

Hauser-Raspe Foundation

Adiabatic Quantum Computing with Parity Constraints Wolfgang Lechner

Rick van Bijnen

Philipp Hauke

Sci. Adv. 1, 1500838 (2015).

arXiv:1611.02594 (2016)

Martin Leib

arXiv:1411.7933 (2014) arXiv:1604.02359(2016)

Lars Bonnes

KITP, Designer Quantum Systems Out of Equilibrium, 15th Nov. 2016

Quantum Computing

- Superposition
- Measurement ... as a resource.

M. Greiner, et. al. Nature, 415 (2002).

H. Nishimori et. al., PRE 58, 5355 (1998).E. Farhi et. al., Science 292, 472 (2001).

$$H(t) = \left(1 - \frac{t}{T}\right)H(0) + \frac{t}{T}H_p$$

Trivial initial Hamiltonian Problem Hamiltonian

H. Nishimori et. al., PRE 58, 5355 (1998).E. Farhi et. al., Science 292, 472 (2001).

$$H(t) = \left(1 - \frac{t}{T}\right)H(0) + \frac{t}{T}H_p$$

Trivial initial Hamiltonian Problem Hamiltonian

1. Prepare System in $|\psi_0\rangle$ which is the ground state of H(0)

2. Slowly evolve the system with

$$|\psi(t)\rangle = e^{-i\int_0^t H(t)dt} |\psi_0\rangle$$

3. Due to the adiabatic theorem, the final state is the ground state of ${\cal H}_p$

- Adiabaticity:

mapping function s(t)
$$i \frac{ds}{dt} \frac{d}{ds} |\psi(s)\rangle = H(s) |\psi(s)\rangle$$

$$\frac{1}{\tau(s)} = \frac{ds}{dt} \ll \frac{\Delta^2}{|\frac{d}{ds}H(s)|}$$

- Coherence:

D. Wild, S. Gopalakrishnan, M. Knap, N. Y. Yao, M. D. Lukin Phys. Rev. Lett., 117, 150501 (2016).

- only scalable at zero-temperature
- at finite temperature, error correction is needed

- Any gate model can be simulated with an adiabatic quantum computer. Aharanov et. al. SIAM Review 50, 755 (2008).
- Grover Algorithm can be implemented optimally $\mathcal{O}(\sqrt{N})$. Fahri and Gutmann, Phys. Rev. A 57, 2403 (1998).

- Entanglement as a resource:

P. Hauke, L. Bonnes, M. Heyl and WL, Front. Phys. 3, 21 (2015).

- Infinite Range Spin glass

$$\mathcal{H}(t) = A(t) \sum_{i}^{N} b_i \sigma_x^{(i)} + B(t) \left[\sum_{i=1}^{N} h_i \sigma_z^{(i)} + \sum_{i=1}^{N} \sum_{j=1}^{i} J_{ij} \sigma_z^{(i)} \sigma_z^{(j)} \right]$$

Adiabatic Quantum Computing Challenges:

Parity Adiabatic Quantum Computing

- abstraction of logical from physical qubits
- encode all-to-all interaction matrix in local fields
- architecture comprises problem-independent, local interaction
- can be realized in current **qubit platform** (e.g. flux qubits, transmon qubits, ultracold atoms, hybrids systems,...)
- classical error tolerance from redundant encoding
- k-body terms

Physical qubits $\hat{\sigma}_z^{(k)}$ represent parity of **logical qubits**.

 ${\cal N}\,$ degrees of freedom

 $K = \frac{N(N-1)}{2}$ degrees of freedom

What are these constraints?

Conditions on closed loops

$\sigma_z^{(1)}$	$\sigma_z^{(2)}$	$\sigma_z^{(3)}$	$\hat{\sigma}_{z}^{(12)} \ \hat{\sigma}_{z}^{(13)} \ \hat{\sigma}_{z}^{(23)}$
1	1	1	1

$\sigma_z^{(1)}$	$\sigma_z^{(2)}$	$\sigma_z^{(3)}$	$\hat{\sigma}_{z}^{(12)}$	$\hat{\sigma}_{z}^{(13)}$	$\hat{\sigma}_{z}^{(23)}$
1	1	1	1	1	

Conditions on closed loops

$\sigma_z^{(1)}$	$\sigma_z^{(2)}$	$\sigma_z^{(3)}$	$\hat{\sigma}_{z}^{(12)}$	$\hat{\sigma}_z^{(13)}$	$\hat{\sigma}_{z}^{(23)}$
1	1	1	1	1	1

Conditions on closed loops	$\sigma_{z}^{(1)} \sigma_{z}^{(2)} \sigma_{z}^{(3)}$		$\hat{\sigma}_{z}^{(12)} \ \hat{\sigma}_{z}^{(13)} \ \hat{\sigma}_{z}^{(23)}$			
	1 0	1 0	1 0	1	1	1

Conditions on closed loops

$\sigma_z^{(1)}$	$\sigma_z^{(2)}$	$\sigma_z^{(3)}$	$\hat{\sigma}_{z}$	$\stackrel{(12)}{z} \hat{\sigma}$	$_{z}^{\left(13 ight) }\hat{\sigma}_{z}^{\left(13 ight) }$	(23)
1	1	1	1	-	1	
0	0	0	1	-	1	
0	0	1	1	() ()

$\sigma_{z}^{(1)} \sigma_{z}^{(2)} \sigma_{z}^{(3)}$	$\hat{\sigma}_{z}^{(12)} \ \hat{\sigma}_{z}^{(13)} \ \hat{\sigma}_{z}^{(23)}$
1 1 1	1 1 1
0 0 0	1 1 1
0 0 1	1 0 0
	1 1 0

Conditions on closed loops

In each closed loop, the number of **spin-down** has to be an even number or 0.

Constraints (Implementation)

Parity AQC

$$\mathcal{H}(t) = A(t) \sum_{i=1}^{K} b_i \sigma_x^{(i)} + B(t) \sum_{i=1}^{K} J_i \sigma_z^{(i)} + C(t) \sum_{l=1}^{K-N} C_l$$
$$K = \frac{N(N-1)}{2} \qquad C_l = -C\tilde{\sigma}_z^{(l,n)} \tilde{\sigma}_z^{(l,e)} \tilde{\sigma}_z^{(l,s)} \tilde{\sigma}_z^{(l,w)}$$

Spectrum

Magnetic Field term

Three-Body interactions

Error correction

Fernando Pastawski, John Preskill, Physical Review A 93, 052325 (2015).

Belief propagation algorithm

Parity is preserved for any closed loop: $0 = (12) \oplus (23) \oplus (13) = (12) \oplus (24) \oplus (14) = ... = (12) \oplus (2N) \oplus (1N)$ Estimate value of (12) from

$$g_{12} = (23) \oplus (13) = (24) \oplus (14) = \dots \qquad \text{loops of 3} \\ g_{12} = (23) \oplus (34) \oplus (14) = (23) \oplus (35) \oplus (15) = \dots = \qquad \text{loops of 4} \\ g_{12} = (23) \oplus (34) \oplus (45) \oplus (15) = \dots \qquad \text{loops of 5} \\ \dots \qquad \dots$$

New platforms for Quantum Annealing

Ultracold atoms in optical lattices

Bloch, Munich

Superconducting Qubits

A. Wallraff

Rydberg atoms

Saffman, Madison

Hybrid Ion-traps

S. Benjamin, Oxford

lons in surface traps

Blatt, Innsbruck

Polar Molecules

J. Ye, Boulder

New platforms for Quantum Annealing

A. Glätzle, R. van Bijnen, P. Zoller and WL, arXiv:1611.02594 (2016).

Ultracold atoms in optical lattices

Bloch, Munich

Superconducting Qubits

HSFL Q2 Q2 R1 Q2 Q2 Flipp, IBM

A. Wallraff

Rydberg atoms

Saffman, Madison

Hybrid Ion-traps

S. Benjamin, Oxford

lons in surface traps

Blatt, Innsbruck

Polar Molecules

J. Ye, Boulder

Martin Leib, P. Zoller, and WL, arXiv:1604.02359(2016).

Strategies for constraint design with Rydberg atoms 4-body constraints

Strategies for constraint design with Rydberg atoms

Strategies for constraint design with Rydberg atoms

Strategies for constraint design with Rydberg atoms

$$S = \left(2\sigma_z^{(a)} + \sum_i^4 \sigma_z^{(i)}\right)^2$$

Error Robustness

Neutral Atoms in Optical Lattices

A. Glätzle, R. van Bijnen, P. Zoller and WL, arXiv:1611.02594 (2016).

I. I. Beterov and M. Saffman, Phys. Rev. A 92, 042710 (2015).

R. M. W. van Bijnen and T. Pohl Phys. Rev. Lett. **114**, 243002 (2015)

Neutral Atoms in Optical Lattices

A. Glätzle, R. van Bijnen, P. Zoller and WL, arXiv:1611.02594 (2016).

I. I. Beterov and M. Saffman, Phys. Rev. A 92, 042710 (2015).

Transmon Implementations

Martin Leib, P. Zoller, WL, arXiv:1604.02359(2016).

 $\begin{aligned} \sigma_z^{(1)} \sigma_z^{(2)} \sigma_z^{(3)} &\to \quad \sigma_z^{(1)} \sigma_z^{(2)} + \sigma_z^{(2)} \sigma_z^{(3)} + \sigma_z^{(3)} \sigma_z^{(1)} \\ &+ \sum_{i=1}^{3} [2\sigma_z^{(i)} \sigma_z^{(a)} - \sigma_z^{(i)}] - 2\sigma_z^{(a)} \end{aligned}$

- rotating frame
- only pair interactions
- no crossings
- all local fields have the same sign
- all interactions have the same sign
- programming [0,2]

Quantum Circuit for LHZ

Nicholas Chancellor, Stefan Zohren, Paul A. Warburton arXiv:1603:09521 (2016).

e.g. Driven Kerr-nonlinearities

Shruti Puri, Christian Kraglund Andersen, Arne L. Grimsmo, Alexandre Blais, arXiv:1609.07117 (2016).

e.g. Driven fixed frequency Transmons

D. C. McKay, S. Filipp, A. Mezzacapo, F. Solgun, J. Chow, and J. M. Gambetta. arXiv:1604.03076 (2016).

Outlook

Infinite range spin-glass vs. finite range lattice gauge

= fixed

3

2

1

0 L 0

0.2

0.4

t

0.6

0.8

 $\nabla \mathbb{E}$

0 L 0

0.4

0.6

0.8

0.2

Coherent Annealing

Peter Zoller

Philipp Hauke

Science Advances 1, 1500838 (2015).

Alex Glätzle Rick van Bijnen

arXiv:1611.02594 (2016).

Martin Leib

arXiv:1611.02594 (2016).

Superconducting Qubits (Transmons)

J. Martinis

S. Boixo

I. Bloch group. Nature 453. 016

Rydberg atoms

Saffman, Madison

lons in surface traps

Polar Molecules

A. Wallraff

Blatt.