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Ergodicity and integrability 

stable to weak perturbations
[Kolmogorov-Arnold-Moser theorem]chaos → ergodicity 
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emergent integrability“toric cow” of non-ergodic 
systems



• MBL = localized phase with interactions  
 
 

• Revived interest in MBL:

✴ Experiments in cold atoms, 
ion chains… 

✴ Emergent integrability  
→universal non-ergodic dynamics

✴ Breakdown of statistical mechanics  
→symmetry breaking at T=∞,…  

MBL: generic non-ergodic phase
t

Ei

V

⚡

[Anderson, Fleishman’80] 

[Oganesyan,Huse’08] [Znidaric,Prosen’08] [Pal,Huse’10]

Perturbative arguments: [Basko, Aleiner,Altshuler’05]  [Gorniy, Polyakov,Mirlin’05]

Numerical evidence:



Towards understanding of MBL phase

• I. Dynamics in MBL phase

✴ Local integrals of motion
✴ Entanglement growth and dephasing
✴ New probes of dephasing dynamics 

• II. Highly excited MBL eigenstates

✴ Structure of entanglement spectrum
✴ Efficient numerical simulation with MPS  

• III. Summary and Outlook 
[MS, Michailidis,Abanin,Papic, PRL 117, 160601(2016)]
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I. Dynamics in MBL 
phase



Constructing local integrals of motion
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Sequence of local unitaries: U †HU = Hdiag

⌧̂ z
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i ULocal integrals of motion
[⌧̂ z

i , H] = 0

Local  
unitary

Effective spins form complete set
 Emergent integrability 

[MS, Papic, Abanin PRL’13]   
[Huse, Nandkishore, Oganesyan PRB’14]

 [Imbrie’14, PRL’16]

 strong disorder RG:[Vosk&Altman,PRL’13]



Universal Hamiltonian of MBL phase

• If model is in MBL phase, apply sequence of local unitaries  
 

• Hamiltonian expressed via τi = U† Si U  
 
 
 
 

• Effective spins cannot relax→ no transport 
Interactions → dephasing& relaxation

Hij / exp(�|i� j|/⇠)
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Entanglement growth from dephasing

• Phases randomize  
on distance x(t): 
 
 
 

• Logarithmic growth of entanglement [MS, Papic, Abanin, PRL’13]

tHij = tJ exp(�x/⇠) ⇠ 1

[Znidaric,Prosen,Prelovsek,PRB’08] [Bardarson,Pollmann,Moore,PRL’12]

Hij / Je�|i�j|/⇠

x(t) = ⇠ log(Jt) x

t
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x(t) = ⇠ log(Jt)

Q: How to probe in experiment? 
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Local observables in a quench
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• �τx(t)	 =             = ∑[N(t) = 2x(t) oscillating terms]

• Decay of oscillations of �τx(t)	 :

t

W=5

Sz

Sx

[MS, Papic, Abanin, PRB’14]

memory of  
initial state



Other probes of dephasing

• Modified spin echo protocol  
Quantum revivals, …  
 
All protocols assume: 

• How to probe “operator expansion”? 
 
 

• Next: orthogonality catastrophe

[MS,Knap,et al.,PRL’14]
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[MS&Abanin, in preparation]

[Vasseur, Parameswaran,Moore, PRB’15]

�z1 ⇡ ⌧z1



Ramsey interferometry & operator expansion 

• Impurity spin coupling 

• Initialize along x, measure  
 

• Non-trivial dynamics comes from expansion: 
 
 
 

• Dephasing → power law decay of fluctuations
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Average vs fluctuations 

• Average: !i = matrix elements → universal function

• Fluctuations: dephasing → power law decay
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Figure 3. Absolute value of the averaged coherence does

not depend on the system size and interaction strength, and

has a weak dependence on the disorder strength (solid lines

correspond to W = 6.5 and dashed lines to W = 7.5). The

numerical data agrees reasonably well with the theory sug-

gesting the log-normal distribution of the localization length.
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III. DECAY OF SPIN COHERENCE WITH
TIME

A. Analytic considerations

B. Numerical simulations

IV. SUMMARY AND OUTLOOK

Appendix A: Understanding time-averaged
coherence

Figure 1.

Figure 2.
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Off-diagonal terms in operator expansion
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• Spin echo protocol: 
 
 
 

• Spin-flip terms are less important: 
 

[MS&Abanin, in preparation]

π-pulse



Probes of dephasing dynamics

• Global probes: quench, modified spin echo,…: 
 
 

• Local probes: orthogonality catastrophe,…: 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Experimental challenge: access fluctuations

decay depends on interactions
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From entanglement entropy to spectrum

• “Quantumness” of the pure state: 
 
 
 

• Entanglement entropy: 

✴ ground states: probes topological order  

✴ excited states: probes ergodicity 

• Beyond entanglement? More information in {"i}

⇢L = TrR | ih |
trace out R → 

RL

S
ent

= �
P

i �i log�i

[Levin&Wen], [Kitaev&Preskill]

[Li & Haldane]



• Quantum Hall wave function:  
     
 

• MBL phase: conserved quantities label ES  
 
 
 
 

• Coefficients decay as

Organization of entanglement spectrum
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 ky to organize ES



Power-law entanglement spectrum

• Hierarchical structure of  
 

• Orthogonalize perturbatively 
 
 
 
 
 

⇢L =
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Numerics for XXZ spin chain

• Spin chain in random field:   J⟂=Jz =1  
  H =

X

i

(hiS
z
i + J?S

+
i S�

i+1 + h.c.)

+
X

i

JzS
z
i S

z
i+1

�k / 1
k�

disorder W = 5

[MS, Michailidis,Abanin,Papic,  
PRL 117, 160601(2016)]



Thouless conductance for MBL  
[MS,Papic,Abanin,PRX’15]

Decay of entanglement spectrum

•  # controls decay of entanglement spectrum  

 
 
 
 
 
 
 
 

• Large value of  # → MPS description!

3

(corresponding to no spin flips in R) is of order one, the
next term corresponds to one spin flip and is of the order
e�, etc. Denoting a = e�, a typical | {µ}Li is:

| {µ}Li = a�rL(↵1; ↵2a; ↵3a
2,↵4a

2; ↵5a
3, . . . ,↵8a

3;

. . . ; ↵1+DR/2a
LR , . . . ,↵

DRaLR)T , (5)

where all |↵
i

| are assumed to be of order one, and we
separated the blocks corresponding to the value of RoD
rR = 0, 1, 2, . . . , LR by semicolons.

If di↵erent vectors | {µ}Li in Eq. (3) were mutually or-
thogonal, their norm h {µ}L | {µ}Li / e�2rL would give
the eigenvalues of ⇢̂R, and hence the ES. In the Sup-
plemental Material [39] we demonstrate it is possible to
perturbatively orthogonalize the vectors | {µ}Li deep in
the MBL phase where e� ⌧ 1. This process results in
the eigenvalues labeled by the RoD r:

�
(r)
k

= �"..." #...#|{z}
r

/ e�4r, (6)

where k = 2r�1 + 1, . . . , 2r labels 2r�1 di↵erent eigen-
values in the block corresponding to RoD r. Note an
extra factor of 2 in the exponent in Eq. (6) compared
to the norm of corresponding | {µ}Li. This additional
suppression arises from the fact that all components in
| {µ}Li, corresponding to blocks with RoD less than r,
are cancelled in the process of orthogonalization [39]. In-
tuitively, this means that the processes, which contribute
to eigenvalues with RoD equal to r in the L subsystem,
flip the same number of spins in the R subsystem.

One can view the RoD r, or equivalently the typical
number of spin flips, as an e↵ective “quantum number”
underlying the structure of the ES. This is analogous
to, e.g., the subsystem’s momentum perpendicular to the
entanglement cut (which also labels the edge states if a
system has topological order); similar structure for the
XXZ ground state was pointed in Ref. [40].

The hierarchical structure of the reduced density ma-
trix implies a power-law structure of the typical ES as a
function of r. Indeed, expressing r as r ⇡ ln k/ ln 2, and
using Eq. (6), we find the typical value of �

k

�
k

/ 1

k�
, � ' 4

 ln 2
. (7)

to decay as a power law with exponent set by  [41].
In addition, we can also understand the finite-size ef-

fects in the ES. The power-law holds until the very last
block, for which r = LR. The eigenvalues of the last
block do not receive corrections until the very last step of
iterative diagonalization [39]. Hence, their average mag-
nitude will reflect the statistics of the coe�cients (4),
which is log-normal deep in the MBL phase [37]. Since we
order the ES, the average value of �

k

for k & 2LR�1 will
deviate from the simple power-law form (7). Instead, it

Figure 2. (Color online) Power-law exponent �, extracted
from the fit of the typical ES, increases with disorder W .
Theoretical prediction refers to � extracted from the scaling
of the matrix elements in Ref. [37].

will be given by the order statistics of the Gaussian distri-
bution which describes accurately the tail of the ES [39].
Numerical results.—To study the ES numerically in

the XXZ chain (1), we use: (i) full exact diagonalization
(ED) for L = 10, 12, 14 spins, (ii) “shift and invert” algo-
rithm (SI) [42] for L = 16, 18, 20, and (iii) a new imple-
mentation of the MPS variational optimization for larger
L (below we present data for L = 30). Our MPS algo-
rithm combines the advantage of SI spectral transforma-
tion, which ensures low energy variance and hence the pu-
rity of eigenstates, with a fast conjugate-gradient linear
solver. The MPS optimization converges e�ciently when
the bond dimension �

max

is such that ln(�
max

) � S,
where S is the maximum entropy for all partitions of the
chain. Using ITensor libraries [41] with conserved U(1)
symmetry and an iterative local scheme, we can reach
�
max

⇡ 500, thus capturing a big part of the ES without
finite-bond e↵ects [39].
Fig. 1 illustrates the typical ES {�

k

} (ordered from
largest to smallest magnitude) as a function of the eigen-
value number k, for various system sizes L. Consistent
with our expectations (7), in the MBL phase (W = 5)
the ES exhibits clear power-law behavior. In all cases,
we target the eigenstates close to energy E = 0, which
is roughly in the middle of the many-body band. The
data is averaged over a few thousand disorder realiza-
tions for L  16, and over a few hundred realizations for
for L = 18, 20. For L = 30, we used �

max

= 200 and
1000 disorder realizations.

Note that, while we find excellent agreement between
ED and MPS results for the few largest Schmidt eigen-
values, the lowest Schmidt values obtained by MPS lie
slightly below the ED data for L = 20. This is an arte-
fact of our fixed bond dimension �

max

= 200, which
bounds the slope of the ES through its e↵ect on the small-
est Schmidt values. For the given �

max

, we expect the

�

disorder W

�k / 1
k�

 = 20 + ln2

G(L) / e�0L

perturbation theory

� ⇡ 4
ln 2

1
���1 ⇡ 1

4003
⇡ 10�7



                      also: [Yu et al arXiv:1509.01244] [Lim&Sheng arXiv:1510.08145] 
                [Pollmann et al arXiv:1509.00483] [Kennes&Karrasch arXiv:1511.02205] 

Implementation of MPS algorithm

• Goal: access highly excited states

• “Shift-invert”:

• 50 DMRG-type sweeps; solve

• Conjugate gradient → large bond dimensions $=400

H ! 1
(H�E)2

| ii = (H � E)2| i+1i

S3

Figure S4. Equation (S20) in graphical form. Tensors X are
the solutions of the system. L/R denote left/right orthonor-

mal operators. The red boundary denotes (H̃ [2,3]
eff )2. On the

right hand side, the rest of the network contract to identities
as a result of Eq. (S17).

where a = 0.375 is a numerical coe�cient, NR = 2LR ,
and coe�cients c1,2 depend on the parameters of the dis-
tribution of coe�cients, Eq. (4) in the main text.

Fig. S2 demonstrates that tails of the ES can be well
approximated by the Gaussian order statistics. The solid
lines in Fig. S2 correspond to the Eq. (S13), where coef-
ficients c1,2 were determined from matching the first and
last data point in the ES tail.

Finally, to further support the existence of hierarchical
sectors in the ES, we study the variance of the “entan-
glement gap”, being defined as ln�

k+1� ln�
k

. Figure S3
illustrates that entanglement gap has much broader dis-
tribution when k = 2, 4, 8, 16, . . .. These are the exact
points where one goes between blocks labelled by di↵er-
ent values of r in the hierarchy of the ES, see Eq. (S12).

B. MPO INVERSION USING MATRIX
PRODUCT STATES

B.1 Details of the algorithm

When we aim to target an eigenvalue E of a matrix
H at a specific part of the spectrum e�ciently, we shift-
invert the matrix

H̃�1 = (H � EI)�1. (S14)

The ground state of H̃�1 is the target state and a power
method can be employed to calculate it e�ciently. Direct
inversion of an MPO version of H̃ has an MPO dimension
D / 2L as it contains arbitrary many-body long-range
terms, rendering it ine�cient. Thus, following the recipe
of two-site DMRG algorithm, we have implemented an
algorithm which consists of global and local iterations.

(a)

(b)

Figure S5. Probability density functions of energy (a) and
logarithm of energy variance (b) for various disorder ampli-
tudes. The peak in (b) around 13 corresponds to states which
converged to machine precision.

In the global iteration we use power method

| i
i+1 = (H̃�1)2| i

i

| i
i

= H̃2| i
i+1

(S15)

where i is the iteration index. Instead of multiplying a
vector by the inverse matrix (H̃�1)2, we seek the solution
of a linear system. The operator H̃ is squared to make
it sign-definite. This improves the stability and allows
to use the conjugate gradient (CG) algorithm to solve
the linear system. In MPS notation, one iteration of the
power method corresponds to a sweep of the chain. Of
course, since the iteration is broken in local pieces, the
number of power iterations needed to target a state pre-
cisely is much higher than a shift-invert power method
operating in the full Hilbert space. The MPO represen-
tation of H̃ can be squared locally to a MPO of bond di-
mension D2 or a compressed version of dimension 2D�1.
Squaring changes trivially the spectrum when the matrix
is Hermitian and no degeneracies to the spectrum are
formed.
Each global iteration consists of L� 1 local iterations.

In a local iteration, we decompose the power method

S3

Figure S4. Equation (S20) in graphical form. Tensors X are
the solutions of the system. L/R denote left/right orthonor-

mal operators. The red boundary denotes (H̃ [2,3]
eff )2. On the

right hand side, the rest of the network contract to identities
as a result of Eq. (S17).

where a = 0.375 is a numerical coe�cient, NR = 2LR ,
and coe�cients c1,2 depend on the parameters of the dis-
tribution of coe�cients, Eq. (4) in the main text.

Fig. S2 demonstrates that tails of the ES can be well
approximated by the Gaussian order statistics. The solid
lines in Fig. S2 correspond to the Eq. (S13), where coef-
ficients c1,2 were determined from matching the first and
last data point in the ES tail.

Finally, to further support the existence of hierarchical
sectors in the ES, we study the variance of the “entan-
glement gap”, being defined as ln�

k+1� ln�
k

. Figure S3
illustrates that entanglement gap has much broader dis-
tribution when k = 2, 4, 8, 16, . . .. These are the exact
points where one goes between blocks labelled by di↵er-
ent values of r in the hierarchy of the ES, see Eq. (S12).

B. MPO INVERSION USING MATRIX
PRODUCT STATES

B.1 Details of the algorithm

When we aim to target an eigenvalue E of a matrix
H at a specific part of the spectrum e�ciently, we shift-
invert the matrix

H̃�1 = (H � EI)�1. (S14)

The ground state of H̃�1 is the target state and a power
method can be employed to calculate it e�ciently. Direct
inversion of an MPO version of H̃ has an MPO dimension
D / 2L as it contains arbitrary many-body long-range
terms, rendering it ine�cient. Thus, following the recipe
of two-site DMRG algorithm, we have implemented an
algorithm which consists of global and local iterations.

(a)

(b)

Figure S5. Probability density functions of energy (a) and
logarithm of energy variance (b) for various disorder ampli-
tudes. The peak in (b) around 13 corresponds to states which
converged to machine precision.

In the global iteration we use power method

| i
i+1 = (H̃�1)2| i

i

| i
i

= H̃2| i
i+1

(S15)

where i is the iteration index. Instead of multiplying a
vector by the inverse matrix (H̃�1)2, we seek the solution
of a linear system. The operator H̃ is squared to make
it sign-definite. This improves the stability and allows
to use the conjugate gradient (CG) algorithm to solve
the linear system. In MPS notation, one iteration of the
power method corresponds to a sweep of the chain. Of
course, since the iteration is broken in local pieces, the
number of power iterations needed to target a state pre-
cisely is much higher than a shift-invert power method
operating in the full Hilbert space. The MPO represen-
tation of H̃ can be squared locally to a MPO of bond di-
mension D2 or a compressed version of dimension 2D�1.
Squaring changes trivially the spectrum when the matrix
is Hermitian and no degeneracies to the spectrum are
formed.
Each global iteration consists of L� 1 local iterations.

In a local iteration, we decompose the power method

 more details:  
[PRL 117, 160601(2016)]



Entanglement spectrum as a test

• Large bond dimensions are necessary close to transition

• DMRG underestimates entanglement spectrum for

disorder W = 4
� = 400

disorder W = 5
� = 200

�k � e�15 ⇡ 10�6



Estimates for the bond dimension

• To converge Sent up to 1%: 
 
 
 
 
 
 

• $=400 → eigenstates close to MBL transition

�

Q: What can we learn from this? 



Future directions

• Phase transitions within MBL phase 

• MBL with fermions, S>1/2, bosons, etc.

• Structure of many-body resonances that drive transition?  

Thermalizing phase 

disorder W

͠

MBL phase

 [Vosk,Huse,Altman,PRX’15]  [Potter,Vasseur,Parameswaran,PRX’15]phenomenological RG:

 [Khemani et al, arXiv:1607.05756]exact diagonalization:



“Hot region” inside MBL phase

Identify structure of generic resonance from ES? 

S4
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Figure S5. The averaged typical entanglement spectrum for a system of size L containing a middle hot region of size `. (a)
Total chain size is L = 18 with disorder W = 10, and a hot region of size ` = 4 and disorder W = 1. (b) Total chain size of
L = 20 with disorder W = 10, and a hot region of size ` = 8 and disorder W = 1. Red lines correspond to the ES of a system
of size ` and disorder W = 1. Vertical lines are guide to the eye and denote d`/2 and d1+`/2.

invert the matrix

H̃�1 = (H � EI)�1. (S14)

The ground state of H̃�1 is the target state and a power
method can be employed to calculate it e�ciently. Direct
inversion of an MPO version of H̃ has an MPO dimension
D / 2L as it contains arbitrary many-body long-range
terms, rendering it ine�cient. Thus, following the recipe
of two-site DMRG algorithm, we have implemented an
algorithm which consists of global and local iterations.

In the global iteration we use power method

| i
i+1 = (H̃�1)2| i

i

| i
i

= H̃2| i
i+1

(S15)

Figure S6. Equation (S20) in graphical form. Tensors X are
the solutions of the system. L/R denote left/right orthonor-

mal operators. The red boundary denotes (H̃
[2,3]
eff )2. On the

right hand side, the rest of the network contract to identities
as a result of Eq. (S17).

where i is the iteration index. Instead of multiplying a
vector by the inverse matrix (H̃�1)2, we seek the solution
of a linear system. The operator H̃ is squared to make
it sign-definite. This improves the stability and allows
to use the conjugate gradient (CG) algorithm to solve
the linear system. In MPS notation, one iteration of the
power method corresponds to a sweep of the chain. Of
course, since the iteration is broken in local pieces, the
number of power iterations needed to target a state pre-
cisely is much higher than a shift-invert power method
operating in the full Hilbert space. The MPO represen-
tation of H̃ can be squared locally to a MPO of bond di-
mension D2 or a compressed version of dimension 2D�1.
Squaring changes trivially the spectrum when the matrix
is Hermitian and no degeneracies to the spectrum are
formed.
Each global iteration consists of L� 1 local iterations.

In a local iteration, we decompose the power method
in a series of two-site optimization operations (DMRG-
style). For each optimization the MPS is prepared in
mixed gauge form

| i = Tr{B[j]sj
↵j�1↵j

B[j+1]sj+1
↵j↵j+1

⇥ |↵
j�1Lj�1i|sjsj+1i|↵j+1Rj+1i}, (S16)

where trace sums over all virtual and site indices, and

h↵
j�1Lj�1|↵0

j�1Lj�1i = �
↵j�1↵

0
j�1

h↵
j+1Rj+1|↵0

j+1Rj+1i = �
↵j+1↵

0
j+1

.
(S17)

We want to optimize sites j, j + 1. So, we propose a
variational state

|✓i = Tr{X [j]sj
↵j�1↵j

X [j+1]sj+1
↵j↵j+1

⇥ |↵
j�1Lj�1i|sjsj+1i|↵j+1Rj+1i}, (S18)
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H̃�1 = (H � EI)�1. (S14)

The ground state of H̃�1 is the target state and a power
method can be employed to calculate it e�ciently. Direct
inversion of an MPO version of H̃ has an MPO dimension
D / 2L as it contains arbitrary many-body long-range
terms, rendering it ine�cient. Thus, following the recipe
of two-site DMRG algorithm, we have implemented an
algorithm which consists of global and local iterations.

In the global iteration we use power method
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where i is the iteration index. Instead of multiplying a
vector by the inverse matrix (H̃�1)2, we seek the solution
of a linear system. The operator H̃ is squared to make
it sign-definite. This improves the stability and allows
to use the conjugate gradient (CG) algorithm to solve
the linear system. In MPS notation, one iteration of the
power method corresponds to a sweep of the chain. Of
course, since the iteration is broken in local pieces, the
number of power iterations needed to target a state pre-
cisely is much higher than a shift-invert power method
operating in the full Hilbert space. The MPO represen-
tation of H̃ can be squared locally to a MPO of bond di-
mension D2 or a compressed version of dimension 2D�1.
Squaring changes trivially the spectrum when the matrix
is Hermitian and no degeneracies to the spectrum are
formed.
Each global iteration consists of L� 1 local iterations.

In a local iteration, we decompose the power method
in a series of two-site optimization operations (DMRG-
style). For each optimization the MPS is prepared in
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