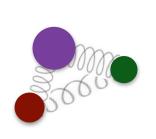
Many-body localized phase: dynamics and efficient numerical simulation

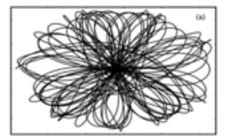
Maksym Serbyn

UC Berkeley

Alexios Michailidis, Dima Abanin, Zlatko Papic

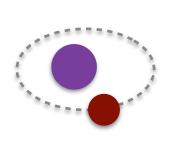
[PRL 117, 160601(2016)]

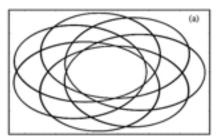

SynQuant Conference KITP, 2016

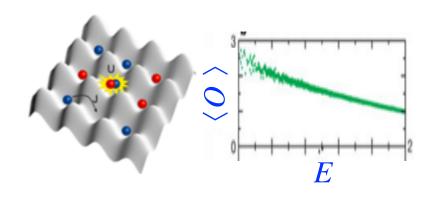


Ergodicity and integrability

Ergodic systems

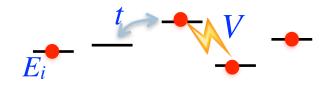

chaos → ergodicity




Integrable systems

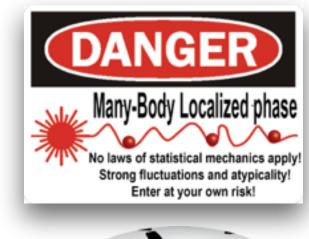
stable to weak perturbations
[Kolmogorov-Arnold-Moser theorem]

Thermalizing phases


MBL phases

"toric cow" of non-ergodic systems

MBL: generic non-ergodic phase


 MBL = localized phase with interactions [Anderson, Fleishman'80]

Perturbative arguments: [Basko, Aleiner, Altshuler'05] [Gorniy, Polyakov, Mirlin'05]

Numerical evidence: [Oganesyan, Huse'08] [Znidaric, Prosen'08] [Pal, Huse'10]

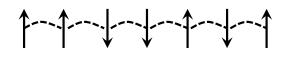
- Revived interest in MBL:
 - Experiments in cold atoms, ion chains...
 - ★ Emergent integrability→universal non-ergodic dynamics
 - * Breakdown of statistical mechanics \rightarrow symmetry breaking at $T=\infty,...$

Towards understanding of MBL phase

- I. Dynamics in MBL phase
 - * Local integrals of motion
 - * Entanglement growth and dephasing
 - * New probes of dephasing dynamics
- II. Highly excited MBL eigenstates
 - * Structure of entanglement spectrum
 - * Efficient numerical simulation with MPS

[MS, Michailidis, Abanin, Papic, PRL 117, 160601(2016)]

III. Summary and Outlook


I. Dynamics in MBL phase

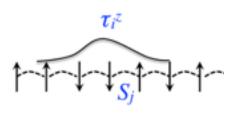
 $x(t) = \xi \log(Vt)$


Constructing local integrals of motion

$$H_0 = \sum_{i} h_i S_i^z + J_z S_i^z S_{i+1}^z$$

$$H = H_0 + \sum_{i} J_{\perp} (S_i^{+} S_{i+1}^{-} + h.c.)$$

Local unitary


Sequence of local unitaries:

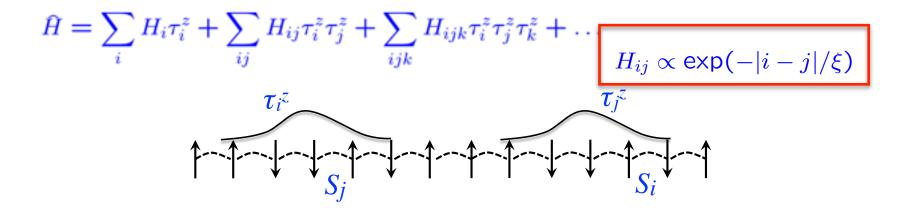
$$U^{\dagger}HU = H_{\mathrm{diag}}$$

Local integrals of motion

$$[\hat{\tau}_i^z, H] = 0$$

$$\widehat{\tau}_i^z = U^{\dagger} \widehat{S}_i^z U$$

Effective spins form complete set Emergent integrability


[MS, Papic, Abanin PRL'13] [Huse, Nandkishore, Oganesyan PRB'14] [Imbrie'14, PRL'16] strong disorder RG:[Vosk&Altman,PRL'13]

Universal Hamiltonian of MBL phase

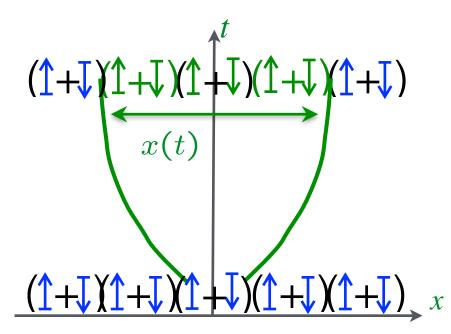
If model is in MBL phase, apply sequence of local unitaries

$$H = \sum_{i} \vec{S}_{i} \cdot \vec{S}_{i+1} + h_{i} S_{i}^{z} \qquad \qquad h_{i} \uparrow \qquad \downarrow J_{z} \uparrow \qquad \uparrow$$

• Hamiltonian expressed via $\tau_i = U^{\dagger} S_i U$

Effective spins cannot relax→ no transport
 Interactions → dephasing& relaxation

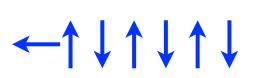
Entanglement growth from dephasing


$$\hat{H} = \sum_{i} H_{i} \tau_{i}^{z} + \sum_{ij} H_{ij} \tau_{i}^{z} \tau_{j}^{z} + \dots \qquad H_{ij} \propto J e^{-|i-j|/\xi}$$

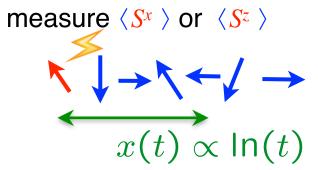
Phases randomizeon distance x(t):

$$tH_{ij} = tJ \exp(-x/\xi) \sim 1$$

$$\downarrow$$

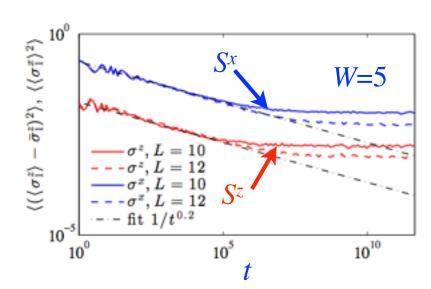

$$x(t) = \xi \log(Jt)$$




Logarithmic growth of entanglement [MS, Papic, Abanin, PRL'13]
 [Znidaric, Prosen, Prelovsek, PRB'08] [Bardarson, Pollmann, Moore, PRL'12]

Q: How to probe in experiment?

Local observables in a quench

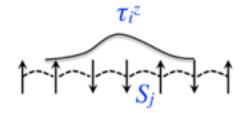


- $\langle \tau^{x}(t) \rangle = \rho_{\uparrow\downarrow}(t) = \sum [N(t) = 2^{x(t)} \text{ oscillating terms}]$
- Decay of oscillations of $\langle \tau^{x}(t) \rangle$:

$$|\langle \tau_k^x(t) \rangle| \propto \frac{1}{\sqrt{N(t)}} = \frac{1}{(tJ)^a}$$

$$\left|\langle \hat{\mathcal{O}}(t) \rangle - \langle \mathcal{O}(\infty) \rangle \right| \sim \frac{1}{t^a}$$
 memory of initial state

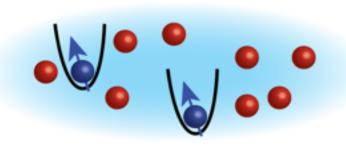
[MS, Papic, Abanin, PRB'14]



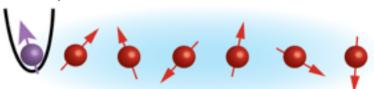
Other probes of dephasing

Modified spin echo protocol
 Quantum revivals, ...

[MS,Knap,et al.,PRL'14]
[Vasseur, Parameswaran,Moore, PRB'15]


All protocols assume: $\sigma_1^z \approx \tau_1^z$

How to probe "operator expansion"?


$$\sigma_1^z = \sum_{ij} \alpha_i \tau_i^z + \sum_{ij} \beta_{ij} \tau_i^+ \tau_j^- + \sum_{ijk} \alpha_{ijk} \tau_i^z \tau_j^z \tau_k^z + \dots$$

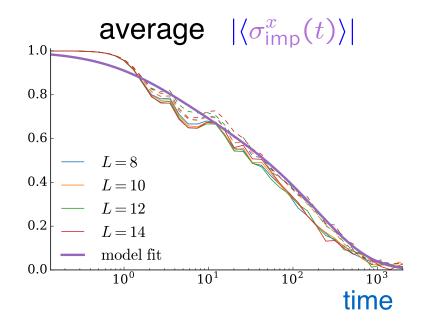
Next: orthogonality catastrophe

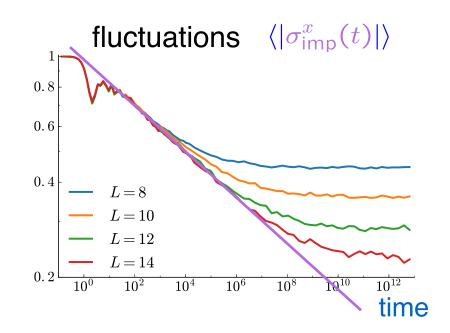
Ramsey interferometry & operator expansion

- Impurity spin coupling $H_{int} = g\sigma^z_{ ext{imp}}\sigma^z_1$
- Initialize along x, measure

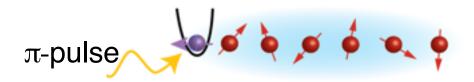
$$\langle \sigma_{\text{imp}}^x(t) \rangle = \text{Re} \langle \psi_0 | e^{i(H + g\sigma_1^z)t} e^{-i(H - g\sigma_1^z)t} | \psi_0 \rangle$$

Non-trivial dynamics comes from expansion:

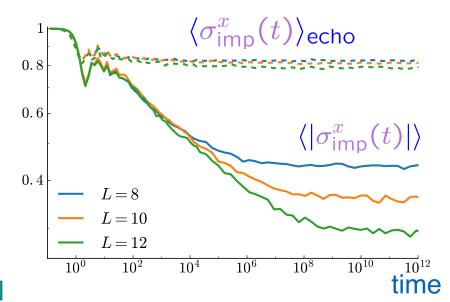

$$\sigma_1^z = \sum \alpha_i \tau_i^z + \sum_{ij} \beta_{ij} \tau_i^+ \tau_j^- + \sum_{ijk} \alpha_{ijk} \tau_i^z \tau_j^z \tau_k^z + \dots$$
$$\langle \sigma_{\text{imp}}^x(t) \rangle \approx \text{Re} \langle \psi_0 | e^{2itg(\sum \alpha_i \tau_i^z + \sum_{ijk} \alpha_{ijk} \tau_i^z \tau_j^z \tau_k^z + \dots)} | \psi_0 \rangle$$


• Dephasing \rightarrow power law decay of fluctuations $|\langle \sigma^x_{\rm imp}(t) \rangle| \propto \frac{1}{t^b}$

Average vs fluctuations


- Average: α_i = matrix elements \rightarrow universal function
- Fluctuations: dephasing → power law decay

Off-diagonal terms in operator expansion

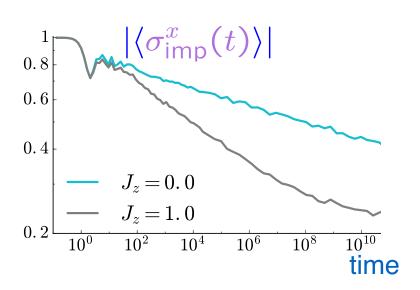

Spin echo protocol:

$$\langle \sigma_{\rm imp}^x(t) \rangle_{\rm echo} = \operatorname{Re} \langle \psi_0 | e^{i(H - g\sigma_1^z)t} e^{i(H + g\sigma_1^z)t} e^{-i(H - g\sigma_1^z)t} e^{-i(H + g\sigma_1^z)t} | \psi_0 \rangle$$

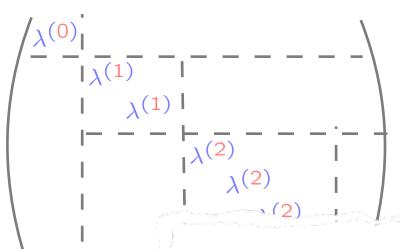
$$\sigma_1^z = \sum \alpha_i \tau_i^z + \sum_{ij} \beta_{ij} \tau_i^+ \tau_j^- + \sum_{ijk} \alpha_{ijk} \tau_i^z \tau_j^z \tau_k^z + \dots$$

Spin-flip terms are less important:

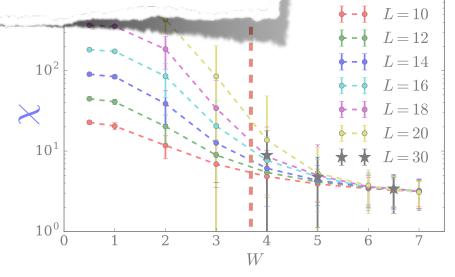
Probes of dephasing dynamics


Global probes: quench, modified spin echo,...:

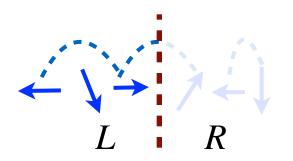
$$\left|\langle \hat{\mathcal{O}}(t) \rangle - \langle \mathcal{O}(\infty) \rangle\right| \sim \frac{1}{t^a}$$
 $a \neq 0 \leftrightarrow \text{presence of interactions}$


Local probes: orthogonality catastrophe,...:

$$|\langle \sigma^x_{\mathsf{imp}}(t)
angle| \propto rac{1}{t^b}$$


decay depends on interactions

Experimental challenge: access fluctuations



II. Highly excited MBL eigenstates

From entanglement entropy to spectrum

"Quantumness" of the pure state:

trace out $R \rightarrow$

$$\rho_L = \operatorname{Tr}_R |\psi\rangle\langle\psi|$$

- Entanglement entropy: $S_{\text{ent}} = -\sum_{i} \lambda_{i} \log \lambda_{i}$
 - # ground states: probes topological order
 [Levin&Wen], [Kitaev&Preskill]
 - * excited states: probes ergodicity
- Beyond entanglement? More information in {λ_i}

[Li & Haldane]

Organization of entanglement spectrum

MBL phase: conserved quantities label ES

$$|\uparrow\uparrow\uparrow\uparrow\uparrow\rangle = c_0 |\uparrow\uparrow\uparrow\rangle|\uparrow\uparrow\rangle + e^{-\kappa}|\uparrow\downarrow\rangle|\uparrow\uparrow\rangle + e^{-2\kappa}|\uparrow\downarrow\rangle|\downarrow\uparrow\rangle + \dots$$

$$r=1 + e^{-4\kappa}|\downarrow\downarrow\rangle|\downarrow\downarrow\rangle + \dots$$

$$r=4 + \dots$$

Coefficients decay as

$$|C_{\uparrow \dots \uparrow} \downarrow \downarrow \uparrow \downarrow \uparrow \dots \uparrow| \propto e^{-\kappa r}$$

Power-law entanglement spectrum

ullet Hierarchical structure of $ho_L = \sum_{r=0}^{L/2} |\psi^{(r)}
angle \langle \psi^{(r)}|$

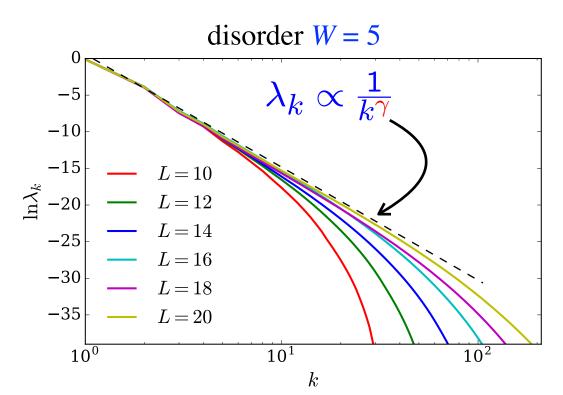
$$\langle \psi^{(r)} | \psi^{(r)} \rangle \propto e^{-2\kappa r}$$

but non-orthogonal

Orthogonalize perturbatively

$$\lambda^{(r)} \propto e^{-4\kappa r}$$

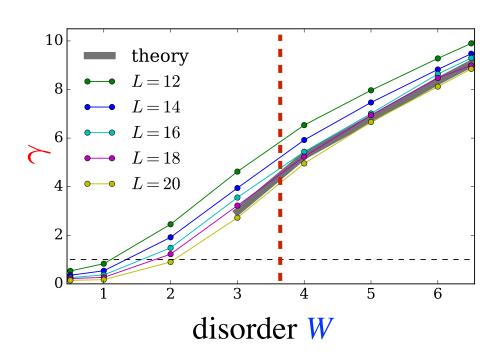
multiplicity is 2^r



$$\lambda_k \propto rac{1}{k^{\gamma}}, \qquad \gamma pprox rac{4\kappa}{\ln 2}$$

Numerics for XXZ spin chain

• Spin chain in random field: $J_{\perp}=J_{z}=1$


$$H = \sum_{i} (h_{i}S_{i}^{z} + J_{\perp}S_{i}^{+}S_{i+1}^{-} + h.c.) + \sum_{i} J_{z}S_{i}^{z}S_{i+1}^{z}$$

[MS, Michailidis, Abanin, Papic, PRL 117, 160601(2016)]

Decay of entanglement spectrum

 γ controls decay of entanglement spectrum $\lambda_k \propto \frac{1}{k\gamma}$

$$\gamma pprox rac{4\kappa}{\ln 2}$$

perturbation theory

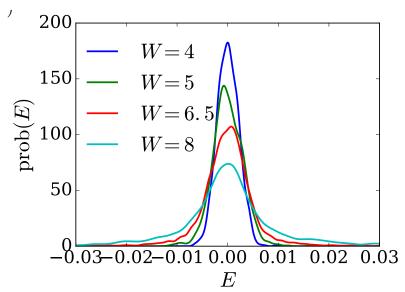
$$\kappa = 2\kappa' + \ln 2$$

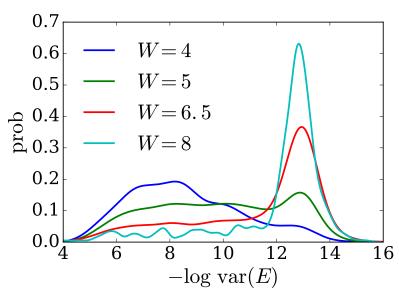
$$\mathcal{G}(L) \propto e^{-\kappa' L}$$

Thouless conductance for MBL [MS,Papic,Abanin,PRX'15]

Large value of $\gamma \to MPS$ description! $\frac{1}{\sqrt{\gamma-1}} \approx \frac{1}{400^3} \approx 10^{-7}$

$$\frac{1}{\chi^{\gamma-1}} \approx \frac{1}{400^3} \approx 10^{-7}$$

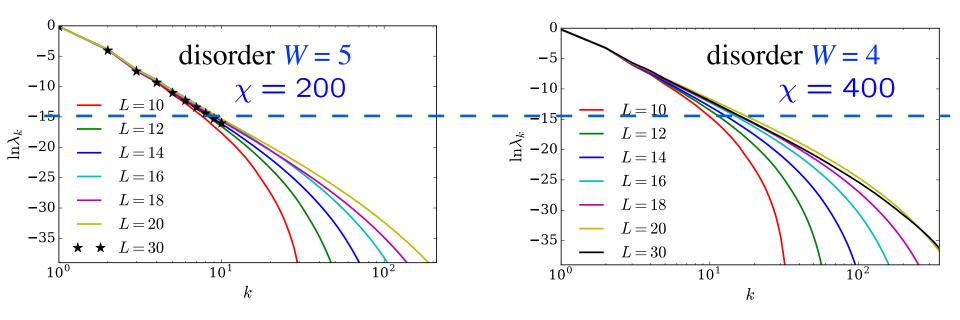

Implementation of MPS algorithm


Goal: access highly excited states

more details:

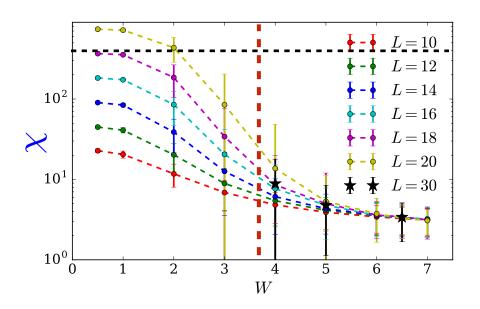
[PRL 117, 160601(2016)]

- "Shift-invert": $H o rac{1}{(H-E)^2}$
- 50 DMRG-type sweeps; solve $|\psi_i\rangle = (H-E)^2 |\psi_{i+1}\rangle$
- Conjugate gradient → large bond dimensions χ=400



also: [Yu et al arXiv:1509.01244] [Lim&Sheng arXiv:1510.08145] [Pollmann et al arXiv:1509.00483] [Kennes&Karrasch arXiv:1511.02205]

Entanglement spectrum as a test

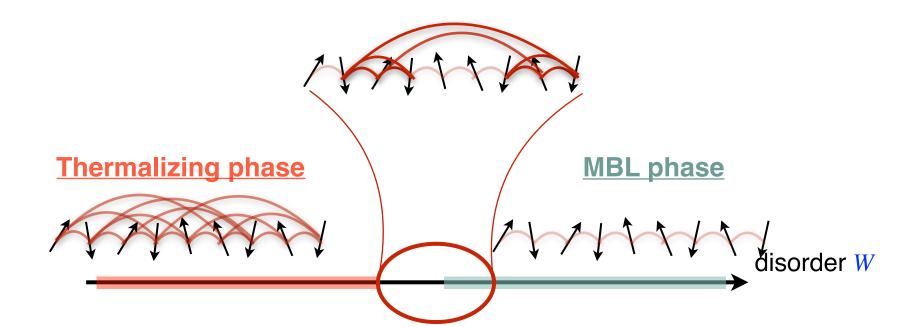

- Large bond dimensions are necessary close to transition
- DMRG underestimates entanglement spectrum for

$$\lambda_k \ge e^{-15} \approx 10^{-6}$$

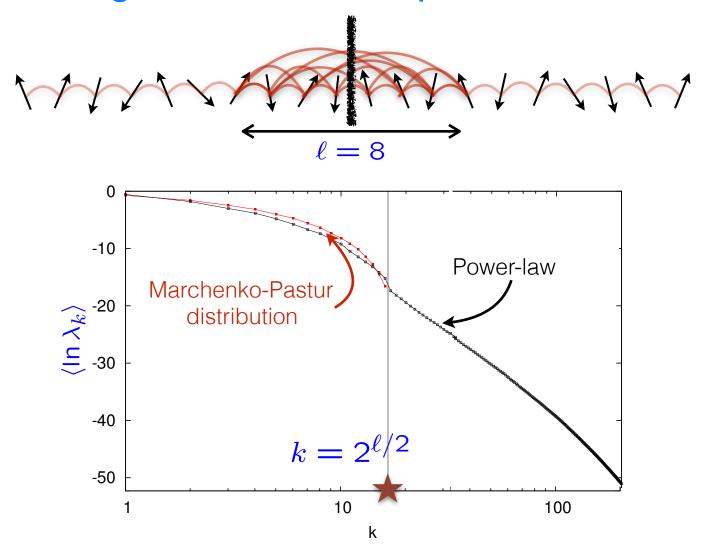
Estimates for the bond dimension

To converge Sent up to 1%:

• $\chi=400$ \rightarrow eigenstates close to MBL transition

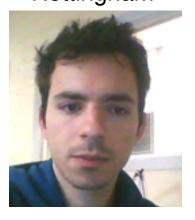

Q: What can we learn from this?

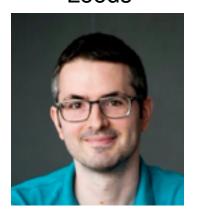
Future directions


- Phase transitions within MBL phase
- MBL with fermions, S>1/2, bosons, etc.
- Structure of many-body resonances that drive transition?

phenomenological RG: [Vosk,Huse,Altman,PRX'15] [Potter,Vasseur,Parameswaran,PRX'15]

exact diagonalization: [Khemani et al, arXiv:1607.05756]


"Hot region" inside MBL phase

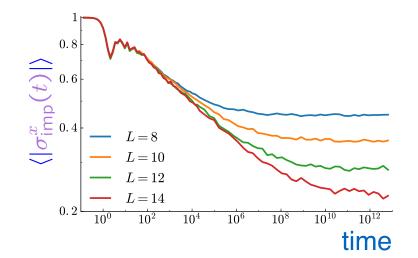

Identify structure of generic resonance from ES?

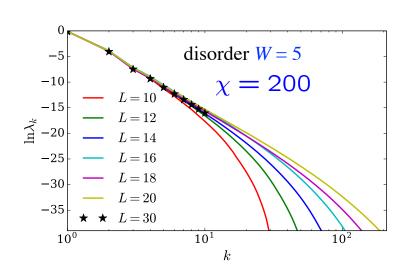
Acknowledgments

Alexios Michailidis Nottingham

Zlatko Papic Leeds

Dima Abanin Univ. of Geneva


Outline and perspectives


- Orthogonality catastrophe in MBL phase :
 - →power-law decay

[MS,Abanin in preparation]

- ightarrowprobe relation between $\widehat{ au}_i$ and \widehat{S}_i
- Power-law entanglement spectrum in MBL $\lambda_k \propto \frac{1}{k^{\gamma}}$
 - \rightarrow power $\gamma \leftrightarrow$ scaling of matrix elements
 - →MPS algorithm close to transition

[MS,Alexios,Abanin,Papic,PRL'16]

