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Anderson localization
electron in random potential

P.W. Anderson (1958)

strong Z2

insulator

(1) strong topological insulator (2) weak topological insulator

weak Z2

insulator

Never localized!
(topological metal)

Localization-delocalization
transition (in the standard
symplectic class)

or

2D Z2 top. insulator



Outline

• Anderson localization: short review

– Scaling theory

– before Quantum Spin Hall Effect (QSHE)

– QSHE  (& surface of weak topological insulators)

• Anderson delocalization

– Nonlinear sigma model with Z2 topological term

– Surface Dirac fermions of strong topological 
insulators
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Anderson localization

Scaling theory AALR (1979) 

a non-interacting electron moving in a random potential

Metal:

Insulator:

The metal-insulator transition at g=gc is continuous.

P.W. Anderson (1958)

Conductance g changes as system size  L is changed.

e-

orthogonal classL
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Universality classes of disordered electron systems

• Dimensionality of space

• Symmetry of Hamiltonian

time-reversal symmetry

SU(2) rotation symmetry in spin space

3 standard classes (Wigner-Dyson random matrix theory)

time reversal symmetry          spin rotation 
orthogonal   

unitary

symplectic

1
2

T

1
2

T

2d
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anti-localization correction

critical point in 2D

symplectic class:  ○ time-reversal,     × spin-rotation
spin-orbit interaction

Metal-insulator transition in 2D

Always localized in 1D

0
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Anderson transition (metal-insulator transition)

Continuous phase transition induced by disorder

localization length

metallic phase

delocalized multifractal

critical point insulating phase

localized

7.2Numerical studies (finite-size scaling) (Asada, Ohtsuki & Slevin, 2002)

Conformal invariance has some consequence in multifractal spectra:

Obuse, Subramaniam, AF, Gruzberg & Ludwig, PRL 2007

2d



Some developments before QSHE (1)

9

(1-a) Nonperturbative calculculation for NLSM in Quasi 1D  (thick wire limit) 
Zirnbauer PRL (1992); Mirlin, Muller-Groeling & Zirnbauer, Ann. Phys. (1994)
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implies existence of a conducting channel
(in contradiction to the scaling theory

and the DMPK approach)

(1-b) exponential decay of g recovered by discarding zero-mode contributions
(Brouwer & Frahm, PRB 1996)

22
g g was obtained as well
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weak anti-localization
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Some developments before QSHE (2)
(2-a) (metallic) carbon nanotubes:  Ando & Suzuura, JPSJ 2002

There is a perfectly conducting channel when disorder potential is smooth.
(scattering matrix elements between two valleys can be ignored.)

Berry phase

2
1T  “time-reversal symmetry”

spin up & down = sublattice A & B

Symplectic class

(2-b) graphene:   Suzuura & Ando, PRL 2002; McCann et al., PRL 2006
weak anti-localization for smooth potential

inter-valley scattering             weak localization  (orthogonal class)



Some developments before QSHE (1)
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(1-a) Nonperturbative calculculation for NLSM in Quasi 1D  (thick wire limit) 
Zirnbauer PRL (1992); Mirlin, Muller-Groeling & Zirnbauer, Ann. Phys. (1994)
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implies existence of a conducting channel
(in contradiction to the scaling theory

and the DMPK approach)

(1-b) exponential decay of g recovered by discarding zero-mode contributions
(Brouwer & Frahm, PRB 1996)

22
g g was obtained as well
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weak anti-localization

 1,  1    f ix e dN L l N l L

(1-c) significance of the parity of the number N of Kramers’ pairs
of conducting channels  (Takane, JPSJ 2004, ..)

Odd N:  a perfectly conducting channel  (zero mode is important)
Even N:  Brouwer-Frahm’s result
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Metallic carbon nanotubes (2 Dirac points & up, down spins)

= 4     edge states (a Kramers’ pair) of 2D Z2 topological insulator (QSHE)

Graphene (2 Dirac points & up, down spins)

= 4     surface Dirac (Weyl) fermions of 3D Z2 topological insulator

strong Z2

insulator



Quantum spin Hall effect (Z2 top. Insulator)

• Time-reversal invariant band insulator

• Strong spin-orbit interaction

• Gapless helical edge mode (Kramers pair)

Kane & Mele (2005, 2006); Bernevig & Zhang (2006)
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up-spin electrons

down-spin electrons

  SEpSL




If Sz is NOT conserved,   Chern # (Z)           Z2
symplectic class
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Disorder effects
(1) Integer Quantum Hall Effect

localized statesDOS
critical point

E

(2) Quantum Spin Hall Effect
DOS localized states

E

extended states

disorder

DOS

E

Landau levels

disorder

metal-insulator transition Z2 topological insulator

edge states

DOS

E
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edge states



Kane-Mele model with on-site disorder

Onoda, Avishai & Nagaosa, PRL (2007)Numerical simulations

Phase diagram Finite-size scaling

small system size
poor statistics
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Network model for quantum spin Hall effect

Chalker-Coddington network model for up-spin electrons

Chalker-Coddington network model for down-spin electrons

+

Coupled by general spin-dependent scattering vertices
that  respect time-reversal symmetry

16

opposite chirality

Obuse, AF, Ryu & Mudry, PRB 76, 075301 (2007)



Chalker, Coddington (1988)

Chalker-Coddington Network model

electron moving along equipotential lines

S : unitary matrix
17



Network model for QSHE (symplectic class)

2 coupled Chalker-Coddington networks of opposite chiralities

＋
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S matrix
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Time reversal symmetry: 
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: ra n d o m

: ( i)  f ix e d   ( i i )  ra n d o m

ta n h   :  f ix e dr x
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Trivial (Insulating) limit: boundary conditions

    
10

01














S

helical edge modes

Z2 top.
insulator

trivial
insulator

mixed
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Bulk properties should not depend on boundary conditions.

The critical exponent      is a bulk property.






c

XX

should be the same for
metal-to-(trivial insulator) transition

and
metal-to-(Z2 top. Insulator) transition.
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Numerical simulation in quasi 1D geometry: localization length

Transfer matrix method for quasi-1d geometry

Finite-size scaling

Boundary conditions in the transverse direction:
(a) Periodic  (cylinder)                       (b) reflecting  (strip)

0y



2 critical points:

Obuse, AF, Ryu, Mudry, PRB (‘07)

Metal

Numerical simulation in cylinder geometry (periodic b.c.)

Localization length divided by 
the transverse width in quasi 1D

:

x
txr

cosh

1
   ,tanh 

In agreement with the known
value for the symplectic class
(Asada, Slevin & Ohtsuki)

Finite-size scaling

7.2

insulatorinsulator

DOS

localized states

E

extended states

16
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Phase diagram

IQH plateau transition (unitary class)



: measure of r where
26

network model (Obuse, AF, Ryu & Mudry, PRB 2008)

b
ul
k

bulk

M-QSHI M-trivial I

Multifractality: scaling behavior of moments of critical wave functions

multifractal exponents In a metal

singularity spectrum

bulk & boundary multifractality



“Hamiltonian” formalism

 tiHS
tot

 exp

Expansion around the limit of two decoupled CC network models at criticality yields
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random vector potential

random scalar potential

random mass
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Note  1. CC network model                      Hamiltonian             (Ho & Chalker PRB 1996)22 
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Note  2. surface of 3D Z2 top. Insulator:           Hamiltonian22 
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Lattice Dirac fermions with on-site disorder
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Yamakage, Nomura, Imura & Kuramoto, JPSJ 2011
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phase diagram (symmetric about     = 4)

Red:              (2    IQHE, unitary class)
Blue:                    (symplectic class)
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Outline

• Anderson localization: short review

– 1980s

– before Quantum Spin Hall Effect (QSHE)

– QSHE  (& surface of weak topological insulators)

• Anderson delocalization

– Nonlinear sigma model with Z2 topological term

– Surface Dirac fermions of strong topological 
insulators
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Nonlinear sigma model: (Wegner, Efetov, Altshuler-Kravtsov-Lerner, …)

low-energy effective field theory for Nambu-Goldstone bosons

N-G bosons             magnons

Antiferromagnets

Ordered phase       antiferromagnetic

Disordered phase        paramagnetic

3
Rn 


1 nn



  ddxnE  
2

Order parameter

Target space     O(3)/O(2)/ HG

  ZHG /
2



)()(/)2(/ NUNUNUHG 

  ZHG /
2



SNi 2 Ni   rdQE
22

tr

)2(U NQ  )1,diag(1
NN

Q 

Integer Quantum Hall effect

Diffuson

metallic

insulating

Haldane

Topological terms lead to nonperturbative effects.

Pruisken
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IQHE (and 1d Antiferromagnet)

topological sectors labeled by an integer

topological term as a phase of fermion determinant
(can be obtained from chiral anomaly)

theta angle can be tuned

2-parameter scaling

(Pruisken, 1983)

Critical point for
pleateau transition
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Nonlinear sigma model for the

N-G bosons           Diffuson & Cooperon

symplectic class

Ordered phase               metallic

Disordered phase          insulating

Target space 

,1
4

2

N
Q  ,QQ

T
 0Tr QMatrix fields 

O(2N))O(4N)/O(2N/ HG

Fendley, PRB  (2001)

2 distinct sectors in the space of field configurations
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(no top. term)
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ee


or

(with Z2 top. term)
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A single Dirac fermion with random scalar potential

    0
,

x x y y
H iv V x y               0 ,   ' 'V r V r V r g r r  

time-reversal symmetry  
*

y y
i H i H  

(fermionic) replica, disorder averaging, H-S decoupling with a matrix field,
Integrating out fermions, gradient expansion around a saddle point

Nonlinear sigma model with Z2 topological term
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Similar to the NLSM at the IQH plateau transition
gapless spectra  (no localization)

 

Ryu, Mudry, Obuse, & AF, PRL 2007

Ostrovsky, Gornyi, & Mirlin, PRL 2007
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The beta function is always positive! No localization at all

Direct numerical calculations of the beta function

Nomura, Koshino, & Ryu, PRL (2007)           Bardarson, Tworzydlo, Brouwer & Beenakker
PRL (2007)

nonrelativistic fermion
+ random pot. + SOI

Dirac fermion
+ random scalar pot.

    0
,

x x y y
H iv V x y       

g
perfect metal



)()()( xxaσxσ mVviH
zF

 

Nomura, Ryu, Koshino, Mudry, AF, PRL 100, 246806 (2008)

V

Ripples in corrugated graphene = a random vector potential

)(rσ Vvi
F

 

Including other disorder terms:

(i)  Suppressed (anti)localization effect
(ii) Exactly at the IQH plateau transition point between

2
1

xy
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Conclusions

strong Z2

insulator

(1) strong topological insulator (2) weak topological insulator

weak Z2

insulator

No localization at all!
(topological metal)

In general, there is localization-
delocalization transition 

or

2D Z2 top. insulator


