temporally periodic H(t + T) = H(t) $\Psi_{\alpha}(t) = e^{-\frac{i}{\hbar}\epsilon_{\alpha}(t - t_{0})}\phi_{\alpha}(t)$ $\phi_{\alpha}(t) = \phi_{\alpha}(t + T)$ $\epsilon_{\alpha} \text{ and } \epsilon_{\alpha} + n\hbar\omega$ $(\omega = 2\pi/T)$

Bloch States Floquet-Bloch States Can we directly observe these states in solids?

Outline

+ Coherent light matter interaction in solids

+ Observation of Floquet-Bloch states in TIs

+ Breaking valley degeneracy in TMDs with light

+Outlook

The 3D topological insulator

Angle Resolved Photo-Emission Spectroscopy

By measuring electron intensity as a function of E_{kin} , ϑ and φ , the band dispersion can be constructed.

Novel Time-of-flight ARPES

Time resolved ARPES

Movie of the 3D electronic band structure

$$I(E, k_x, k_{y,t} \ge 0)$$
 - $I(E, k_x, k_{y,t} \le 0)$

-4.25 ps

Wang et al. ... N. Gedik Phys. Rev. Lett. 109, 127401 (2012)

Photoexcitation of TI with light E>E_g

+ Light energy is **bigger** than the bulk band gap:

Excitation Energy = 1.5 eV

What would happen if I excite below bulk bandgap?

Wang et al. ... N. Gedik *Phys. Rev. Lett. 109*, 127401 (2012)

What would happen if I excite below bulk bandgap?

Time resolved ARPES

Photoexcitation of TI with light E<E_g

+ Excitation light energy is **smaller** than the bulk band gap

Floquet-Bloch states

Dependence on momentum direction

Science 342, 453 (2013) Nature Physics 12, 306 (2016)

Dependence on momentum direction

S

k.

k_x

Theory of coherent light interaction with TI

$$\begin{array}{c} H_0(k) = v(k_x\sigma_y - k_y\sigma_x) \\ H(\mathbf{k}, t) = H_0(\mathbf{k}) + H_{ext}(t) \\ H_{ext}(t) = V\Theta(t - t_0)(A_x(t)\sigma_y - A_y(t)\sigma_x) \\ \text{Linear: } A(t) \propto (\cos \omega t, 0) \\ \\ \overset{3}{\mathsf{g}_1^{\mathsf{o}_1^{o$$

Phys. Rev. B 88, 155129 (2013) and other works

Theory of coherent light interaction with TI

$$k \to k + eA(t)$$
$$V = evE_0/\omega$$

$$2\Delta = V = \frac{evE_0}{\omega}$$

Can we break TRS in TIs with light?

- + Topological phase is protected by time reversal symmetry (TRS)
- + Breaking TRS in TIs is predicted to lead to fascinating effects
- + It will open a band gap and make the Dirac fermions massive

- Traditional methods rely on coating with ferromagnet or doping with magnetic impurities both of which are difficult
- + Could we use circularly polarized light to break TRS in TIs?

Linear Polarization: No Gap at the Dirac Point!

Circular Polarization: Photoinduced Gap at the Dirac Point!

Theory of coherent light interaction with TI

$$H_{0}(k) = v(k_{x}\sigma_{y} - k_{y}\sigma_{x})$$

$$H(\mathbf{k}, t) = H_{0}(\mathbf{k}) + H_{ext}(t)$$

$$V = evE_{0}/\omega$$

$$H_{ext}(t) = V\Theta(t - t_{0})(A_{x}(t)\sigma_{y} - A_{y}(t)\sigma_{x})$$
Linear: $A(t) \propto (\cos \omega t, 0)$

$$Circular: A(t) \propto (\pm \cos \omega t, \sin \omega t)$$

$$\int_{a_{0}^{circ}} \int_{a_{0}^{circ}} \int_{a_$$

"Driven Electronic States at the Surface of a Topological Insulator" Phys. Rev. B 88, 155129 (2013) and other works

Science 342, 453 (2013) Nature Physics 12, 306 (2016)

Photoinduced gapped state

Kitagawa et. al., PHYSICAL REVIEW B 84, 235108 (2011)

The Hamiltonian is identical to the Chern insulator as originally proposed by Haldane!

Realization of Quantum Hall Insulator without Landau Levels!!!

$$2\kappa \approx \frac{2V^2}{\hbar\omega}$$

Outline

+ Coherent light matter interaction in solids

+ Observation of Floquet-Bloch states in TIs

+ Breaking valley degeneracy in TMDs with light

+Outlook

Transition metal dichalcogenides (TMD)

(MX₂ with M: Mo, W and X: S, Se, Te)

Broken inversion symmetry Coupling of spin and valley

Time reversal symmetry ↓ Degenerate valley at K and K' Mak et al. Nature Nanotech. 7, 494–498 (2012).

Valley degeneracy in TMDs

Can <u>light</u> be used to lift the valley degeneracy?

The optical Stark effect (WS2)

Valley selectivity

E J Sie et al, Nature Materials 14, 290 (2015)

Laser tunability

20 $\Delta = 0.12 \text{ eV}$ 18 $\Delta = 0.18 \text{ eV}$ $\Delta = 0.32 \text{ eV}$ 16 14Energy shift (meV) 12108 6 4 $\Delta E_{\rm OS} \propto$ E_0 $\mathbf{2}$ 200400 600 800 10000 Pump fluence/ Δ (μ J/cm² eV)

EJ Sie *et al*, Nature Mater 14, 290 (2015) Kim et al. Science

What would happen in large detuning?

Bloch-Siegert shift

EJ Sie *et al*, in review (2016)

Small-to-Large detuning

EJ Sie et al, in review (2016)

Fluence and detuning dependence

EJ Sie et al, in review (2016)

Physical picture

Summary

+ 3D visualization of bulk and surface dynamics

+ Observation of Floquet-Bloch states in solids!

+ Breaking of TRS with light in a TI!

+ Breaking valley degeneracy with light in TMDs

+ Observation of Bloch-Siegert shift in solids

Current Group Members

