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•  doped semiconductor

•  interstitial Cu: donor 

•  substitutional Cu on Bi: acceptor 

Cu

Hor et al,  PRL 104, 057001 (2010)

 Superconductivity in CuxBi2Se3
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•  carrier density ~1020 cm-3

•  Tc up to 3.8K  

•  type-II: Hc2 ~ 1.7T(c-axis), 3.6T(ab)
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Band Structure

•  rigid band shift due to electron doping by Cu

•  Fermi energy EF ~ 0.25eV from band bottom

•  3D Fermi surface centered at Γ: kF ~ 0.1A-1

(Wray et al, Nature Physics 2010)

NATURE PHYSICS DOI: 10.1038/NPHYS1762 LETTERS
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Figure 3 | Band topology at the superconducting composition. a,b, Momentum dependence of the bulk and surface conduction bands in superconducting

Cu0.12Bi2Se3 measured with low-energy (9.75 eV) photons for enhanced bulk sensitivity. c, Dispersion along the z axis, examined by varying incident

photon energy. d, Bulk and surface bands remain separate at intermediate kz values. e,f, Energy of the bulk electrons compared with Dirac (vC =6 eVÅ)

and classical (parabolic) fits with a mass of 0.155Me. Surface-state (SS) dispersion is also plotted. Inset: Self-energy with respect to the Dirac fit. g, The

surface electronic structure presents a non-trivial topological setting for superconductivity because (green) surface and (blue) bulk bands do not overlap.
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Both cases allow the superconducting state to host non-Abelian particles such as Majorana fermions.

the system, also ubiquitously observed in other superconducting
materials. Therefore, Cooper pairing in the superconducting
state takes place in this relativistic regime where the chemical
potential lies. A three-dimensional massive Dirac-like dispersion
in topological spin–orbit materials is expected as a direct result
of the band-inversion mechanism that causes the topological
insulator state, and has also been experimentally observed in other
topological insulator Bi1−xSbx alloys4. In CuxBi2Se3, calculations
predict that band inversion occurs at the �-point (kx = ky =
kz = 0) in the centre of the bulk conduction band, leading to a

spin–orbit-induced Dirac-like bulk band, in qualitative agreement
with our experiments.

Several features of this unusual spin–orbit band structure
provide critical insights into characteristics of the superconducting
condensate wavefunction. Bulk Fermi momenta of 0.110±3Å−1

and 0.106±3Å−1 are observed along the �–M and �–K directions
respectively. Varying the incident energy to observe dispersion
along the ẑ axis (�–Z direction) reveals a Fermi momentum
of 0.12 ± 1Å−1, suggesting that the bulk electron kinetics are
three-dimensionally isotropic. Carefully tracing the band (Fig. 3e,f)

NATURE PHYSICS | VOL 6 | NOVEMBER 2010 | www.nature.com/naturephysics 857
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FIG. 1: Crystal Structure (a) Crystal structure of Bi2Se3

with three primitive lattice vectors denoted as !t1,2,3. A quin-
tuple layer with Se1 − Bi1 − Se2 − Bi1′ − Se1′ is indicated
by the red box. (b) Top view along the z direction. Trian-
gle lattice in one quintuple layer has three different positions,
denoted as A, B and C. (c) Side view of the quintuple layer
structure. Along z direction, the stacking order of Se and
Bi atomic layers is the sequence · · · − C(Se1′) − A(Se1) −
B(Bi1) − C(Se2) − A(Bi1′) − B(Se1′) − C(Se1) − · · ·. Se1
(Bi1) layer can be related to Se1′ (Bi1′) layer by an inver-
sion operation of which Se2 atoms play the role of inversion
center.

insulators realized in the HgTe quantum wells.
Band structure and parity analysis. Bi2Se3, Bi2Te3,

Sb2Te3, and Sb2Se3 share the same rhombohedral crys-
tal structure with the space group D5

3d (R3̄m) with five
atoms in one unit cell. We take Bi2Se3 as an example
and show its crystal structure in Fig. 1a, which has lay-
ered structures with triangle lattice within one layer. It
has a trigonal axis (three fold rotation symmetry), de-
fined as z axis, a binary axis (two fold rotation symme-
try), defined as x axis, and a bisectrix axis (in the re-
flection plane), defined as y axis. The material consists
of five-atom layers arranged along z direction, known as
quintuple layers. Each quintuple layer consists of five
atoms with two equivalent Se atoms (denoted as Se1
and Se1′ in Fig. 1b), two equivalent Bi atoms (denoted
as Bi1 and Bi1′ in Fig. 1b), and a third Se atom (de-
noted as Se2 in Fig. 1b). The coupling is strong be-
tween two atomic layers within one quintuple layer but
much weaker, predominantly of the van der Waals type,
between two quintuple layers. The primitive lattice vec-
tors t1,2,3 and rhombohedral unit cells are shown in Fig.
1(a). Se2 site plays the role of inversion center and un-
der inversion operation, Bi1 is changed to Bi1′ and Se1
is changed to Se1′. The existence of inversion symmetry
enable us to construct eigenstates with definite parity for
this system.

Ab initio calculations for Sb2Te3, Sb2Se3, Bi2Te3 and

FIG. 2: band structure, Brillouin zone and parity
eigenvalues. Band structure for Bi2Se3 without spin-orbit
coupling(SOC) (a) and with SOC (b). The dashed line in-
dicates Fermi level. (c) BZ for Bi2Se3 with space group
R3m. The four inequivalent time-reversal invariant points
are Γ(0, 0, 0),L(π, 0, 0), F(π,π, 0) and Z(π,π, π). The blue
hexagon shows the 2D BZ of projected (1,1,1) surface, in
which the high-symmetry k points Γ, K and M are labeled.
(d) The parity of the band at Γ point for the four materials
Sb2Te3, Sb2Se3, Bi2Se3 and Bi2Te3. Here we show the par-
ities of fourteen occupied bands, including five s bands and
nine p bands, and the lowest unoccupied band. The product
of the parities for the fourteen occupied bands is given in the
bracket on the right of each row.

Bi2Se3 are carried out in the framework of PBE-type12

generalized gradient approximation(GGA) of the density
functional theory (DFT)13,14. BSTATE package15 with
plane-wave pseudo-potential method is used with k-point
grid taken as 10 × 10 × 10 and the kinetic energy cut-
off fixed to 340eV. For Sb2Te3, Bi2Te3 and Bi2Se3, the
lattice constants are chosen from experiments16, while for
Sb2Se3, the lattice parameters are optimized in the self-
consistent calculation for rhombohedral crystal structure
(a = 4.076Å, c = 29.830Å), due to the lack of experiment
data.

Our results are consistent with the previous
calculations17,18. In particular, we note that Bi2Se3

has an energy gap about 0.3eV, which agrees well with
the experimental data (about 0.2 − 0.3eV)19,20. In the
following, we take the band structure of Bi2Se3 as an
example. Fig. 2 (a) and (b) show the band structure
of Bi2Se3 without spin-orbit coupling (SOC) and with
SOC, respectively. By comparing the two figures one
can see clearly that the only qualitative change induced
by turning on SOC is an anti-crossing feature around
Γ point, which thus indicates an inversion between the
conduction band and valence band due to SOC effect,
suggesting Bi2Se3 to be a topological insulator. To
firmly establish the topological nature of this material,
we follow the method proposed by Fu and Kane6 and

(Zhang et al, 2009)
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Key Features

 inversion symmetry + strong spin-orbit coupling

•  energy bands are doubly degenerate & spin-orbital mixed

•  spin-orbit coupling is hidden in wavefunction: dispersion not enough

Consequences:

•  at least two-orbitals to describe wavefunctions on Fermi surface

EF

Previously overlooked material class for unconventional superconductors

inversion symmetric 

v.s.

asymmetric

6Wednesday, November 16, 2011



H0(k) = mσx + vzkzσy + v(kxσzsy − kyσzsx)

k.p Hamiltonian

•  4⨉4 k.p Hamiltonian dictated by symmetries:  

•  Wannier functions: two Se-Bi pz orbitals (σz) & electron spin (sz)

anti-bonding
 bonding

conduction

valence

  intra-layer Rashba spin-orbit  
  with opposite electric fields

         inter-layer hopping
  Su-Heeger-Schrieffer model

LF & Berg, PRL 10; Liu et al, PRB 10; tight-binding: Hsieh & LF, arXiv 11 
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k.p Hamiltonian

N =
�

BZ
F (1)

H0(k) = mσx + v(kxσzsy − kyσzsx + kzσy) (2)

E(k) =
�

m2 + v2k2 (3)

A · P
m

+ λsocA · (∇V × S) (4)

τ1/2 (5)

Θψ(k) = ψ(−k) (6)

�ψ−k|S|ψk� = 0 (7)

c1↑c1↓ (8)

1

(Hasan et al, PRB 11)Parameters: 
   m=0.15eV, v=6eVA 

•  spin-orbit strength depends on doping: comparable to Fermi 
energy in superconducting doping. strongest!

Relativistic dispersion:

CuxBi2Se3

H0(k) = mσx + vzkzσy + v(kxσzsy − kyσzsx)

•  spin-orbit mixing is momentum dependent 

8Wednesday, November 16, 2011



Model Study of Paring Symmetry

  Superconductivity is likely phonon-meditated.  

•  short range density-density interaction

•  minimal modification of BCS theory of single band SC

•  U and V are treated as phenomenological parameters

2

lowing Z2 symmetry:

P̃H(k)P̃ = H(−k), P̃ ≡ P τz. (2)

This novel Z2 symmetry will play a key role below. At
TRI momenta Γα = −Γα, [P̃ ,H(Γα)] = 0 so that the
BdG eigenstates |ψm(Γα)� of H satisfy: P̃ |ψm(Γα)� =
ξm(Γα)|ψm(Γα)� with eigenvalues ξm = ±1. Since P̃

and Θ commute, Kramers partners share the same P̃

eigenvalue: ξ2m(Γα) = ξ2m+1(Γα). In the presence of
such a Z2 symmetry (2), Fu and Kane found a simple
formula for the Z2 invariant ν[11]:

(−1)ν =
�

α,m

ξ2m(Γα), (3)

The product over m includes one member of each nega-
tive energy Kramers pair. We now examine the physical
meaning of ξm for weak-coupling superconductors, whose
pairing gap is small compared to Fermi energy. Generi-
cally, the point Γα is far from the Fermi surface. Then
BdG eigenstates |ψ(Γα)� can be approximated by Bloch
eigenstates |φ(Γα)� of H0. In particular, a negative-
energy BdG eigenstate either derives from an occupied
band |φo�⊗|τz = 1� below Fermi energy or an unoccupied
band |φu� ⊗ |τz = −1� above Fermi energy. Therefore

ξm(Γα) = pm(Γα)× τm(Γα), (4)

where p = ±1 is the eigenvalue of the inversion opera-
tor P and τ = ±1 is the eigenvalue of the particle-hole
operator τz. Substituting (4) into (3), we find

(−1)ν =
�

α,i

p2i(Γα)sgn(µ− ε2i(Γα))

=
�

α,i

sgn(µ− ε2i(Γα)) =
�

α

(−1)N(Γα)
, (5)

where i labels the complete set of energy bands of H0,
with corresponding energies εi(k). In the second equality
of (5), we have used the identity:

�
i p2i(Γα) = Det[P ]

(independent of Γα), so that
�2d

α=1 Det[P ] = 1 (2d is
the number of TRI momenta in spatial dimensions d =
1, 2, 3). In the last equality of (5), N(Γα) is defined as
the number of unoccupied bands at Γα in the normal
state. Now Eq.(5) has a simple geometrical meaning:
the Z2 topological invariant ν = 0/1 if the Fermi surface
of H0 encloses an even/odd number of TRI momenta.
This completes the proof of our criterion for odd-parity
topological superconductors.

A classic example of odd-parity pairing is superfluid
He-3. In particular, the TRI B-phase has been recently
identified as a topological superfluid [6–8, 17], which ex-
plains the topological origin of its known gapless surface
Andreev bound states[18]. Odd-parity pairing in super-
conductors is less well established. A famous example
is Sr2RuO4, in which odd-parity pairing is established

by phase-sensitive measurements[19]. However, the ob-
served spontaneous time-reversal breaking signatures[20]
seem to disqualify Sr2RuO4 as a TRI topological super-
conductor.

In the search for odd-parity pairing, we turn our atten-
tion to the newly discovered superconductor CuxBi2Se3,
which is a doped semiconductor and becomes supercon-
ducting at 3.8K[14]. Its pairing symmetry is at present
unknown. We now show theoretically that a novel odd-
parity pairing is favored by strong spin-orbit coupling in
this material. If realized, such a pairing symmetry will
lead to the topological superconductor phase.

To study superconductivity in CuxBi2Se3 requires the
knowledge of its band structure and pairing mechanism.
As shown by a very recent angle-resolved photoemission
spectroscopy study[21], the band structure of CuxBi2Se3

is similar to its parent compound Bi2Se3: the conduction
and valence bands are separated by a small band gap
about 0.3eV at the center of the Brillouin zone k = 0.
According to first-principle calculations on Bi2Se3[22],
these two bands are predominantly superpositions of Se
pz-orbitals on the top and bottom layer of the unit cell
(each is mixed with its neighboring Bi pz-orbital). Keep-
ing these two orbitals only, the band dispersion near
k = 0 is well described by the following continuum k · p

Hamiltonian[22]:

H0(k) = mσx + v(kxσzsy − kyσzsx) + vzkzσy, (6)

where σz = ±1 denotes the two orbitals; sz = ±1 denotes
electron spin parallel/anti-parallel to the z direction (c-
axis). As for the pairing mechanism, very little is known
so far. For simplicity we consider short-range electron
density-density interactions:

Hint(x) = −U [n2
1(x) + n

2
2(x)]− 2V n1(x)n2(x), (7)

where ni(x) =
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α=↑,↓ c
†
iα(x)ciα(x) is electron density

in orbital i. U and V are intra-orbital and inter-orbital
interactions respectively. We assume that at least one
of them is attractive, responsible for superconductivity.
Taking the band structure and pairing interaction to-
gether, we introduce the following two-orbital U − V

model for CuxBi2Se3,

H =
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dkc
†
k(H0(k)− µ)ck +
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dxHint(x). (8)

Due to Cu doping, the Fermi energy µ in CuxBi2Se3 lies
in the conduction band about 0.4eV above the middle of
the band gap[21], which leads to a small Fermi surface.

We now determine the superconducting mean field
phase diagram of the U − V model. Since the pairing
interaction involves two orbitals and is local in x, the
mean-field pairing potential is orbital-dependent but k-
independent. In Table I, we classify all possible pair-
ing potentials according to the representation of the
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Classification of Paring Symmetry

Pairing order parameter: 

N =
�

BZ
F (1)

�c†mα(x)c†nβ(x)� (2)

H0(k) = mσx + v(kxσzsy − kyσzsx + kzσy) (3)
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m
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τ1/2 (6)

Θψ(k) = ψ(−k) (7)

�ψ−k|S|ψk� = 0 (8)

1

(m,n: orbital  &  α,β: spin) 

•  classified by representation of crystal point group D3d

•  even- and odd-parity pairing under inversion (1↔2)

by unitary operators shown in the left-hand column in
Table I . We find four different pairing symmetries in the
A1g, A1u, A2u, and Eu representations of theD3d group. The
three A representations are one dimensional and the E
representation is two dimensional. The form of the corre-
sponding pairing order parameter !̂i, i ¼ 1; . . . ; 4, is listed
in the BdG formalism in Table I and shown explicitly:

!̂1: c1"c1# þ c2"c2# and c1"c2# # c1#c2";

!̂2: c1"c2# þ c1#c2";

!̂3: c1"c1# # c2"c2#;

!̂4: ðc1"c2"; c1#c2#Þ:

(9)

The symmetry properties of !̂i are shown in Table I. We
pay particular attention to inversion symmetry that inter-
changes orbitals 1 and 2. The spin-singlet pairing !̂1,
which has both intraorbital and interorbital components,
is invariant under all crystal symmetries. The other three
pairings are odd under inversion. !̂3 is spin-singlet,

whereas !̂2 and !̂4 are interorbital spin-triplet. Among
the odd-parity phases, only the !̂2 phase is TRI and fully
gapped. In addition, the Fermi surface of CuxBi2Se3 only
encloses one TRI momentum k ¼ 0. So according to our
earlier criterion, the !̂2 pairing in the U-V model for
CuxBi2Se3 realizes a topological superconductor phase.

To obtain the phase diagram, we solve the following
linearized gap equations for Tc in each pairing channel:

!̂ 1: det
U!0ðTcÞ U!01ðTcÞ
V!01ðTcÞ V!1ðTcÞ

! "
# I

# $
¼ 0;

!̂2;4: V!2;4ðTcÞ ¼ 1; !̂3: U!3ðTcÞ ¼ 1:

(10)

Here, various !’s are finite temperature superconducting
susceptibilities in different pairing channels. !0 &
D0

R
d" tanhð "2TÞ=" is the standard superconducting sus-

ceptibility, where D0 is density of states at the Fermi
energy. The other susceptibilities !1; . . . ;!4 are reduced
from !0 by various form factors due to the orbital depen-
dence of pairing potentials and Bloch wave functions.
These form factors are crucial for determining Tc of the
competing superconducting channels. A straightforward
calculation shows that

!1

!0
¼

Z
dk"ð"k ##ÞTr½$xP k(2=ð2D0Þ; (11)

where P k & P
%¼1;2j&%;kih&%;kj is the projection operator

onto the Hilbert space of two degenerate Bloch states at k.
Similarly, !2, !3, and !4 are obtained by replacing $x in
(11) by their corresponding pairing potentials $ysz, $z,
and $ysx (or $ysy). Using the band structureH0, we obtain
the values of !’s: !01 ¼ !0m=#, !1 ¼ !0ðm=#Þ2, !2 ¼
!0ð1#m2=#2Þ, !3 ¼ !4 ¼ 2!2=3. Because !3 < !0 and

!4 < !2, we find that !̂3 always has a lower Tc than !̂1,

and !̂4 lower than !̂2. Only the !̂1 and !̂2 phases appear in
the phase diagram. By calculating their Tc’s from (10), we
obtain the phase boundary:

U=V ¼ 1# 2m2=#2: (12)

Figure 1 shows the highest Tc phase as a function of U
V and

m=#, for positive (attractive) V. The !̂2 pairing phase
dominates in a significant part of the phase diagram.
Note that experimentally it has been estimated thatm=# )
1=3 [18]. When V < 0 the !̂1 phase is stable for U >
m2=#2jVj, whereas for smaller U the system is nonsuper-
conducting. Note that for U ¼ V and m ¼ 0 the
Hamiltonian (8) has an enlarged U(1) chiral symmetry:
c ! expði'$xszÞc. The transformation at ' ¼ (=4 trans-

forms !̂1 into !̂2, explaining their degeneracy.
As the phase diagram shows, the spin-triplet !2 phase

wins as soon as the interorbital attraction exceeds over the
intraorbital one (V > U), contrary to the naive expectation
that a repulsive interaction is required. This arises from the
specific form of spin-orbit coupling in the band structure
(6), which favors !2 pairing. The realistic values of U and
V for CuxBi2Se3 are difficult to estimate. Nonetheless, if
superconductivity is phonon driven, the residual electron
repulsion renormalizes the bare values of U and V.
Therefore it is possible that the weaker interorbital repul-
sion leads to V > U.

TABLE I. Classification of all k-independent pairing poten-
tials of the two-orbital U-V model according to the representa-
tions of D3d point group

!̂ I and $x $ysz $z ($ysx;$ysy)

Representation A1g A1u A2u Eu

P ¼ $x þ # # (#;#)
C3 ¼ e#isz(=3 z z z (x; y)
M ¼ #isx þ # þ (þ;#)

µ

+

FIG. 1 (color online). Phase diagram of the two-orbital U-V
model, showing the highest Tc phase as a function of m=# and
U=V. The arrow shows the experimental estimate for m=# ’
1=3 [18]. The two phases !̂1 and !̂2 are even and odd under
inversion, respectively. The insets shows schematically that the

Cooper pair wave function in the !̂2 phase consists of two
electrons on the top (1) and bottom (2) of the five-atom unit cell.
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by unitary operators shown in the left-hand column in
Table I . We find four different pairing symmetries in the
A1g, A1u, A2u, and Eu representations of theD3d group. The
three A representations are one dimensional and the E
representation is two dimensional. The form of the corre-
sponding pairing order parameter !̂i, i ¼ 1; . . . ; 4, is listed
in the BdG formalism in Table I and shown explicitly:

!̂1: c1"c1# þ c2"c2# and c1"c2# # c1#c2";

!̂2: c1"c2# þ c1#c2";

!̂3: c1"c1# # c2"c2#;

!̂4: ðc1"c2"; c1#c2#Þ:

(9)

The symmetry properties of !̂i are shown in Table I. We
pay particular attention to inversion symmetry that inter-
changes orbitals 1 and 2. The spin-singlet pairing !̂1,
which has both intraorbital and interorbital components,
is invariant under all crystal symmetries. The other three
pairings are odd under inversion. !̂3 is spin-singlet,

whereas !̂2 and !̂4 are interorbital spin-triplet. Among
the odd-parity phases, only the !̂2 phase is TRI and fully
gapped. In addition, the Fermi surface of CuxBi2Se3 only
encloses one TRI momentum k ¼ 0. So according to our
earlier criterion, the !̂2 pairing in the U-V model for
CuxBi2Se3 realizes a topological superconductor phase.

To obtain the phase diagram, we solve the following
linearized gap equations for Tc in each pairing channel:

!̂ 1: det
U!0ðTcÞ U!01ðTcÞ
V!01ðTcÞ V!1ðTcÞ

! "
# I

# $
¼ 0;

!̂2;4: V!2;4ðTcÞ ¼ 1; !̂3: U!3ðTcÞ ¼ 1:

(10)

Here, various !’s are finite temperature superconducting
susceptibilities in different pairing channels. !0 &
D0

R
d" tanhð "2TÞ=" is the standard superconducting sus-

ceptibility, where D0 is density of states at the Fermi
energy. The other susceptibilities !1; . . . ;!4 are reduced
from !0 by various form factors due to the orbital depen-
dence of pairing potentials and Bloch wave functions.
These form factors are crucial for determining Tc of the
competing superconducting channels. A straightforward
calculation shows that

!1

!0
¼

Z
dk"ð"k ##ÞTr½$xP k(2=ð2D0Þ; (11)

where P k & P
%¼1;2j&%;kih&%;kj is the projection operator

onto the Hilbert space of two degenerate Bloch states at k.
Similarly, !2, !3, and !4 are obtained by replacing $x in
(11) by their corresponding pairing potentials $ysz, $z,
and $ysx (or $ysy). Using the band structureH0, we obtain
the values of !’s: !01 ¼ !0m=#, !1 ¼ !0ðm=#Þ2, !2 ¼
!0ð1#m2=#2Þ, !3 ¼ !4 ¼ 2!2=3. Because !3 < !0 and

!4 < !2, we find that !̂3 always has a lower Tc than !̂1,

and !̂4 lower than !̂2. Only the !̂1 and !̂2 phases appear in
the phase diagram. By calculating their Tc’s from (10), we
obtain the phase boundary:

U=V ¼ 1# 2m2=#2: (12)

Figure 1 shows the highest Tc phase as a function of U
V and

m=#, for positive (attractive) V. The !̂2 pairing phase
dominates in a significant part of the phase diagram.
Note that experimentally it has been estimated thatm=# )
1=3 [18]. When V < 0 the !̂1 phase is stable for U >
m2=#2jVj, whereas for smaller U the system is nonsuper-
conducting. Note that for U ¼ V and m ¼ 0 the
Hamiltonian (8) has an enlarged U(1) chiral symmetry:
c ! expði'$xszÞc. The transformation at ' ¼ (=4 trans-

forms !̂1 into !̂2, explaining their degeneracy.
As the phase diagram shows, the spin-triplet !2 phase

wins as soon as the interorbital attraction exceeds over the
intraorbital one (V > U), contrary to the naive expectation
that a repulsive interaction is required. This arises from the
specific form of spin-orbit coupling in the band structure
(6), which favors !2 pairing. The realistic values of U and
V for CuxBi2Se3 are difficult to estimate. Nonetheless, if
superconductivity is phonon driven, the residual electron
repulsion renormalizes the bare values of U and V.
Therefore it is possible that the weaker interorbital repul-
sion leads to V > U.

TABLE I. Classification of all k-independent pairing poten-
tials of the two-orbital U-V model according to the representa-
tions of D3d point group

!̂ I and $x $ysz $z ($ysx;$ysy)

Representation A1g A1u A2u Eu
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FIG. 1 (color online). Phase diagram of the two-orbital U-V
model, showing the highest Tc phase as a function of m=# and
U=V. The arrow shows the experimental estimate for m=# ’
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by unitary operators shown in the left-hand column in
Table I . We find four different pairing symmetries in the
A1g, A1u, A2u, and Eu representations of theD3d group. The
three A representations are one dimensional and the E
representation is two dimensional. The form of the corre-
sponding pairing order parameter !̂i, i ¼ 1; . . . ; 4, is listed
in the BdG formalism in Table I and shown explicitly:

!̂1: c1"c1# þ c2"c2# and c1"c2# # c1#c2";

!̂2: c1"c2# þ c1#c2";

!̂3: c1"c1# # c2"c2#;

!̂4: ðc1"c2"; c1#c2#Þ:

(9)

The symmetry properties of !̂i are shown in Table I. We
pay particular attention to inversion symmetry that inter-
changes orbitals 1 and 2. The spin-singlet pairing !̂1,
which has both intraorbital and interorbital components,
is invariant under all crystal symmetries. The other three
pairings are odd under inversion. !̂3 is spin-singlet,

whereas !̂2 and !̂4 are interorbital spin-triplet. Among
the odd-parity phases, only the !̂2 phase is TRI and fully
gapped. In addition, the Fermi surface of CuxBi2Se3 only
encloses one TRI momentum k ¼ 0. So according to our
earlier criterion, the !̂2 pairing in the U-V model for
CuxBi2Se3 realizes a topological superconductor phase.

To obtain the phase diagram, we solve the following
linearized gap equations for Tc in each pairing channel:

!̂ 1: det
U!0ðTcÞ U!01ðTcÞ
V!01ðTcÞ V!1ðTcÞ

! "
# I
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¼ 0;

!̂2;4: V!2;4ðTcÞ ¼ 1; !̂3: U!3ðTcÞ ¼ 1:

(10)

Here, various !’s are finite temperature superconducting
susceptibilities in different pairing channels. !0 &
D0

R
d" tanhð "2TÞ=" is the standard superconducting sus-

ceptibility, where D0 is density of states at the Fermi
energy. The other susceptibilities !1; . . . ;!4 are reduced
from !0 by various form factors due to the orbital depen-
dence of pairing potentials and Bloch wave functions.
These form factors are crucial for determining Tc of the
competing superconducting channels. A straightforward
calculation shows that

!1

!0
¼

Z
dk"ð"k ##ÞTr½$xP k(2=ð2D0Þ; (11)

where P k & P
%¼1;2j&%;kih&%;kj is the projection operator

onto the Hilbert space of two degenerate Bloch states at k.
Similarly, !2, !3, and !4 are obtained by replacing $x in
(11) by their corresponding pairing potentials $ysz, $z,
and $ysx (or $ysy). Using the band structureH0, we obtain
the values of !’s: !01 ¼ !0m=#, !1 ¼ !0ðm=#Þ2, !2 ¼
!0ð1#m2=#2Þ, !3 ¼ !4 ¼ 2!2=3. Because !3 < !0 and

!4 < !2, we find that !̂3 always has a lower Tc than !̂1,

and !̂4 lower than !̂2. Only the !̂1 and !̂2 phases appear in
the phase diagram. By calculating their Tc’s from (10), we
obtain the phase boundary:

U=V ¼ 1# 2m2=#2: (12)

Figure 1 shows the highest Tc phase as a function of U
V and

m=#, for positive (attractive) V. The !̂2 pairing phase
dominates in a significant part of the phase diagram.
Note that experimentally it has been estimated thatm=# )
1=3 [18]. When V < 0 the !̂1 phase is stable for U >
m2=#2jVj, whereas for smaller U the system is nonsuper-
conducting. Note that for U ¼ V and m ¼ 0 the
Hamiltonian (8) has an enlarged U(1) chiral symmetry:
c ! expði'$xszÞc. The transformation at ' ¼ (=4 trans-

forms !̂1 into !̂2, explaining their degeneracy.
As the phase diagram shows, the spin-triplet !2 phase

wins as soon as the interorbital attraction exceeds over the
intraorbital one (V > U), contrary to the naive expectation
that a repulsive interaction is required. This arises from the
specific form of spin-orbit coupling in the band structure
(6), which favors !2 pairing. The realistic values of U and
V for CuxBi2Se3 are difficult to estimate. Nonetheless, if
superconductivity is phonon driven, the residual electron
repulsion renormalizes the bare values of U and V.
Therefore it is possible that the weaker interorbital repul-
sion leads to V > U.
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by unitary operators shown in the left-hand column in
Table I . We find four different pairing symmetries in the
A1g, A1u, A2u, and Eu representations of theD3d group. The
three A representations are one dimensional and the E
representation is two dimensional. The form of the corre-
sponding pairing order parameter !̂i, i ¼ 1; . . . ; 4, is listed
in the BdG formalism in Table I and shown explicitly:
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!̂3: c1"c1# # c2"c2#;
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(9)

The symmetry properties of !̂i are shown in Table I. We
pay particular attention to inversion symmetry that inter-
changes orbitals 1 and 2. The spin-singlet pairing !̂1,
which has both intraorbital and interorbital components,
is invariant under all crystal symmetries. The other three
pairings are odd under inversion. !̂3 is spin-singlet,

whereas !̂2 and !̂4 are interorbital spin-triplet. Among
the odd-parity phases, only the !̂2 phase is TRI and fully
gapped. In addition, the Fermi surface of CuxBi2Se3 only
encloses one TRI momentum k ¼ 0. So according to our
earlier criterion, the !̂2 pairing in the U-V model for
CuxBi2Se3 realizes a topological superconductor phase.

To obtain the phase diagram, we solve the following
linearized gap equations for Tc in each pairing channel:

!̂ 1: det
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¼ 0;

!̂2;4: V!2;4ðTcÞ ¼ 1; !̂3: U!3ðTcÞ ¼ 1:
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Here, various !’s are finite temperature superconducting
susceptibilities in different pairing channels. !0 &
D0

R
d" tanhð "2TÞ=" is the standard superconducting sus-

ceptibility, where D0 is density of states at the Fermi
energy. The other susceptibilities !1; . . . ;!4 are reduced
from !0 by various form factors due to the orbital depen-
dence of pairing potentials and Bloch wave functions.
These form factors are crucial for determining Tc of the
competing superconducting channels. A straightforward
calculation shows that
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¼
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where P k & P
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onto the Hilbert space of two degenerate Bloch states at k.
Similarly, !2, !3, and !4 are obtained by replacing $x in
(11) by their corresponding pairing potentials $ysz, $z,
and $ysx (or $ysy). Using the band structureH0, we obtain
the values of !’s: !01 ¼ !0m=#, !1 ¼ !0ðm=#Þ2, !2 ¼
!0ð1#m2=#2Þ, !3 ¼ !4 ¼ 2!2=3. Because !3 < !0 and

!4 < !2, we find that !̂3 always has a lower Tc than !̂1,

and !̂4 lower than !̂2. Only the !̂1 and !̂2 phases appear in
the phase diagram. By calculating their Tc’s from (10), we
obtain the phase boundary:

U=V ¼ 1# 2m2=#2: (12)

Figure 1 shows the highest Tc phase as a function of U
V and

m=#, for positive (attractive) V. The !̂2 pairing phase
dominates in a significant part of the phase diagram.
Note that experimentally it has been estimated thatm=# )
1=3 [18]. When V < 0 the !̂1 phase is stable for U >
m2=#2jVj, whereas for smaller U the system is nonsuper-
conducting. Note that for U ¼ V and m ¼ 0 the
Hamiltonian (8) has an enlarged U(1) chiral symmetry:
c ! expði'$xszÞc. The transformation at ' ¼ (=4 trans-

forms !̂1 into !̂2, explaining their degeneracy.
As the phase diagram shows, the spin-triplet !2 phase

wins as soon as the interorbital attraction exceeds over the
intraorbital one (V > U), contrary to the naive expectation
that a repulsive interaction is required. This arises from the
specific form of spin-orbit coupling in the band structure
(6), which favors !2 pairing. The realistic values of U and
V for CuxBi2Se3 are difficult to estimate. Nonetheless, if
superconductivity is phonon driven, the residual electron
repulsion renormalizes the bare values of U and V.
Therefore it is possible that the weaker interorbital repul-
sion leads to V > U.

TABLE I. Classification of all k-independent pairing poten-
tials of the two-orbital U-V model according to the representa-
tions of D3d point group
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µ

+
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model, showing the highest Tc phase as a function of m=# and
U=V. The arrow shows the experimental estimate for m=# ’
1=3 [18]. The two phases !̂1 and !̂2 are even and odd under
inversion, respectively. The insets shows schematically that the

Cooper pair wave function in the !̂2 phase consists of two
electrons on the top (1) and bottom (2) of the five-atom unit cell.
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by unitary operators shown in the left-hand column in
Table I . We find four different pairing symmetries in the
A1g, A1u, A2u, and Eu representations of theD3d group. The
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(9)

The symmetry properties of !̂i are shown in Table I. We
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which has both intraorbital and interorbital components,
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! "
# I

# $
¼ 0;
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(10)
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specific form of spin-orbit coupling in the band structure
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Odd-Parity Pairing

2m
µ

∆1 : spin singlet, even-parity inter-orbital spin triplet, odd-parity

U:  intra-orbital 
V:  inter-orbital   
     (attractive)

∆2 :

•  m/µ: doping-dependent spin-orbit;   U/V: interaction

•  two phases are fully gapped & TR-invariant.

•  Δ2 pairing wins for attractive U and V: 
    electron-phonon + spin-orbit realizes unconventional pairing symmetry. 

•  Δ2  realizes a topological superconducting phase 
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Topological Superconductor

•  definition: a fully gapped superconductor which cannot be smoothly 
(w/o gap closing) connected to the strong coupling BEC regime. 

•  mean-field definition and classification
(Schynder, Ryu, Furusaki & Ludwig 08;  Kitaev; 08; Qi et a, 09; Volovik et al)

(see Read & Green 00)

symmetry class            d=2           d=3   

D     (T-breaking)            Z               0
DIII  (T-invariant)            Z2                     Z

superconducting analog of
quantum Hall state
topological insulator

•  bulk-boundary correspondence: gapless surface excitations

where to find a topological superconductor?
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ξ

�
(Ek − µ)2 +∆2

k

Pairing Symmetry
Even-parity ∆(c†k↑c−k↓ − c†k↓c−k↑)

k

E

BEC: µ<0BCS:

k

E

µ>0

•  gap is finite across BCS-BEC: topologically trivial.

gap =

crossover

∆k(c
†
k↑c−k↓ + c†k↓c−k↑), ∆k ∝ kOdd-parity

k

E

k

E

k

E µ=0
BCS BEC

•  gap closing at µ=0; phase transition from BCS to BEC; BCS is topological.

topological superconductivity ≈ odd-parity pairing

transitiontransition
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ψ†
kα[

�d(k) · �s(isy)]αβψ†
−kβ

Pairing Symmetry
the key to topological superconductors

Criterion for fully-gapped TR-invariant topological superconductor 
(class DIII) with inversion symmetry: 

0.   Odd-Parity Pairing  and 
1.   Fermi surface encloses an odd # of TR-invariant momenta or
2.   d-vector has a nonzero winding number over Fermi surfaces

(LF & Berg, PRL 10; LF & Kane, PRB 07)
(Yang Qi & LF, 11)

1.

Γ

2

by a d-vector,

∆k = dk · σ (2)

where σi are Pauli matrices in the pseudospin subspace,
and dk is a vector determining the orientation of the
order parameter in the pseudospin subspace, and is called
the d-vector.

With the d-vector, the general criterion we provided
can be expressed as the following form,

ν = 2
�

FS

1

4π

�
d2k�d̂k · ∂k1 d̂k × ∂k2 d̂k, (3)

where d̂k is the unit vector along the direction of dk. The
winding number of dk on each Fermi surface is expressed
as a surface integral on that surface. The sign of the
winding number depends on the orientation of the Fermi
surface, which is determined by the convention that the
normal direction points from the inside to the outside of
the Fermi surface (i. e. from the side with ξk < 0 to the
side with ξk > 0).

The topological invariant ν calculated in equation (3)
is equivalently defined using either block off-diagonal pro-
jection operator[4] or Green’s function of the Bogoliubov
quasiparticles[6], and the result in that equation can be
derived using either definition. Here we demonstrate the
result of equation (3) with two representative examples,
and leave the details of the derivation in the supplemen-
tary material.

First, we check our result with the 3He B phase, a
well-known example of topological superconductor. The
configuration of d-vectors in 3He-B are sketched in Fig. 1.
On the spherical Fermi surface, the winding number of
d-vector is one. So from equation (3) we have ν = 2.
This result is consistent with the topological invariant
obtained from the Green’s function definition[6].

FIG. 1. Sketch of Fermi surface and d-vector orientations in
3
He-B phase. The shaded area shows the inside of the Fermi

surface and the arrows point to the directions of dk.

The result of ν = 2 indicates that this superconduct-
ing state is topologically nontrivial. This can be shown
by arguing that this state cannot be smoothly connected
to a topologically trivial reference state without closing
the superconducting gap[6]. Here the reference state we

use is the strong coupling limit µ → −∞ of the super-
conducting state. The original state can be connected to
this reference state by lowing the Fermi energy µ from
positive to −∞. In this process the Fermi surface shrinks
and eventually vanishes. Because of the nonzero wind-
ing number of dk, the dk vector must vanish at least
one point inside the Fermi surface. When the Fermi sur-
face cross that point the superconducting gap will open
a node, and that indicates a topological phase transition
from the original state with ν = 2 to the trivial refer-
ence state. 3He B phase gives an example showing that a
Fermi surface with nonzero winding number of d-vector
is topologically nontrivial.
Second, we consider the example with two Fermi sur-

faces and d-vector configuration shown in Fig. 2. In this
example the winding number of d-vector is +1 on the
outer Fermi surface and −1 on the inner Fermi surface.
Therefore according to equation (3) the winding numbers
on two Fermi surfaces cancel each other and the total ν
vanishes, indicating a topologically trivial state. Similar
to the example of 3He B phase, we check this conclu-
sion by showing that this state can indeed be smoothly
connected to a trivial reference state with µ = −∞ with-
out closing the superconducting gap. In this example
the Fermi sea is between the two spherical Fermi sur-
faces. Since the d-vectors are parallel on corresponding
points on the two Fermi surfaces, it is possible to fill the
Fermi sea with a smooth configuration of dk with dk �= 0.
Actually one can just choose dk ∝ k̂. With such a con-
figuration, the superconducting gap remains finite as the
Fermi sea shrinks to zero when we lower µ from posi-
tive to −∞. Consequently the original superconducting
state is topologically trivial. This example demonstrates
that opposite winding numbers on different Fermi sur-
faces cancel each other, as indicated by equation (3).

FIG. 2. Sketch of d-vector orientations on two Fermi surfaces.

Similar to Fig. 1, the shaded area shows the insider of the

Fermi surface and arrows point to the direction of d vector.

Andreev surface state. In general, a topological in-
variant in the bulk will protect gapless surface states. For
topologically nontrivial odd-parity superconductors with
nonzero winding numbers of d-vector on Fermi surfaces,
these gapless surface states can be constructed as An-
dreev surface states. Gapless Andreev bound states have

2.
d-vector defined by pairing 

α, β:  pseudo-spin 
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• k-dependence comes from electron wavefunction. 
• pseudospin triplet pairing, analogous to He-3 BW phase
• Δ2 pairing realizes a topological superconductor phase in class DIII. 

ψk

�
kz ky + ikx

ky − ikx −kz

�
(isyψ−k)

3

∆̂: I & σx σysz σz (σysx, σysy)

R A1g A1u A2u Eu

P = σx + − − (−,−)

C3 = e−iszπ/3 z z z (x, y)

M = −isx + − + (+,−)

TABLE I: Classification of all k−independent pairing poten-
tials of the two-orbital U − V model according to the repre-
sentations of D3d point group.

CuxBi2Cu3 crystal point group D3d. The basic symmetry
transformations of the D3d group are inversion operation
P , three-fold rotation around z axis C3 and mirror reflec-
tion about yz plane M . Their actions on spin and orbital
are represented by unitary operators shown in the left col-
umn in Table I . We find four different pairing symme-
tries in the A1g, A1u, A2u and Eu representations of D3d

group. The three A representations are one-dimensional,
and the E representation is two-dimensional. The form of
the corresponding pairing order parameter ∆̂i, i = 1, ...4
are listed in the BdG formalism in Table I and written
explicitly below:

∆̂1 : c1↑c1↓ + c2↑c2↓ & c1↑c2↓ − c1↓c2↑

∆̂2 : c1↑c2↓ + c1↓c2↑

∆̂3 : c1↑c1↓ − c2↑c2↓

∆̂4 : (c1↑c2↑, c1↓c2↓). (9)

The symmetry properties of ∆̂i are shown in Table I. We
pay particular attention to inversion symmetry that in-
terchanges orbital 1 and 2. The spin-singlet pairing ∆̂1,
which has both intra- and inter-orbital components, is
invariant under all crystal symmetries. The other three
pairings are odd under inversion. ∆̂3 is spin-singlet,
whereas ∆̂2 and ∆̂4 are inter-orbital spin-triplet. Among
the odd-parity phases, only ∆̂2 phase is TRI and fully
gapped. In addition, the Fermi surface of CuxBi2Se3 only
encloses one TRI momenta k = 0. So according to our
earlier criterion, the ∆̂2 pairing in the U − V model for
CuxBi2Se3 realizes a topological superconductor phase.

To obtain the phase diagram, we solve the following
linearized gap equations for Tc in each pairing channel:

∆̂1 : det

��
Uχ0(Tc) Uχ01(Tc)
V χ01(Tc) V χ1(Tc)

�
− I

�
= 0,

∆̂2,4 : V χ2,4(Tc) = 1, ∆̂3 : Uχ3(Tc) = 1 (10)

Here various χ’s are finite temperature superconduct-
ing susceptibilities in different pairing channels. χ0 ≡
D0

�
dε tanh

�
ε

2T

�
/ε is the standard superconducting

susceptibility, where D0 is density of states at Fermi en-
ergy. The other susceptibilities χ1, ...χ4 are reduced from
χ0 by various form factors due to the orbital-dependence
of pairing potentials and Bloch wavefunctions. These
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FIG. 1: Phase diagram of the two-orbital U−V model, show-
ing the highest Tc phase as a function of m/µ and U/V . The
arrow shows the experimental estimate for m/µ � 1/3 [21].
The two phases ∆̂1 and ∆̂2 are even and odd under inversion
respectively. The insets shows schematically that the Cooper
pair wavefunction in the ∆̂2 phase consists of two electrons
on the top (1) and bottom (2) of the five-atom unit cell.

form factors are crucial for determining Tc of the com-
peting superconducting channels. A straight-forward cal-
culation shows that

χ1

χ0
=

�
dkδ(εk − µ)Tr[σxPk]2/(2D0), (11)

where the operator Pk ≡
�

λ=1,2 |φλ,k��φλ,k| is pro-
jection onto the Hilbert space of two degenerate Bloch
states at k. Similarly, χ2, χ3 and χ4 are obtained by re-
placing σx in (11) by their corresponding pairing poten-
tials σysz, σz and σysx(or σysy). Using the band struc-
ture H0, we obtain the values of χ’s: χ01 = χ0m/µ,
χ1 = χ0(m/µ)2, χ2 = χ0(1−m

2
/µ

2), χ3 = χ4 = 2χ2/3.
Because χ3 < χ0 and χ4 < χ2, we find that ∆̂3 always
has a lower Tc than ∆̂1, and ∆̂4 lower than ∆̂2. Only ∆̂1

and ∆̂2 phases appear in the phase diagram. By calculat-
ing their Tc’s from (10), we obtain the phase boundary:

U/V = 1− 2m
2
/µ

2
. (12)

Fig.1 shows the highest Tc phase as a function of U/V

and m/µ, for positive (attractive) V . The ∆̂2 pairing
phase dominates in a significant part of the phase dia-
gram. Note that experimentally, it has been estimated
that m/µ ≈ 1/3[21]. When V < 0 the ∆̂1 phase is stable
for U > m

2
/µ

2|V |, whereas for smaller U the system is
non-superconducting. It is interesting to note that for
U = V and m = 0 the Hamiltonian (8) has an enlarged
U(1) chiral symmetry: c → exp(iθσxsz)c. The unitary
transformation at θ = π/4 transforms ∆̂1 into ∆̂2, so
their degeneracy is inevitable.

As the phase diagram shows, the spin-triplet ∆2 phase
wins as soon as the inter-orbital attraction exceeds over
the intra-orbital one (V > U), contrary to the naive
expectation that repulsive interaction is required. This
arises from the specific from of spin-orbit coupling in the

pairing gap << Fermi energy => 

pairing order parameter can be expressed in terms of 
states at Fermi surface ѱk1 and ѱk2 (pseudospin). 

Δ2 phase: electronic analog of superfluid He-3

T-breaking chiral superfluid: 
quasi-2D Sr2RuO4 (?)

T-invariant: 
3D CuxBi2Se3 (?) 
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•  Electrochemical synthesis

•  Zero resistivity observed at 2.8 K

•  Shielding fraction > 50%

Ando et al, PRB 84, 54513 (2011)

Recent Developments: improved samples

4

perature T = 1.8 K; then a small dc field of B = 0.2 mT
was applied and the magnetization was measured upon
increasing temperature. After passing through Tc, de-
fined as the onset of the drop in the M(T ) curves, data
were again taken upon decreasing the temperature back
to 1.8 K (field cooled, FC). The superconducting shield-
ing fraction of a sample was estimated from its magnetic
moment at T = 1.8 K after ZFC. The resistivity ρxx and
the Hall coefficient RH were measured by a standard six-
probe technique, where the electrical current was applied
in the ab plane.
With our electrochemical intercalation technique, we

have successfully synthesized samples which supercon-
duct above 1.8 K for Cu concentrations of 0.09 ≤ x ≤

0.64. Figure 3(a) shows the resistivity data of CuxBi2Se3
for three selected Cu concentrations x = 0.14, 0.29, and
0.40 measured in zero field. All those samples exhibit a
metallic temperature dependence above Tc and show zero
resistance below Tc, see the expanded view in the inset of
Fig. 3(a). With increasing Cu concentration, the abso-
lute value of ρxx increases; especially, between x = 0.29
and 0.40 a strong rise in the absolute value is observed,
which implies that a high Cu concentration enhances the
disorder in the samples. Figure 3(b) summarizes the tem-
perature dependences of RH for the three samples, which
are generally weak. The inset shows the x-dependence of
the charge-carrier concentration n determined from the
low-temperature value of RH . It is striking that, despite
the factor of three difference in the Cu concentration, the
change in n is very small: n = 1.5×1020, 1.3×1020, and
1.7×1020 cm−3 for x = 0.14, 0.29, and 0.40, respectively.
Furthermore, those values correspond to only ∼2% of
electron doping. This is totally inconsistent with the ex-
pectation that there should be electron carriers with the
nominal fraction of x in CuxBi2Se3. Therefore, there
must be some side reaction taking place in CuxBi2Se3 to
significantly reduce the actual electron carriers. In this
regard, a similar problem was previously noted in a study
of Cu intercalation into Bi2Te3, and it was proposed that
Cu+ reacts with the matrix to form a four-layer lamellar
structure Cu-Te-Bi-Te that annihilates electrons.37 If a
similar reaction occurs in CuxBi2Se3, it would be

Cu+ + 2Bi2Se3 + e− → [CuBiSe2][Bi3Se
−
4 ] + h. (3)

The formation of this type of structural defects can in-
deed explain the small n values observed in CuxBi2Se3.
Figure 3(c) summarizes the temperature dependences

of the shielding fraction in samples with various x val-
ues. The onset temperatures of superconductivity in the
magnetization data are slightly lower than the onset of
the resistivity transition in respective samples, which is
usual for disordered superconductors. The right inset
of Fig. 3(c) shows the ZFC and FC data for x = 0.29,
and other samples exhibited similar differences between
the two. We note that samples with x ≥ 0.70 were also
prepared, but they did not show any superconducting
transition above 1.8 K; however, it is possible that they
exhibit superconductivity at lower temperatures.
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FIG. 4. (color online) Cu concentration x dependence of (a)
the critical temperature and (b) the shielding fraction at 1.8
K. These Tc data were extracted from the onset of super-
conductivity in magnetization measurements, the shielding-
fraction data from the ZFC magnetization at T = 1.8 K, see
Fig. 3(c).

IV. PHASE DIAGRAM AND DISCUSSIONS

Figure 4(a) shows the phase diagram of Tc vs x based
on our measurements of more than 40 samples, and
Fig. 4(b) summarizes the shielding fraction of those sam-
ples at 1.8 K. The lowest x value at which we found
superconductivity was 0.09, where Tc was already 3.45
K; however, in spite of this relatively high Tc, the super-
conducting signal was very weak with a shielding fraction
of only around 1%. For slightly larger x values around
0.12–0.15 the maximum values of Tc are found, but the
shielding fractions were less than 20%, which is in agree-
ment with the earlier report by Hor et al.29 Intriguingly,
Tc gradually decreases with increasing x down to Tc ≈ 2.2
K for x = 0.64, which is the highest Cu concentration for
which we could clearly confirm the superconductivity.
Although Tc seems to be quite robust and reproducible,

the shielding fraction exhibits a scattering among differ-
ent samples even with similar x values, as can be seen in
Fig. 4(b). Nevertheless, there is a clear trend that sam-
ples with maximal shielding fractions are obtained only
for 0.3 ≤ x ≤ 0.5 and the shielding fraction is reduced
systematically (almost linearly) as x becomes smaller
than x ' 0.3. This trend, together with the EPMA re-
sult that the actual Cu concentration varies on a sub-mm
scale, suggests that CuxBi2Se3 has a tendency to phase-
segregate and that there is a spontaneous formation of
small islands in which the local Cu concentration is essen-
tially the optimum value for superconductivity. In view
of the fact that the Tc of this material is uncharacteristi-
cally high for a low-carrier-density superconductor38 with

•  Tc versus doping

•  inhomogeneous SC 

3

FIG. 2. (color online) EPMA analyses of the cleaved sur-
face of a sample with x = 0.31. Panels (a) and (b) summarize
scans along two lines of 10 µm and 1 mm lengths, respectively,
sketched in panel (c). One can see that the local Cu concen-
tration is uniform on the µm scale, but it is inhomogeneous
on the sub-mm scale.

independent of the annealing temperature.) Therefore,
the samples used for determining the phase diagram pre-
sented here were treated in the following way: They were
heated up to 540◦C in 1 h, and then the temperature
was gradually increased to 560◦C in 40 min to avoid any
overheating; the samples were kept at 560◦C for 2 h and
eventually quenched by dropping the quartz glass tubes
into cold water.35 We will come back later to the ques-
tion of what is happening during the annealing process
to activate the superconductivity.
To confirm the accuracy of the x values determined

by the mass change (and also to make sure that the Cu
content does not change appreciably during the annealing
process), we measured the x values of eight of our samples
in the post-annealed state by using the ICP-AES analysis
(the sample mass was between 15 to 38 mg). For this
destructive analysis, the whole sample was dissolved in
nitric acid HNO3. The Cu concentrations obtained from
the ICP-AES analyses for the eight samples agreed with
those obtained from the mass change within ±0.014,36

giving confidence in the x values reported in this paper.
In addition to the ICP-AES analysis, we have employed

the electron-probe micro-analyzer (EPMA) to check the
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FIG. 3. (color online) (a) Temperature-dependent resistivity
of CuxBi2Se3 for x = 0.14, 0.29, and 0.40. The inset gives
an enlargement around the superconducting transition. (b)
Temperature dependence of the Hall coefficient RH and the
x dependence of the charge-carrier concentration n (inset).
(c) Temperature-dependence of the superconducting shield-
ing fraction in B = 0.2 mT after ZFC for various Cu concen-
trations 0.12 ≤ x ≤ 0.60. For x = 0.29 the ZFC and FC data
are exemplarily shown in the inset.

distribution of Cu within the sample after the annealing.
For this analysis, one sample with x = 0.31 was cleaved
and subsequently scanned over distances of 10 µm and 1
mm, as sketched in Fig. 2(c). The intensity of the char-
acteristic X-ray of each element is plotted vs the scan
position for the two different scan lengths in Figs. 2(a)
and 2(b). One can see that the distributions of Bi and Se
are essentially homogeneous on any length scale, as evi-
denced by the constant intensity of the respective charac-
teristic X-ray. On the other hand, the distribution of Cu
shows a variation of up to ∼20% on the sub-mm length
scale [Fig. 2(b)], although on the 10-µm length scale the
Cu distribution is usually homogeneous [Fig. 2(a)]. Since
the averaged Cu concentration of this sample determined
from the mass change was 0.31, the spatial variation of
∼20% corresponds to the variation in x of ∼0.06.

III. SAMPLE CHARACTERIZATIONS

The superconducting samples were characterized by
measuring the dc magnetization M and transport prop-
erties. To take the magnetization data, a commercial
SQUID magnetometer (Quantum Design, MPMS) was
used with the magnetic field applied parallel to the ab
plane. The samples were cooled down in zero-magnetic
field (zero-field cooled, ZFC) to the lowest accessible tem-

•  carrier density from RH = 
2% electron doping   
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Experimental Test of Pairing Symmetry

-  exponential T-dependence at low T 
   (residual C/T due to normal region)
-  consistent with full pairing gap
-  rule out other pairing with nodes
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FIG. 3. (color online) (a) cp(T )/T data measured in 0 and 2
T applied along the c axis; the latter represent the normal-
state behavior. The dashed line is a fit to the 2-T data using
the standard Debye formula. (b) Electronic term cel/T in 0
T obtained after subtracting the phonon term determined in
2 T. The dotted line shows the calculated cel/T curve given
by strong-coupling BCS theory with α = 1.9; the dashed line
is the BCS curve for α = 2.3, which is obtained from Bc, N0,
and Tc. The horizontal dash-dotted line denotes the value of
γn, and its breakdown to γs and γres is indicated.

corresponds to the midpoint of the resistivity transition.
Neither ZFC nor FC data saturate at 1.8 K.

Magnetization M(B) curves are shown in Figs. 2(b)
and (c); each data set was obtained after cooling to its
respective temperature from above Tc in zero field, and
the background diamagnetism, which can be easily de-
termined at B > Bc2,‖, is subtracted from the data. As
already noted by Hor et al. [15], the lower critical field
Bc1 is very small: Using the deviation of the M(B) curve
from its initial linear behavior as a measure of Bc1,‖ [Fig.
2(d)], we obtained the Bc1,‖(T ) data shown in Fig. 2(e).
To determine the 0-K limit, we used Bc1 ∝ 1/λ2

eff ∝
[(∆(T )/∆(0)) tanh(∆(T )/2kBT )] for the local dirty limit
[25] to fit the extracted data points (λeff is the effective
penetration depth and ∆ is the SC gap [26]), and ob-
tained Bapp

c1,‖(0) = 0.43 mT. For the quantitative analysis
discussed later, this apparent value was corrected for the
demagnetization effect, though it is small for B ‖ ab: Us-
ing the approximation given for the slab geometry [24],
we obtain Bc1,‖(0) = Bapp

c1,‖(0)/tanh
√

0.36b/a = 0.45 mT,

where b/a = 3.9/0.40 in our case. Note that the flux pin-
ning in the present system is weak as evidenced by the
low irreversibility field of ∼0.1 T at 1.8 K [Fig. 2(b)].

The temperature dependence of cp is shown in Fig.
3(a) as cp/T vs. T for the SC state (B = 0 T) and
the normal state achieved by applying B ⊥ ab of 2 T
(> Bc2,⊥). As shown by the dotted line in Fig. 3(a),
a conventional Debye fit to the normal-state data below
4 K using cp = cel + cph = γnT + A3T 3 + A5T 5, with
the normal-state specific-heat coefficient γn and the co-
efficients of the phononic contribution A3 and A5, yields
a good description of the data. The obtained parame-

ters are γn =1.95 mJ/molK2, A3 = 2.22 mJ/molK4 [27],
and A5 = 0.05 mJ/molK6. Subtracting the phononic
contribution from the zero-field data gives the electronic
specific heat cel in the SC state plotted in Fig. 3(b), re-
vealing a clear jump around Tc. This provides compelling
evidence for bulk superconductivity in CuxBi2Se3. In
passing, we note that our cp data in 2 T do not exhibit
any Schottky anomaly related to electron spins, suggest-
ing that there is no local moment possibly associated with
Cu2+ ions.

From the above results, one can estimate various basic
parameters. Assuming a single spherical Fermi surface,
one obtains the Fermi wave number kF = (3π2n)1/3 =
1.6 nm−1. The effective mass m∗ is evaluated as m∗ =
(3!2γn)/(Vmolk2BkF) = 2.6me, with the molar volume of
Bi2Se3 Vmol ≈ 85 cm3/mol. Note that the effective mass
of pristine Bi2Se3 is ∼0.2me [28], so there is an order-of-
magnitude mass enhancement in CuxBi2Se3 [29]. Since
electron correlations are weak in Bi2Se3, the origin of
this enhancement is most likely a change in the band
curvature near the Fermi level. From Bc2,⊥ = 1.71 T,
the coherence length ξab =

√
Φ0/(2πBc2,⊥) = 13.9 nm is

obtained, while from Bc2,‖ we use ξabξc = Φ0/(2πBc2,‖)
and obtain ξc = 7.9 nm. Since we have the Bc1 value
only for B ‖ ab, we define the effective GL parameter
κab ≡

√
λabλc/ξabξc and use Bc1,‖ = Φ0 lnκab/(4πλabλc)

together with Bc2,‖/Bc1,‖ = 2κ2
ab/ lnκab [30] to obtain

κab ≈ 128. We then obtain the thermodynamic critical
field Bc =

√
Bc1,‖Bc2,‖/ lnκab = 16.7 mT.

To analyze cel/T in the SC state shown in Fig. 3(b),
we tried to fit the BCS-type temperature dependence to
the data. Since the simple weak-coupling BCS model
does not describe the cel/T data (not shown), we use
the modified BCS model applicable to strong-coupling
superconductors as proposed in Ref. [31], where it is
called “α model” with α = ∆0/Tc and ∆0 is the SC gap
size at 0 K. We note that strong coupling means α >
αBCS = 1.764, and that this model still assumes a fully-
gapped isotropic s-wave pairing. Using the theoretical
curve cBCS

el of the α model [31], we tried to reproduce the
experimental data with cel(T )/T = γres + cBCS

el (T )/T .
Note that the parameter γres is necessary for describing
the contribution of the non-SC part of the sample [32];
also, the theoretical term cBCS

el /T is set to yield γs (=
γn − γres) at T > Tc.

It turned out that with α = 1.9, γres = 0.6 mJ/molK2,
and γs = 1.185 mJ/molK2, the experimental data is rea-
sonably well reproduced and the entropy balance is sat-
isfied, as shown in Fig. 3(b) by the dash-dotted line
[33]. This result strongly suggests that the SC state of
CuxBi2Se3 is fully gapped. The resulting γn (= γres+γs)
value of 1.785 mJ/molK2 slightly deviates from the γn
value estimated from the Debye fit to the normal-state
data in 2 T, 1.95 mJ/molK2. This slight difference (∼9%)
might be the result of a possible field dependence of
the normal-state Sommerfeld parameter, which has to

Ando et al, PRL 106, 127004 (2011)

Phase sensitive test of pairing symmetry is needed. 

- superconducting loop is a π junction

- trap flux: Φ= h/4e

c.f.  Liu et al 2004, expt on Sr2RuO4

 Δ = 7.3K,  Δ/Tc = 2.3

4

ates from the γn value estimated from the Debye fit to
the normal-state data in 2 T, 1.95 mJ/molK2. This slight
difference (∼9%) might be the result of a possible field
dependence of the normal-state Sommerfeld parameter,
which has to be clarified in future studies.

To gain further insight into the nature of the SC state
in CuxBi2Se3, we examine the implication of the obtained
γs value: The density of states (DOS) N0 is calculated
from γs via N0 = γs/(π2k2B/3) = 1.51 states/eV per unit
cell, which is large for a low-carrier-density system and
is in accord with the “high” Tc. This value allows us to
calculate ∆0 through the expression for the SC conden-
sation energy 1

2
N0∆2

0 = (1/2µ0)B2
c . With Bc ≈ 16.7 mT

already calculated, we obtain ∆0 = 7.3 K which gives
the coupling strength α = ∆0/Tc = 2.3. This exceeds
the BCS value of 1.764 and hence CuxBi2Se3 is a strong-
coupling superconductor, as was already inferred in our
analysis of the cel/T data. More importantly, the α value
of 2.3 obtained from γs is too large to explain the cel(T )
data within the strong-coupling BCS theory: As shown in
Fig. 3(b) with the dashed line, the expected BCS curve
for α = 2.3 does not agree with the data at all. This
probably means that the actual temperature dependence
of ∆ in CuxBi2Se3 is different from that of the BCS the-
ory, which suggests that the pairing symmetry may not
be the simple isotropic s-wave. Obviously, a direct mea-
surement of ∆0 and ∆(T ) is strongly called for. On the
other hand, the low-temperature behavior of cel(T ) ro-
bustly indicates the absence of nodes and points to a
fully-gapped state. It will be interesting to see if the fully-
gapped, time-reversal-invariant p-wave state proposed for
CuxBi2Se3 [18] would provide a satisfactory explanation
of our data.

In summary, we report a comprehensive study of the
superconductivity in CuxBi2Se3 by means of resistivity,
magnetization, and specific-heat measurements on a sin-
gle crystal with x = 0.29 that shows, for the first time
in this material, zero-resistivity and a shielding fraction
of more than 40%. An analysis in the framework of a
generalized BCS theory leads to the conclusion that the
superconductivity in this system is fully gapped with a
possibly non-BCS character. The fully-gapped nature
qualifies this system as a candidate for a topological su-
perconductor: Since this system hosts a topological sur-
face state above Tc [17], depending on whether the parity
of the bulk SC state is even or odd, either the surface or
the bulk should realize the topological SC state associ-
ated with intriguing Majorana edge states.
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Surface Andreev Bound States

µ

Γ†
−E = ΓE (1)

∆ ∝ kx + iky (2)

Hsurf = −ivγT (∂xσx + ∂yσz)γ (3)

HMF = (c†, c)




H0 − µ ∆

∆† −(H0 − µ)








c

c
†



 (4)

U =
(ne−Q0)2

2C
(5)

Φ = Nh/2e (6)

c = γ1 + iγ2

c
† = γ1 − iγ2

γ1 → γ1

γ2 → (−1)Nγ2

(7)

γµ=0(E = 0) (8)

c
†
1 ∼ γ1e

iφ/2

c
†
2 ∼ γ2e

iφ/2

1

Bulk-boundary correspondence:

-  gapless surface Andreev bound state with linear dispersion at k=0

-  low-energy Hamiltonian near k=0

-  detection by tunneling or ARPES 

hallmark of topological superconductor

-  Bogoliubov quasiparticles are 2+1D itinerant Majorana fermions
 half of Dirac fermion in topological insulator
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Point-Contact Spectroscopy on CuxBi2Se3
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Topological Superconductivity in CuxBi2Se3
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A topological superconductor (TSC) is characterized by the topologically-protected gapless surface
state that is essentially an Andreev bound state consisting of Majorana fermions. While a TSC has
not yet been discovered, the doped topological insulator CuxBi2Se3, which superconducts below ∼3
K, has been predicted to possess a topological superconducting state. We report that the point-
contact spectra on the cleaved surface of superconducting CuxBi2Se3 present a zero-bias conductance
peak (ZBCP) which signifies unconventional superconductivity. Theoretical considerations of all
possible superconducting states help us conclude that this ZBCP is due to Majorana Fermions and
gives evidence for a topological superconductivity in CuxBi2Se3. In addition, we found an unusual
pseudogap that develops below ∼20 K and coexists with the topological superconducting state.

PACS numbers: 74.45.+c, 74.20.Rp, 73.20.At, 03.65.Vf

The recent discovery of the topological insulator [1–
23] stimulated the search for an even more exotic state of
matter, the topological superconductor (TSC) [24–27]. A
topological state of matter is characterized by a topologi-
cal structure of the quantum-mechanical wavefunction in
the Hilbert space. In topological insulators, a non-trivial
Z2 topology of the bulk valence band leads to the emer-
gence of Dirac fermions on the surface [22, 23]. Similarly,
in TSCs non-trivial Z or Z2 topologies of the supercon-
ducting (SC) states lead to the appearance of Majorana
fermions on the surface [24–26]. Majorana fermions are
peculiar in that particles are their own antiparticles, and
they were originally conceived as mysterious neutrinos
[28]. Currently their realization in condensed matter is
of significant interest because of their novelty as well as
the potential for quantum computing [28].

The CuxBi2Se3 superconductor [29–32] is a prime can-
didate of TSC because of its peculiar band structure and
strong spin-orbit coupling [33, 34]. In this material, Cu
atoms are intercalated into the layered topological insu-
lator Bi2Se3 and the SC state appears for the Cu concen-
tration x of about 0.2 – 0.5, which causes electron doping
with the density of ∼ 1020 cm−3. This material has not
been well studied because of the difficulty in preparing
high-quality samples [29, 30] but a recent breakthrough
in the synthesis of CuxBi2Se3 by using electrochemistry
[31, 32] made it possible to prepare reliable junctions and
perform a conductance spectroscopy in the superconduct-
ing state.

In the present work, we employed the so-called “soft”
point-contact technique [35]: The contacts were prepared
at room temperature in ambient atmosphere by putting
a tiny ( ∼20 µm) drop of silver paste on the cleaved (111)
surface of a CuxBi2Se3 single crystal below a 30-µm-
diameter gold wire [Figs. 1(a) and 1(b)]. In this type of
junctions, ballistic transport occurs sporadically through
parallel nanometer-scale channels formed between indi-

FIG. 1: (Color online) Point-contact experiment and the sam-
ple. (a) Sketch of the “soft” point contact and the measure-
ment circuit. (b) Scanning-electron-microscope picture of the
actual sample; inset magnifies the silver-paste spot where the
point contact is formed. (c) 3D presentation of nanometer-
scale terraces on a typical cleaved surface of CuxBi2Se3 seen
by an atomic-force microscope. Typical terrace width is 0.5
µm. (d) A false color mapping of (c). (e) SQUID data for
the SC transition in the sample (x = 0.3) used for the point-
contact measurements shown in Fig. 2. Both the zero-field-
cooled (ZFC) and the field-cooled (FC) data measured in 0.2
mT are shown, and the former gives the SC shielding fraction
of 46%. Inset shows the temperature dependence of the zero-
bias differential conductance of the point contact reported in
Fig. 2.

vidual grains in the silver paste and the sample surface
[see Figs. 1(c), 1(d) and Ref. 36]. The dI/dV spectra
were measured with a lock-in technique by sweeping a
dc current that is superimposed with a small-amplitude
ac current [1.35 µA (rms), corresponding to 0.5 A/cm2].
We used a quasi-four-probe configuration, in which the
current was applied between a contact pad and the gold
wire, and the voltage between the wire and another con-
tact pad was measured [Fig. 1(a)]. The Quantum Design
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- zero-bias conductance peak within superconducting gap
- suppressed by magnetic field along z-direction
- strong indication of unconventional pairing
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FIG. 2: (Color online) Zero-bias conductance peak. (a) Point-contact spectra (dI/dV vs bias voltage) of CuxBi2Se3 with
x = 0.3 for 0.35–2 K measured in 0 T for a wide energy window. (b) A narrower window of (a). (c) The spectra at 0.35 K
measured in perpendicular magnetic fields of 0–0.8 T. The vertical dashed lines in (b) and (c) indicate the energy position of
the dips.

PPMS was used for cooling the samples down to 0.35 K
and applying the magnetic field up to 9 T.

A set of point-contact data taken on a CuxBi2Se3 sam-
ple with the bulk onset Tc = 3.2 K is shown in Fig. 2,
where one can see that a pronounced zero-bias conduc-
tance peak (ZBCP) develops at low temperature [36].
The inset of Fig. 1(e) shows the temperature depen-
dence of the zero-bias conductance, which indicates that
this peak appears below 1.2 K [36]. We note that es-
sentially the same ZBCP data have been obtained on
another sample (see Fig. S2 of Ref. 36).

Since heating effects can cause a spurious ZBCP [37],
it is important to elucidate that it is not the case here.
It was argued by Sheet et al. [37] that in samples with
a large normal-state resistivity when the point contact is
in the thermal regime, a spurious ZBCP could show up
if the increase in the bias voltage causes the local current
to exceed the critical current, which leads to a voltage-
dependent decrease in the differential conductivity. If
this is the case, the conductivity at zero bias (which is
always measured below the critical current) should not
change with a weak magnetic field; the role of the mag-
netic field in this case is primarily to reduce the criti-
cal current, so the width of the spurious ZBCP would
become narrower, but the height at V = 0 should be
mostly unchanged as long as the superconductor is in
the zero-resistivity state. In the magnetic-field depen-
dence of our spectra shown in Fig. 2(c), by contrast,
the ZBCP is strongly suppressed with a modest magnetic
field while its width is little affected, which clearly speaks
against the heating origin of the ZBCP. (The magnetic
field was applied perpendicular to the cleaved surface.)
Another well-known signature of the heating effect is a
sharp, spike-like dip at energies much larger than the gap
[35, 37], which is caused by the local transition to nor-
mal state; in fact, when we made the point contact on a
disordered surface, we observed a widening of the peak
and a lot of sharp dips at relatively high energies, which
are obviously caused by the heating [36]. In contrast, the
data shown in Fig. 2 are free from such features, which

corroborates the intrinsic nature of the ZBCP. Therefore,
one can safely conclude that the ZBCP observed here is
not due to the heating effects and is intrinsic.

One should also keep in mind that, even when the
ZBCP is intrinsic, it can be caused by several mechanisms
in point contacts [38]: conventional Andreev reflection
[39, 40], reflectionless tunneling [41–43], magnetic scat-
tering [44, 45], and the unconventional Andreev bound
state (ABS) [38, 40]. In this respect, it is important
to notice that the ZBCP shown in Fig. 2 is accompa-
nied by pronounced dips on its sides and the peak does
not split into two even at the lowest temperature (0.35
K). These features are clearly at odds with the Blonder-
Tinkham-Klapwijk (BTK) theory for conventional An-
dreev reflection [39]. Also, the reflectionless tunneling
and the magnetic scattering are obviously irrelevant, be-
cause the former is suppressed by a very small magnetic
field of less than 0.1 T [46] and the latter presents a peak
splitting in magnetic fields [47]. Hence, one can conclude
that the ZBCP observed here is a manifestation of the
ABS [38].

Previously, it was inferred [32] from the specific-heat
data that the superconducting gap of CuxBi2Se3 at T = 0
K, ∆(0), would be about 0.7 meV. In Fig. 2, one can see
that the minima in the pronounced dips are located at
∼ ±0.6 meV at 0.35 K; since the ZBCP due to the ABS
is usually accompanied by dips near the gap energy [38],
the energy scale of the dip is assuring.

Given that the observed ZBCP is intrinsic and is due
to the ABS, it is important to understand its concrete
origin. The ABS is caused by the interference of the
SC wavefunction at the surface, and it is a signature of
unconventional superconductivity [38]. Its occurrence is
determined by the symmetry of the SC state, which in
turn is determined by the symmetry of the Hamiltonian
and the pairing mechanism. Also, it has been elucidated
that Majorana fermions reside in an ABS when it is spin
non-degenerate [48]. Hence, we examined all possible
SC states in CuxBi2Se3 and the nature of the ABS to
elucidate whether the observed ZBCP is due to Majo-

Andreev reflection on Sn

v.s.
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The recently discovered superconductor CuxBi2Se3[1] is potentially a three-dimensional time-
reversal-invariant topological superconductor[2], which has a full pairing gap in the bulk yet hosts
gapless Majorana fermion surface Andreev bound states. In this work, we obtain the surface Andreev
bound state wavefunction and dispersion, which includes a ring of topologically protected Dirac
points at finite k. We relate our results to a recent point-contact spectroscopy experiment[3].
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The discovery of topological insulators has generated

much interest in not only understanding their proper-

ties and potential applications to spintronics and ther-

moelectrics but also searching for related topological

phases in new directions. A particularly exciting av-

enue is topological superconductivity[2, 4–9], in which

unconventional pairing symmetries lead to nontrivial su-

perconducting gaps in a similar way that spin-orbit cou-

pling leads to inverted band gaps for topological insula-

tors. The hallmark of a three-dimensional topological su-

perconductor is the existence of gapless surface Andreev

bound states (SABS) hosting charge neutral Bogoliubov

quasiparticles, which are itinerant Majorana fermions.

While a topological superconductor remains to be

found, a recently discovered superconductor CuxBi2Se3

with Tc ∼ 3K[1] has been proposed as a promising

candidate[2]. It was found that the strong spin-orbit cou-

pled band structure of CuxBi2Se3 may favor an uncon-

ventional odd-parity pairing symmetry, leading to a time-

reversal-invariant topological superconductor[2]. Subse-

quently, many experimental and theoretical efforts[12–16]
have been made towards understanding superconductiv-

ity in CuxBi2Se3. In a very recent point-contact spec-

troscopy experiment, Sasaki et al. have observed a zero-

bias conductance peak which is attributed to SABS and

seems to signify unconventional pairing[3].

Motivated by this finding, in this Letter we study the

phase diagram of odd-parity topological superconductiv-

ity and the resulting surface Andreev bound states in

doped semiconductors with strong spin-orbit coupling, of

which CuxBi2Se3 is a prime candidate. We start from a

k ·p Hamiltonian which captures the essential features of

the band structure near the Fermi surface. By studying

the phase diagram of the k · p Hamiltonian as a func-

tion of band gap, pairing potential, and doping, we es-

tablish three gapped phases: topological superconductor

(TSC), topological insulator (TI), and normal band in-

sulator (BI). We characterize these phases in a unified

way by introducing a topological invariant—a general-

FIG. 1: a) Side view of a semi-infinite crystal of Bi2Se3. The
two relevant pz orbitals are shown in the zoom-in view of the
QL unit cell. b) Bulk and surface bands of the tight-binding
model for Bi2Se3. µ1 and µ2 denote two chemical potentials
where the surface states have, respectively, not merged and
merged into the bulk bands.

ized mirror Chern number. While odd-parity supercon-

ductivity in both doped BI and TI gives rise to surface

Majorana fermions with a linear dispersion at k = 0, the

SABS of the two become quite different at large k. In

particular, we infer from the mirror Chern number that

the SABS in a superconducting doped TI must become

gapless again near the Fermi momentum. This results

in a novel type of zero-energy SABS. To support these

findings, we construct a two-orbital tight-binding model

that reduces to the k · p Hamiltonian at small k, and we

calculate the SABS dispersion numerically. Finally we

relate these results to the recent experiment[3].

We begin by reviewing the crystal structure of Bi2Se3

and the k ·p Hamiltonian for its band structure. Bi2Se3 is

a rhombohedral crystal in which each unit cell is a quin-

tuple layer (QL) of the form Se(A)-Bi(B)-Se(C)-Bi(A)-

Se(B). Here A, B, C denote three triangular lattices

stacked with offset along the (111) direction, which we

will define as the z-axis. The band structure near Γ is

 boundary condition: 

σzψ(z = 0) = ψ(z = 0)

Topological Superconductivity and Surface Andreev Bound States in Doped
Semiconductors: Application to CuxBi2Se3

Timothy H. Hsieh

Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139

Liang Fu

Department of Physics, Harvard University, Cambridge, MA 02138

The recently discovered superconductor CuxBi2Se3[1] is potentially a three-dimensional time-
reversal-invariant topological superconductor[2], which has a full pairing gap in the bulk yet hosts
gapless Majorana fermion surface Andreev bound states. In this work, we obtain the surface Andreev
bound state wavefunction and dispersion, which includes a ring of topologically protected Dirac
points at finite k. We relate our results to a recent point-contact spectroscopy experiment[3].

PACS numbers: 74.20.Rp, 73.43.-f, 74.20.Mn, 74.45.+c

The discovery of topological insulators has generated

much interest in not only understanding their proper-

ties and potential applications to spintronics and ther-

moelectrics but also searching for related topological

phases in new directions. A particularly exciting av-

enue is topological superconductivity[2, 4–9], in which

unconventional pairing symmetries lead to nontrivial su-

perconducting gaps in a similar way that spin-orbit cou-

pling leads to inverted band gaps for topological insula-

tors. The hallmark of a three-dimensional topological su-

perconductor is the existence of gapless surface Andreev

bound states (SABS) hosting charge neutral Bogoliubov

quasiparticles, which are itinerant Majorana fermions.

While a topological superconductor remains to be

found, a recently discovered superconductor CuxBi2Se3

with Tc ∼ 3K[1] has been proposed as a promising

candidate[2]. It was found that the strong spin-orbit cou-

pled band structure of CuxBi2Se3 may favor an uncon-

ventional odd-parity pairing symmetry, leading to a time-

reversal-invariant topological superconductor[2]. Subse-

quently, many experimental and theoretical efforts[12–16]
have been made towards understanding superconductiv-

ity in CuxBi2Se3. In a very recent point-contact spec-

troscopy experiment, Sasaki et al. have observed a zero-

bias conductance peak which is attributed to SABS and

seems to signify unconventional pairing[3].

Motivated by this finding, in this Letter we study the

phase diagram of odd-parity topological superconductiv-

ity and the resulting surface Andreev bound states in

doped semiconductors with strong spin-orbit coupling, of

which CuxBi2Se3 is a prime candidate. We start from a

k ·p Hamiltonian which captures the essential features of

the band structure near the Fermi surface. By studying

the phase diagram of the k · p Hamiltonian as a func-

tion of band gap, pairing potential, and doping, we es-

tablish three gapped phases: topological superconductor

(TSC), topological insulator (TI), and normal band in-

sulator (BI). We characterize these phases in a unified

way by introducing a topological invariant—a general-

FIG. 1: a) Side view of a semi-infinite crystal of Bi2Se3. The
two relevant pz orbitals are shown in the zoom-in view of the
QL unit cell. b) Bulk and surface bands of the tight-binding
model for Bi2Se3. µ1 and µ2 denote two chemical potentials
where the surface states have, respectively, not merged and
merged into the bulk bands.

ized mirror Chern number. While odd-parity supercon-

ductivity in both doped BI and TI gives rise to surface

Majorana fermions with a linear dispersion at k = 0, the

SABS of the two become quite different at large k. In

particular, we infer from the mirror Chern number that

the SABS in a superconducting doped TI must become

gapless again near the Fermi momentum. This results

in a novel type of zero-energy SABS. To support these

findings, we construct a two-orbital tight-binding model

that reduces to the k · p Hamiltonian at small k, and we

calculate the SABS dispersion numerically. Finally we

relate these results to the recent experiment[3].

We begin by reviewing the crystal structure of Bi2Se3

and the k ·p Hamiltonian for its band structure. Bi2Se3 is

a rhombohedral crystal in which each unit cell is a quin-

tuple layer (QL) of the form Se(A)-Bi(B)-Se(C)-Bi(A)-

Se(B). Here A, B, C denote three triangular lattices

stacked with offset along the (111) direction, which we

will define as the z-axis. The band structure near Γ is

surface states (Δ2 =0):

Topological insulator surface states at k=0 exist if  vz m <0 

3

to the boundary condition (5), we obtain two sets of ex-
act solutions ψ±(k�, z) with energy-momentum disper-

sion E±(k) = ±vk.

ψ±(k�, z) = ez/l(1, 0)σ ⊗ (1,±ieiφ)s, (6)

where l = −vz/m is the decay length; φ is the azimuthal

angle of k�; the subscripts σ and s label the orbital and

spin components. In order for the wavefunction to decay

in the −z direction, we must have l > 0 for a TI, which

implies vzm < 0. The spin polarization of ψ± is locked

to its momentum, forming a two-dimensional Dirac cone.

According to our calculation above, surface states ap-

proach the band edge asymptotically at large k, but never
merge into the bulk bands in k · p theory. This ex-

plains the experimental observation that surface states

remain separated from the bulk in CuxBi2Se3 even at

4.5eV above the Dirac point[12]. Moreover, the wave-

function (6) shows that the penetration length of surface

states is independent of k� (its implication is worth fur-

ther study), and is given by l � 6eV A/0.15eV = 4nm us-

ing the measured Dirac velocity and band gap[12]. This

agrees well with a recent first-principle calculation[21].

Both of these observations strongly support the validity

of our k · p Hamiltonian and boundary condition.

Next, we study surface Andreev bound states of

CuxBi2Se3. We start by solving the BdG equation at

k� = 0 to look for a Kramers pair of zero-energy eigen-

states, dictated by the topology of the bulk Hamilto-

nian (2). Due to mirror symmetry, these two zero-

energy eigenstates ψ0
s=±(z) have mirror eigenvalues M̃ =

−isxτz = i · s. ψ0
s(z) satisfies a reduced 4-component

equation:

[(mσx − ivzσy∂z − µ)τz +∆σyτx]ψ
0
s(z) = 0. (7)

By multiplying both sides of (7) with τz, it becomes clear

that ψ0
s is an eigenstate of τy with eigenvalue τ , which

we label by ψ0
s,τ . In order to obtain a decaying solution,

we must have τ = sgn(vz). Eq.(7) then reduces to a

2-component equation with two independent solutions:

ξ±(z) = (1, e±iθ
)σ · e±ikF z+κz. (8)

Here kF is the Fermi momentum in the z direction, given

by kF =

�
µ2 −m2/vz; κ is the inverse decay length

given by κ = ∆/|vz| > 0; θ is an angle defined by

eiθ = (m + ivzkF )/µ. We now choose a suitable linear

combination of ξ+ and ξ− to satisfy the boundary condi-

tion (5) and obtain the wavefunction of SABS ψ0
s,τ (z):

ψ0
s,τ (z) ∝ eκz(sin(kF z − θ), sin(kF z))σ. (9)

We see from (9) that as usual, the SABS wavefunction at

k� = 0 is a standing wave made of bulk states at Fermi

momentum multiplied by a decaying envelop function.

ψ0
s,τ (z) in Eq.(9) is real and thus represents a Majorana

fermion in this context. Note that the parameter θ, which

characterizes the orbital characters of electron wavefunc-

tions at Fermi energy, sets the amplitude of the SABS

wavefunction at the surface z = 0. As we show below,

the band structure in the normal state also significantly

affects the SABS dispersion.

Away from k = 0, the Kramers doublet ψ0
+ and ψ0

− is

split by spin-orbit coupling in (1). To lowest order, the

SABS dispersion �s(k) is linear in k and given by

�s(k) = sṽk, s = ± (10)

The velocity ṽ is obtained from first-order perturbation

theory:

ṽ = v
∆2

+ sgn(vz)∆m

∆2 + sgn(vz)∆m+ µ2
(11)

Since ∆ � |m| < µ in weak-coupling superconductors

(provided m is not vanishingly small), (11) simplifies to

ṽ � v · sgn(vz)∆m/µ2
= sgn(vzm) · |m|

µ
· ∆0

k0
. (12)

Here ∆0 = ∆
�

1−m2/µ2 is the actual superconducting

gap at Fermi surface; k0 =

�
µ2 −m2/v is the Fermi

momentum in xy direction. Unlike in a single-band p-
wave superconductor, the velocity of SABS in the two-

band model of CuxBi2Se3 is reduced by a dimensionless

prefactor m/µ � 1/3. This is a band structure effect not
captured by the geometry of the Fermi surface.

To study SABS beyond small k, we employ a quasi-

classical approximation valid for 0 < k < kc, where

kc ≡ |k0| − o(∆/|v|) is a cutoff momentum close to the

Fermi momentum. In this regime, ∆ is small compared

to the kinetic energy in the z direction, so that the SABS

dispersion �s(k) can be expanded in powers of ∆. To first

order, �s(k) is given by[22]

�s(k) = svk · sgn(vzm)|m|∆
µ
�
µ2 − v2k2

, |k| < kc. (13)

The velocity of SABS at k = 0 obtained from (13) indeed

agrees with the k · p calculation (12).

Combining the above SABS dispersion for 0 < k < kc
and the mirror Chern number introduced earlier, we can

deduce the behavior of SABS for |k| > kc as follows.

According to the principle of bulk-boundary correspon-

dence, the sign of mirror Chern number nM determines

the helicity of surface states: nM < 0 implies that the

branch of surface states at kx = 0 with mirror eigenval-

ues −i moves clockwise with respect to +x axis at the

edge of the yz plane. Such a helicity forces the disper-

sion of the sx = +1 surface band to eventually merge

into the E > 0 bulk quasiparticle continuum at a large

positive k. In the topological insulator Bi2Se3 the elec-

tron surface state dispersion is monotonic, so that its

helicity is directly given by the sign of Dirac velocity v,

normal state:
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superconducting state: (Δ2 ≠ 0):

• linearly dispersing Majorana surface Andreev bound states near k=0: 

• second surface Andreev band crossing near kF !

4

in agreement with the expression for mirror Chern num-

ber (4). A TSC has a mirror Chern number with the

same sign as the pristine TI. Hence, its SABS must have

the same helicity as the electron surface state. However,

the SABS velocity ṽ at k = 0 can take either sign. As

shown by (12), for TSC in a doped BI with vzm > 0,

sgn(ṽ) = sgn(v), whereas for TSC in a doped TI with

vzm < 0, sgn(ṽ) = −sgn(v). In the latter case, the two

branches of SABS with opposite mirror eigenvalues must

cross E = 0 once again (or an odd number of times)

and switch places at some finite k in order to have the

correct helicity required by mirror Chern number. More-

over, since the SABS dispersion (13) remains monotonic

for 0 < k < kc, we conclude that the second crossing

must occur at k > kc, i.e., close to or greater than Fermi

momentum.

To attain the surface dispersion numerically and to

observe the crossings at finite k, we explicitly construct

a tight-binding model [18] using the two orbitals in the

rhombohedral lattice shown in Fig.1:

H = H0 +Hsoc +H12 +H
�
12. (14)

Here

H0 =

�

<ij>

t0c
†
iαcjα

describes spin-independent hopping between nearest-

neighbors < ij > within the same layer.

Hsoc = (

�

<ij>∈1

−
�

<ij>∈2

)
iλ

2
c
†
iα�sαβcjβ · (ẑ × aij),

describes the Rashba spin-orbit coupling in which elec-

trons hopping within the top and bottom layer experi-

ence opposite electric fields along the z direction. Here

aij =
1
2�ijk(Rj − Rk) denote the vectors joining near-

est neighbors within a layer, and R1,2,3 are the Bravais

lattice vectors.

H12 =

�

<i∈1,j∈2>

t1c
†
iαcjα +

�

<<i∈1,j∈2>>

t3c
†
iαcjα + h.c.

describes inter-layer nearest neighbor (t1) and second

nearest neighbor (t3) hopping within a QL, whereas

H
�
12 =

�

<i∈1,j∈2>

t2c
†
iαcjα + h.c.

describes inter-layer nearest neighbor hopping between

two adjacent QLs. After Fourier transform, the Bloch

Hamiltonian at small k reduces to the k · p form (1) with

m = 3(t1 + t2 + t3), vz = 3t2c, and v =
9
2λa

2
, where

a = |aij | and c = | 13 (R1 +R2 +R3)|. Since there is no

hopping beyond nearest neighbor planes in this lattice

model, the boundary condition at z = 0 is indeed given

by (5)[24]. The bulk and surface bands for the normal

state are displayed in Figure 1b[25].

FIG. 3: SABS dispersion for the tight-binding model in which
a) m = −0.3 < 0, µ1 = 0.6 b) m = −0.3 < 0, µ2 = 1 c)
m = 0.3 > 0, µ1 = 0.6 d) m = 0, µ1 = 0.6. The mirror
eigenvalues are displayed near each branch of SABS. Note
that in a) and b), SABS is “twisted” with a second crossing.

To study superconductivity, we include the following

odd-parity pairing term in the mean field Hamiltonian:

HMF = H +

�

<i∈1,j∈2>

∆

2
(c

†
i↑c

†
j↓ + c

†
i↓c

†
j↑) + h.c.

The resulting SABS dispersion is shown in Figure 3. As

expected from the analytic calculation, after going from

a doped BI (m > 0, shown in Fig.3c) to a doped TI

(m < 0 , shown in Fig.3a-b), the electron surface states

appear inside the inverted band gap, and simultaneously

the SABS inside the superconducting gap changes from

one crossing at k = 0 to two crossings at k = 0 and a

finite k. So for a TSC in doped TI like CuxBi2Se3, elec-

tron surface states resulting from the topological band

structure coexists with SABS resulting from topological

superconductivity.

This sheds light on the origin of the gapless SABS at

the second crossing. First consider the case where elec-

tron surface states are well-defined at the Fermi energy

in the normal metal (e.g, at the chemical potential µ1

in Fig.1c). The surface states at k and −k have op-

posite mirror eigenvalues, whereas ∆ only pairs states

with the same mirror eigenvalues. Due to this symme-

try incompatibility, the surface states must remain gap-

less even in the presence of odd-parity superconductiv-

ity. This reveals the surface state origin of the SABS

at the second crossing. Indeed we observed that the de-

cay length of SABS at the second crossing is comparable

to that of the electron surface state given by |vz|/|m|,
which is much shorter than the typical decay length of

SABS given by |vz|/∆. More interesting is when the

electron surface states have already merged into the bulk

before reaching Fermi energy (e.g, at the chemical poten-

tial µ2 in Fig.1c). The second crossing of SABS remains

(Fig.3b), as required by the mirror Chern number. In

ψα
k=0 = ez·∆/|vz|(sin(kF z − θ), sin(kF z))σ [(1,−α)s, isgn(vz)(1,α)s]τ ,
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surface Andreev bound states (Δ2 ≠ 0):
4

in agreement with the expression for mirror Chern num-

ber (4). A TSC has a mirror Chern number with the

same sign as the pristine TI. Hence, its SABS must have

the same helicity as the electron surface state. However,

the SABS velocity ṽ at k = 0 can take either sign. As

shown by (12), for TSC in a doped BI with vzm > 0,

sgn(ṽ) = sgn(v), whereas for TSC in a doped TI with

vzm < 0, sgn(ṽ) = −sgn(v). In the latter case, the two

branches of SABS with opposite mirror eigenvalues must

cross E = 0 once again (or an odd number of times)

and switch places at some finite k in order to have the

correct helicity required by mirror Chern number. More-

over, since the SABS dispersion (13) remains monotonic

for 0 < k < kc, we conclude that the second crossing

must occur at k > kc, i.e., close to or greater than Fermi

momentum.

To attain the surface dispersion numerically and to

observe the crossings at finite k, we explicitly construct

a tight-binding model [18] using the two orbitals in the

rhombohedral lattice shown in Fig.1:

H = H0 +Hsoc +H12 +H
�
12. (14)

Here

H0 =

�

<ij>

t0c
†
iαcjα

describes spin-independent hopping between nearest-

neighbors < ij > within the same layer.

Hsoc = (

�

<ij>∈1

−
�

<ij>∈2

)
iλ

2
c
†
iα�sαβcjβ · (ẑ × aij),

describes the Rashba spin-orbit coupling in which elec-

trons hopping within the top and bottom layer experi-

ence opposite electric fields along the z direction. Here

aij =
1
2�ijk(Rj − Rk) denote the vectors joining near-

est neighbors within a layer, and R1,2,3 are the Bravais

lattice vectors.

H12 =

�

<i∈1,j∈2>

t1c
†
iαcjα +

�

<<i∈1,j∈2>>

t3c
†
iαcjα + h.c.

describes inter-layer nearest neighbor (t1) and second

nearest neighbor (t3) hopping within a QL, whereas

H
�
12 =

�

<i∈1,j∈2>

t2c
†
iαcjα + h.c.

describes inter-layer nearest neighbor hopping between

two adjacent QLs. After Fourier transform, the Bloch

Hamiltonian at small k reduces to the k · p form (1) with

m = 3(t1 + t2 + t3), vz = 3t2c, and v =
9
2λa

2
, where

a = |aij | and c = | 13 (R1 +R2 +R3)|. Since there is no

hopping beyond nearest neighbor planes in this lattice

model, the boundary condition at z = 0 is indeed given

by (5)[24]. The bulk and surface bands for the normal

state are displayed in Figure 1b[25].

FIG. 3: SABS dispersion for the tight-binding model in which
a) m = −0.3 < 0, µ1 = 0.6 b) m = −0.3 < 0, µ2 = 1 c)
m = 0.3 > 0, µ1 = 0.6 d) m = 0, µ1 = 0.6. The mirror
eigenvalues are displayed near each branch of SABS. Note
that in a) and b), SABS is “twisted” with a second crossing.

To study superconductivity, we include the following

odd-parity pairing term in the mean field Hamiltonian:

HMF = H +

�

<i∈1,j∈2>

∆

2
(c

†
i↑c

†
j↓ + c

†
i↓c

†
j↑) + h.c.

The resulting SABS dispersion is shown in Figure 3. As

expected from the analytic calculation, after going from

a doped BI (m > 0, shown in Fig.3c) to a doped TI

(m < 0 , shown in Fig.3a-b), the electron surface states

appear inside the inverted band gap, and simultaneously

the SABS inside the superconducting gap changes from

one crossing at k = 0 to two crossings at k = 0 and a

finite k. So for a TSC in doped TI like CuxBi2Se3, elec-

tron surface states resulting from the topological band

structure coexists with SABS resulting from topological

superconductivity.

This sheds light on the origin of the gapless SABS at

the second crossing. First consider the case where elec-

tron surface states are well-defined at the Fermi energy

in the normal metal (e.g, at the chemical potential µ1

in Fig.1c). The surface states at k and −k have op-

posite mirror eigenvalues, whereas ∆ only pairs states

with the same mirror eigenvalues. Due to this symme-

try incompatibility, the surface states must remain gap-

less even in the presence of odd-parity superconductiv-

ity. This reveals the surface state origin of the SABS

at the second crossing. Indeed we observed that the de-

cay length of SABS at the second crossing is comparable

to that of the electron surface state given by |vz|/|m|,
which is much shorter than the typical decay length of

SABS given by |vz|/∆. More interesting is when the

electron surface states have already merged into the bulk

before reaching Fermi energy (e.g, at the chemical poten-

tial µ2 in Fig.1c). The second crossing of SABS remains

(Fig.3b), as required by the mirror Chern number. In
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The discovery of topological insulators has generated

much interest in not only understanding their proper-

ties and potential applications to spintronics and ther-

moelectrics but also searching for related topological

phases in new directions. A particularly exciting av-

enue is topological superconductivity[2, 4–9], in which

unconventional pairing symmetries lead to nontrivial su-

perconducting gaps in a similar way that spin-orbit cou-

pling leads to inverted band gaps for topological insula-

tors. The hallmark of a three-dimensional topological su-

perconductor is the existence of gapless surface Andreev

bound states (SABS) hosting charge neutral Bogoliubov

quasiparticles, which are itinerant Majorana fermions.

While a topological superconductor remains to be

found, a recently discovered superconductor CuxBi2Se3

with Tc ∼ 3K[1] has been proposed as a promising

candidate[2]. It was found that the strong spin-orbit cou-

pled band structure of CuxBi2Se3 may favor an uncon-

ventional odd-parity pairing symmetry, leading to a time-

reversal-invariant topological superconductor[2]. Subse-

quently, many experimental and theoretical efforts[12–16]
have been made towards understanding superconductiv-

ity in CuxBi2Se3. In a very recent point-contact spec-

troscopy experiment, Sasaki et al. have observed a zero-

bias conductance peak which is attributed to SABS and

seems to signify unconventional pairing[3].

Motivated by this finding, in this Letter we study the

phase diagram of odd-parity topological superconductiv-

ity and the resulting surface Andreev bound states in

doped semiconductors with strong spin-orbit coupling, of

which CuxBi2Se3 is a prime candidate. We start from a

k ·p Hamiltonian which captures the essential features of

the band structure near the Fermi surface. By studying

the phase diagram of the k · p Hamiltonian as a func-

tion of band gap, pairing potential, and doping, we es-

tablish three gapped phases: topological superconductor

(TSC), topological insulator (TI), and normal band in-

sulator (BI). We characterize these phases in a unified

way by introducing a topological invariant—a general-

FIG. 1: a) Side view of a semi-infinite crystal of Bi2Se3. The
two relevant pz orbitals are shown in the zoom-in view of the
QL unit cell. b) Bulk and surface bands of the tight-binding
model for Bi2Se3. µ1 and µ2 denote two chemical potentials
where the surface states have, respectively, not merged and
merged into the bulk bands.

ized mirror Chern number. While odd-parity supercon-

ductivity in both doped BI and TI gives rise to surface

Majorana fermions with a linear dispersion at k = 0, the

SABS of the two become quite different at large k. In

particular, we infer from the mirror Chern number that

the SABS in a superconducting doped TI must become

gapless again near the Fermi momentum. This results

in a novel type of zero-energy SABS. To support these

findings, we construct a two-orbital tight-binding model

that reduces to the k · p Hamiltonian at small k, and we

calculate the SABS dispersion numerically. Finally we

relate these results to the recent experiment[3].

We begin by reviewing the crystal structure of Bi2Se3

and the k ·p Hamiltonian for its band structure. Bi2Se3 is

a rhombohedral crystal in which each unit cell is a quin-

tuple layer (QL) of the form Se(A)-Bi(B)-Se(C)-Bi(A)-

Se(B). Here A, B, C denote three triangular lattices

stacked with offset along the (111) direction, which we

will define as the z-axis. The band structure near Γ is

surface states (Δ2 =0):

•   odd-parity pairing does not gap surface states of doped topological insulator 
=> gapless surface Andreev bound states near kF

•   second crossing remains even if surface states do not exist at Fermi energy 
=> a new type of Andreev states: defy quasi-classical description

•   protected by mirror helicity: a bulk topological invariant

4

in agreement with the expression for mirror Chern num-

ber (4). A TSC has a mirror Chern number with the

same sign as the pristine TI. Hence, its SABS must have

the same helicity as the electron surface state. However,

the SABS velocity ṽ at k = 0 can take either sign. As

shown by (12), for TSC in a doped BI with vzm > 0,

sgn(ṽ) = sgn(v), whereas for TSC in a doped TI with

vzm < 0, sgn(ṽ) = −sgn(v). In the latter case, the two

branches of SABS with opposite mirror eigenvalues must

cross E = 0 once again (or an odd number of times)

and switch places at some finite k in order to have the

correct helicity required by mirror Chern number. More-

over, since the SABS dispersion (13) remains monotonic

for 0 < k < kc, we conclude that the second crossing

must occur at k > kc, i.e., close to or greater than Fermi

momentum.

To attain the surface dispersion numerically and to

observe the crossings at finite k, we explicitly construct

a tight-binding model [18] using the two orbitals in the

rhombohedral lattice shown in Fig.1:

H = H0 +Hsoc +H12 +H
�
12. (14)

Here

H0 =

�

<ij>

t0c
†
iαcjα

describes spin-independent hopping between nearest-

neighbors < ij > within the same layer.

Hsoc = (

�

<ij>∈1

−
�

<ij>∈2

)
iλ

2
c
†
iα�sαβcjβ · (ẑ × aij),

describes the Rashba spin-orbit coupling in which elec-

trons hopping within the top and bottom layer experi-

ence opposite electric fields along the z direction. Here

aij =
1
2�ijk(Rj − Rk) denote the vectors joining near-

est neighbors within a layer, and R1,2,3 are the Bravais

lattice vectors.

H12 =

�

<i∈1,j∈2>

t1c
†
iαcjα +

�

<<i∈1,j∈2>>

t3c
†
iαcjα + h.c.

describes inter-layer nearest neighbor (t1) and second

nearest neighbor (t3) hopping within a QL, whereas

H
�
12 =

�

<i∈1,j∈2>

t2c
†
iαcjα + h.c.

describes inter-layer nearest neighbor hopping between

two adjacent QLs. After Fourier transform, the Bloch

Hamiltonian at small k reduces to the k · p form (1) with

m = 3(t1 + t2 + t3), vz = 3t2c, and v =
9
2λa

2
, where

a = |aij | and c = | 13 (R1 +R2 +R3)|. Since there is no

hopping beyond nearest neighbor planes in this lattice

model, the boundary condition at z = 0 is indeed given

by (5)[24]. The bulk and surface bands for the normal

state are displayed in Figure 1b[25].

FIG. 3: SABS dispersion for the tight-binding model in which
a) m = −0.3 < 0, µ1 = 0.6 b) m = −0.3 < 0, µ2 = 1 c)
m = 0.3 > 0, µ1 = 0.6 d) m = 0, µ1 = 0.6. The mirror
eigenvalues are displayed near each branch of SABS. Note
that in a) and b), SABS is “twisted” with a second crossing.

To study superconductivity, we include the following

odd-parity pairing term in the mean field Hamiltonian:

HMF = H +

�

<i∈1,j∈2>

∆

2
(c

†
i↑c

†
j↓ + c

†
i↓c

†
j↑) + h.c.

The resulting SABS dispersion is shown in Figure 3. As

expected from the analytic calculation, after going from

a doped BI (m > 0, shown in Fig.3c) to a doped TI

(m < 0 , shown in Fig.3a-b), the electron surface states

appear inside the inverted band gap, and simultaneously

the SABS inside the superconducting gap changes from

one crossing at k = 0 to two crossings at k = 0 and a

finite k. So for a TSC in doped TI like CuxBi2Se3, elec-

tron surface states resulting from the topological band

structure coexists with SABS resulting from topological

superconductivity.

This sheds light on the origin of the gapless SABS at

the second crossing. First consider the case where elec-

tron surface states are well-defined at the Fermi energy

in the normal metal (e.g, at the chemical potential µ1

in Fig.1c). The surface states at k and −k have op-

posite mirror eigenvalues, whereas ∆ only pairs states

with the same mirror eigenvalues. Due to this symme-

try incompatibility, the surface states must remain gap-

less even in the presence of odd-parity superconductiv-

ity. This reveals the surface state origin of the SABS

at the second crossing. Indeed we observed that the de-

cay length of SABS at the second crossing is comparable

to that of the electron surface state given by |vz|/|m|,
which is much shorter than the typical decay length of

SABS given by |vz|/∆. More interesting is when the

electron surface states have already merged into the bulk

before reaching Fermi energy (e.g, at the chemical poten-

tial µ2 in Fig.1c). The second crossing of SABS remains

(Fig.3b), as required by the mirror Chern number. In
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in agreement with the expression for mirror Chern num-

ber (4). A TSC has a mirror Chern number with the

same sign as the pristine TI. Hence, its SABS must have

the same helicity as the electron surface state. However,

the SABS velocity ṽ at k = 0 can take either sign. As

shown by (12), for TSC in a doped BI with vzm > 0,

sgn(ṽ) = sgn(v), whereas for TSC in a doped TI with

vzm < 0, sgn(ṽ) = −sgn(v). In the latter case, the two

branches of SABS with opposite mirror eigenvalues must

cross E = 0 once again (or an odd number of times)

and switch places at some finite k in order to have the

correct helicity required by mirror Chern number. More-

over, since the SABS dispersion (13) remains monotonic

for 0 < k < kc, we conclude that the second crossing

must occur at k > kc, i.e., close to or greater than Fermi

momentum.

To attain the surface dispersion numerically and to

observe the crossings at finite k, we explicitly construct

a tight-binding model [18] using the two orbitals in the

rhombohedral lattice shown in Fig.1:

H = H0 +Hsoc +H12 +H
�
12. (14)

Here

H0 =

�

<ij>

t0c
†
iαcjα

describes spin-independent hopping between nearest-

neighbors < ij > within the same layer.

Hsoc = (

�

<ij>∈1

−
�

<ij>∈2

)
iλ

2
c
†
iα�sαβcjβ · (ẑ × aij),

describes the Rashba spin-orbit coupling in which elec-

trons hopping within the top and bottom layer experi-

ence opposite electric fields along the z direction. Here

aij =
1
2�ijk(Rj − Rk) denote the vectors joining near-

est neighbors within a layer, and R1,2,3 are the Bravais

lattice vectors.

H12 =

�

<i∈1,j∈2>

t1c
†
iαcjα +

�

<<i∈1,j∈2>>

t3c
†
iαcjα + h.c.

describes inter-layer nearest neighbor (t1) and second

nearest neighbor (t3) hopping within a QL, whereas

H
�
12 =

�

<i∈1,j∈2>

t2c
†
iαcjα + h.c.

describes inter-layer nearest neighbor hopping between

two adjacent QLs. After Fourier transform, the Bloch

Hamiltonian at small k reduces to the k · p form (1) with

m = 3(t1 + t2 + t3), vz = 3t2c, and v =
9
2λa

2
, where

a = |aij | and c = | 13 (R1 +R2 +R3)|. Since there is no

hopping beyond nearest neighbor planes in this lattice

model, the boundary condition at z = 0 is indeed given

by (5)[24]. The bulk and surface bands for the normal

state are displayed in Figure 1b[25].

FIG. 3: SABS dispersion for the tight-binding model in which
a) m = −0.3 < 0, µ1 = 0.6 b) m = −0.3 < 0, µ2 = 1 c)
m = 0.3 > 0, µ1 = 0.6 d) m = 0, µ1 = 0.6. The mirror
eigenvalues are displayed near each branch of SABS. Note
that in a) and b), SABS is “twisted” with a second crossing.

To study superconductivity, we include the following

odd-parity pairing term in the mean field Hamiltonian:

HMF = H +

�

<i∈1,j∈2>

∆

2
(c

†
i↑c

†
j↓ + c

†
i↓c

†
j↑) + h.c.

The resulting SABS dispersion is shown in Figure 3. As

expected from the analytic calculation, after going from

a doped BI (m > 0, shown in Fig.3c) to a doped TI

(m < 0 , shown in Fig.3a-b), the electron surface states

appear inside the inverted band gap, and simultaneously

the SABS inside the superconducting gap changes from

one crossing at k = 0 to two crossings at k = 0 and a

finite k. So for a TSC in doped TI like CuxBi2Se3, elec-

tron surface states resulting from the topological band

structure coexists with SABS resulting from topological

superconductivity.

This sheds light on the origin of the gapless SABS at

the second crossing. First consider the case where elec-

tron surface states are well-defined at the Fermi energy

in the normal metal (e.g, at the chemical potential µ1

in Fig.1c). The surface states at k and −k have op-

posite mirror eigenvalues, whereas ∆ only pairs states

with the same mirror eigenvalues. Due to this symme-

try incompatibility, the surface states must remain gap-

less even in the presence of odd-parity superconductiv-

ity. This reveals the surface state origin of the SABS

at the second crossing. Indeed we observed that the de-

cay length of SABS at the second crossing is comparable

to that of the electron surface state given by |vz|/|m|,
which is much shorter than the typical decay length of

SABS given by |vz|/∆. More interesting is when the

electron surface states have already merged into the bulk

before reaching Fermi energy (e.g, at the chemical poten-

tial µ2 in Fig.1c). The second crossing of SABS remains

(Fig.3b), as required by the mirror Chern number. In

m/µ = 0.3

•  double peaks due to Van-Hove singularity at turning points
•  thermal broadening results in one zero-bias peak and dip at gap edge
•  Prediction: peak splits into two at lower temperature for clean surface
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FIG. 2: (Color online) Zero-bias conductance peak. (a) Point-contact spectra (dI/dV vs bias voltage) of CuxBi2Se3 with
x = 0.3 for 0.35–2 K measured in 0 T for a wide energy window. (b) A narrower window of (a). (c) The spectra at 0.35 K
measured in perpendicular magnetic fields of 0–0.8 T. The vertical dashed lines in (b) and (c) indicate the energy position of
the dips.

PPMS was used for cooling the samples down to 0.35 K
and applying the magnetic field up to 9 T.

A set of point-contact data taken on a CuxBi2Se3 sam-
ple with the bulk onset Tc = 3.2 K is shown in Fig. 2,
where one can see that a pronounced zero-bias conduc-
tance peak (ZBCP) develops at low temperature [36].
The inset of Fig. 1(e) shows the temperature depen-
dence of the zero-bias conductance, which indicates that
this peak appears below 1.2 K [36]. We note that es-
sentially the same ZBCP data have been obtained on
another sample (see Fig. S2 of Ref. 36).

Since heating effects can cause a spurious ZBCP [37],
it is important to elucidate that it is not the case here.
It was argued by Sheet et al. [37] that in samples with
a large normal-state resistivity when the point contact is
in the thermal regime, a spurious ZBCP could show up
if the increase in the bias voltage causes the local current
to exceed the critical current, which leads to a voltage-
dependent decrease in the differential conductivity. If
this is the case, the conductivity at zero bias (which is
always measured below the critical current) should not
change with a weak magnetic field; the role of the mag-
netic field in this case is primarily to reduce the criti-
cal current, so the width of the spurious ZBCP would
become narrower, but the height at V = 0 should be
mostly unchanged as long as the superconductor is in
the zero-resistivity state. In the magnetic-field depen-
dence of our spectra shown in Fig. 2(c), by contrast,
the ZBCP is strongly suppressed with a modest magnetic
field while its width is little affected, which clearly speaks
against the heating origin of the ZBCP. (The magnetic
field was applied perpendicular to the cleaved surface.)
Another well-known signature of the heating effect is a
sharp, spike-like dip at energies much larger than the gap
[35, 37], which is caused by the local transition to nor-
mal state; in fact, when we made the point contact on a
disordered surface, we observed a widening of the peak
and a lot of sharp dips at relatively high energies, which
are obviously caused by the heating [36]. In contrast, the
data shown in Fig. 2 are free from such features, which

corroborates the intrinsic nature of the ZBCP. Therefore,
one can safely conclude that the ZBCP observed here is
not due to the heating effects and is intrinsic.

One should also keep in mind that, even when the
ZBCP is intrinsic, it can be caused by several mechanisms
in point contacts [38]: conventional Andreev reflection
[39, 40], reflectionless tunneling [41–43], magnetic scat-
tering [44, 45], and the unconventional Andreev bound
state (ABS) [38, 40]. In this respect, it is important
to notice that the ZBCP shown in Fig. 2 is accompa-
nied by pronounced dips on its sides and the peak does
not split into two even at the lowest temperature (0.35
K). These features are clearly at odds with the Blonder-
Tinkham-Klapwijk (BTK) theory for conventional An-
dreev reflection [39]. Also, the reflectionless tunneling
and the magnetic scattering are obviously irrelevant, be-
cause the former is suppressed by a very small magnetic
field of less than 0.1 T [46] and the latter presents a peak
splitting in magnetic fields [47]. Hence, one can conclude
that the ZBCP observed here is a manifestation of the
ABS [38].

Previously, it was inferred [32] from the specific-heat
data that the superconducting gap of CuxBi2Se3 at T = 0
K, ∆(0), would be about 0.7 meV. In Fig. 2, one can see
that the minima in the pronounced dips are located at
∼ ±0.6 meV at 0.35 K; since the ZBCP due to the ABS
is usually accompanied by dips near the gap energy [38],
the energy scale of the dip is assuring.

Given that the observed ZBCP is intrinsic and is due
to the ABS, it is important to understand its concrete
origin. The ABS is caused by the interference of the
SC wavefunction at the surface, and it is a signature of
unconventional superconductivity [38]. Its occurrence is
determined by the symmetry of the SC state, which in
turn is determined by the symmetry of the Hamiltonian
and the pairing mechanism. Also, it has been elucidated
that Majorana fermions reside in an ABS when it is spin
non-degenerate [48]. Hence, we examined all possible
SC states in CuxBi2Se3 and the nature of the ABS to
elucidate whether the observed ZBCP is due to Majo-
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Conclusion: 
   1. unconventional pairing & topological superconductivity can be driven 
      by strong spin-orbit coupling.

   2. a promising candidate: Cu-doped Bi2Se3  
      - more to be done:  STM, NMR, phase-sensitive test ... 

Conclusion Outlook

More candidates?
•  doped topological insulator:   Bi2Te3 under pressure, TlBiTe2 ...
•  doped normal semiconductor:   PbTe, SnTe ... 
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