Anderson localization and delocalization in 2D electron systems with strong spin-orbit interaction

Akira Furusaki (RIKEN)

Collaborators

Christopher Mudry (Paul Scherrer Institut) Hideaki Obuse (Karlsruhe) Shinsei Ryu (Urbana-Champain)

Mikito Koshino (Tohoku) Kentaro Nomura (RIKEN)

Arvind Subramaniam (Chicago, Harvard) Ilya Gruzberg (Chicago) Andreas Ludwig (Santa Barbara)

Anderson localization

electron in random potential

P.W. Anderson (1958)

Never localized! (topological metal)

Localization-delocalization transition (in the standard symplectic class)

Outline

- Anderson localization: short review
 - Scaling theory
 - before Quantum Spin Hall Effect (QSHE)
 - QSHE (& surface of weak topological insulators)
- Anderson delocalization
 - Nonlinear sigma model with Z2 topological term
 - Surface Dirac fermions of strong topological insulators

Anderson localization

P.W. Anderson (1958)

a non-interacting electron moving in a random potential

The metal-insulator transition at $g=g_c$ is continuous.

Universality classes of disordered electron systems

• Dimensionality of space

$$d = 2$$

- Symmetry of Hamiltonian time-reversal symmetry SU(2) rotation symmetry in spin space
 - 3 standard classes (Wigner-Dyson random matrix theory)

	time reversal symmetry	spin rotation	
orthogonal	0	· O	$T^{2} = +1$
unitary	\times	$O \times X$	
symplectic	0	\times	$T^{2} = -1$

Prog. Theor. Phys. Vol. 63, No. 2, February 1980, Progress Letters

Spin-Orbit Interaction and Magnetoresistance in the Two Dimensional Random System

Shinobu HIKAMI, Anatoly I. LARKIN^{*)} and Yosuke NAGAOKA Research Institute for Fundamental Physics Kyoto University, Kyoto 606

(Received November 5, 1979)

707

Anderson transition (metal-insulator transition)

Continuous phase transition induced by disorder

localization length $\xi \to \infty$ $\xi \sim |E - E_c|^{-\nu}$

Numerical studies (finite-size scaling)

 $v \approx 2.7$ (Asada, Ohtsuki & Slevin, 2002)

d = 2

Conformal invariance has some consequence in multifractal spectra: Obuse, Subramaniam, AF, Gruzberg & Ludwig, PRL 2007

Some developments before QSHE (1)

 $N \square$ 1, $L/l \square$ 1 (Nl/L fixed)

(1-a) Nonperturbative calculculation for NLSM in Quasi 1D (thick wire limit) Zirnbauer PRL (1992); Mirlin, Muller-Groeling & Zirnbauer, Ann. Phys. (1994)

$$\left\langle g \right\rangle = \frac{1}{s} + \frac{1}{3} + \cdots, \quad s \square \quad 1 \qquad \left(\begin{array}{c} s \square & \frac{2L}{Nl} \end{array} \right)$$

weak anti-localization

 $\langle g^2 \rangle - \langle g \rangle^2$ was obtained as well

$$\langle g \rangle = \frac{1}{2} + C s^{-3/2} e^{-s/4} + \cdots, \quad s \square = 1$$

implies existence of a conducting channel (in contradiction to the scaling theory and the DMPK approach)

(1-b) exponential decay of *g* recovered by discarding zero-mode contributions (Brouwer & Frahm, PRB 1996) ³

Some developments before QSHE (2)

(2-a) (metallic) carbon nanotubes: Ando & Suzuura, JPSJ 2002
 There is a perfectly conducting channel when disorder potential is smooth.
 (scattering matrix elements between two valleys can be ignored.)

(2-b) graphene: Suzuura & Ando, PRL 2002; McCann et al., PRL 2006 weak anti-localization for smooth potential

$$\Delta \sigma_{xx} = \frac{2e^2}{\pi^2 \hbar} \ln \left(\frac{\ell_{\phi}}{\ell} \right) \,.$$

inter-valley scattering \longrightarrow weak localization (orthogonal class)

Some developments before QSHE (1)

 $N \square$ 1, $L/l \square$ 1 (Nl/L fixed)

(1-a) Nonperturbative calculculation for NLSM in Quasi 1D (thick wire limit) Zirnbauer PRL (1992); Mirlin, Muller-Groeling & Zirnbauer, Ann. Phys. (1994)

$$\left\langle g \right\rangle = \frac{1}{s} + \frac{1}{3} + \cdots, \quad s \square \quad 1 \qquad \left(\begin{array}{c} s \square & \frac{2L}{Nl} \end{array} \right)$$

weak anti-localization

 $\langle g^2 \rangle - \langle g \rangle^2$ was obtained as well

$$\langle g \rangle = \frac{1}{2} + C s^{-3/2} e^{-s/4} + \cdots, \quad s \square = 1$$

implies existence of a conducting channel (in contradiction to the scaling theory and the DMPK approach)

(1-b) exponential decay of *g* recovered by discarding zero-mode contributions (Brouwer & Frahm, PRB 1996) ³

(1-c) significance of the parity of the number N of Kramers' pairs of conducting channels (Takane, JPSJ 2004, ..)

Odd N: a perfectly conducting channel (zero mode is important) Even N: Brouwer-Frahm's result

Metallic carbon nanotubes (2 Dirac points & up, down spins)

= $4 \times$ edge states (a Kramers' pair) of 2D Z₂ topological insulator (QSHE)

Graphene (2 Dirac points & up, down spins)

= $4 \times$ surface Dirac (Weyl) fermions of 3D Z₂ topological insulator

Quantum spin Hall effect (Z₂ top. Insulator)

Kane & Mele (2005, 2006); Bernevig & Zhang (2006)

- Time-reversal invariant band insulator
- Strong spin-orbit interaction $\lambda \vec{L} \cdot \vec{S} \Rightarrow (\vec{p} \times \vec{E}) \cdot \vec{S}$
- Gapless helical edge mode (Kramers pair)

If S_z is NOT conserved, Chern # (Z) $\longrightarrow Z_2$ symplectic class

Disorder effects

(1) Integer Quantum Hall Effect

Kane-Mele model with on-site disorder

Numerical simulations

Onoda, Avishai & Nagaosa, PRL (2007)

Phase diagram

Finite-size scaling

small system size poor statistics

Network model for quantum spin Hall effect

Obuse, AF, Ryu & Mudry, PRB 76, 075301 (2007)

Chalker-Coddington network model for up-spin electrons

+

opposite chirality Chalker-Coddington network model for down-spin electrons

Coupled by general spin-dependent scattering vertices that respect time-reversal symmetry

Chalker-Coddington Network model

Chalker, Coddington (1988)

electron moving along equipotential lines

S : unitary matrix

Network model for QSHE (symplectic class)

2 coupled Chalker-Coddington networks of opposite chiralities

S matrix

= S

$$S = \begin{pmatrix} r\sigma_0 & tQ \\ -tQ^+ & r\sigma_0 \end{pmatrix} \qquad r^2 + t^2 = 1$$

spin flip
$$Q = \begin{pmatrix} e^{i\varphi_1}\cos\theta & e^{i\varphi_2}\sin\theta \\ e^{-i\varphi_2}\sin\theta & -e^{-i\varphi_1}\cos\theta \end{pmatrix}$$

Time reversal symmetry:

$$S = \begin{pmatrix} \sigma_{y} & 0 \\ 0 & \sigma_{y} \end{pmatrix} S^{T} \begin{pmatrix} \sigma_{y} & 0 \\ 0 & \sigma_{y} \end{pmatrix}$$

 $\phi_{1,2}$: random

 θ : (i) fixed (ii) random

 $r = \tanh x$: fixed

S'

S

 90° rotation

Trivial (Insulating) limit: boundary conditions

The critical exponent v is a bulk property. $\xi \approx |X - X_c|^{-v}$

Bulk properties should not depend on boundary conditions.

 v should be the same for metal-to-(trivial insulator) transition and metal-to-(Z₂ top. Insulator) transition.

Numerical simulation in quasi 1D geometry: localization length

Transfer matrix method for quasi-1d geometry y < 0

$$\Lambda = \xi_M / M = F(\chi M^{1/\nu}, \zeta M^y, \ldots)$$
 Finite-size scaling
$$M = 4, 8, 16, 32, 64$$

$$N = 5 \times 10^5 \sim 8 \times 10^6$$

$$\begin{split} \Lambda &\sim \sum_{p=0}^{\infty} \sum_{q=0}^{\infty} F_{p,q} \zeta^p \chi^q M^{py+q/\nu} \\ \Lambda' &:= \Lambda - \sum_{q=0}^2 f_{1,q}^{(\theta)} \left(x - x_c^{(\theta)} \right)^q M^{y+q/\nu} \\ &= \sum_{q=0}^3 f_{0,q}^{(\theta)} \left(x - x_c^{(\theta)} \right)^q M^{q/\nu}. \end{split}$$

Boundary conditions in the transverse direction: (a) Periodic (cylinder) (b) reflecting (strip) Numerical simulation in cylinder geometry (periodic b.c.)

Phase diagram

IQH plateau transition (unitary class)

Multifractality: scaling behavior of moments of critical wave functions

network model (Obuse, AF, Ryu & Mudry, PRB 2008)

"Hamiltonian" formalism

 $S_{tot} = \exp(-iH\Delta t)$ \longrightarrow $H = i \log S_{tot}$

Expansion around the limit of two decoupled CC network models at criticality yields

$$H_{4} = \begin{pmatrix} H_{+} & \alpha \sigma_{0} \\ \alpha \sigma_{0} & H_{-} \end{pmatrix} \qquad 4 \times 4$$

$$H_{\pm} = \sigma_{x} \left(-i\partial_{x} \pm A_{x} \right) + \sigma_{y} \left(-i\partial_{y} \pm A_{y} \right) \pm \sigma_{z} m + \sigma_{0} A_{0}$$

$$A_{x}, A_{y} \text{ random vector potential}$$

$$A_{0} \text{ random scalar potential} \qquad \text{TRS} : -i\sigma_{y} \tau_{x} H^{*} i\sigma_{y} \tau_{x} = H$$

$$m \text{ random mass}$$
Note 1. CC network model $\implies 2 \times 2$ Hamiltonian H_{+} (Ho & Chalker PRB 1996)
Note 2. surface of 3D Z_{2} top. Insulator: 2×2 Hamiltonian $H_{2} = -i\partial_{x} \sigma_{x} - i\partial_{y} \sigma_{y} + \sigma_{0} A_{0}$

Lattice Dirac fermions with on-site disorder

M

Yamakage, Nomura, Imura & Kuramoto, JPSJ 2011

Outline

- Anderson localization: short review
 - 1980s
 - before Quantum Spin Hall Effect (QSHE)
 - QSHE (& surface of weak topological insulators)
- Anderson delocalization
 - Nonlinear sigma model with Z2 topological term
 - Surface Dirac fermions of strong topological insulators

Nonlinear sigma model: (Wegner, Efetov, Altshuler-Kravtsov-Lerner, ...) low-energy effective field theory for Nambu-Goldstone bosons

$$E = \int \left(\partial \vec{n}\right)^2 dx \, d\tau + i \, 2 \, \pi S N$$

$$E = \int \operatorname{tr} \left(\partial Q\right)^2 d^2 r + i \theta N$$

	Antiferromagnets	Integer Quantum Hall effect
N-G bosons	magnons	Diffuson
Ordered phase	antiferromagneti	c metallic
Disordered phase	paramagnetic	insulating
Order parameter	$\vec{n} \in R^3$ $\vec{n} \cdot \vec{n} =$	$= 1 \qquad Q \in \mathrm{U}(2N) \qquad Q \approx \mathrm{diag}(1_{N}, -1_{N})$
Target space	G / H = O(3)/O(2)	$G / H = U (2N) / U (N) \times U (N)$
	$\pi_2(G / H) = Z$	$\pi_2(G / H) = Z$
	Haldane	Pruisken

Topological terms lead to nonperturbative effects.

IQHE (and 1d Antiferromagnet) $\pi_2(G/H) = \pi_2(U(2N)/U(N) \times U(N)) = Z$ (Pruisken, 1983)

topological sectors labeled by an integer $Ch[Q] := \frac{1}{16\pi i} \int d^2 r \epsilon_{\mu\nu} tr[Q \partial_{\mu} Q \partial_{\nu} Q] \in Z$

topological term as a phase of fermion determinant (can be obtained from chiral anomaly)

$$e^{-S_{\text{eff}}[Q]} = \int \mathcal{D}[\bar{\psi}, \psi] e^{-\int d^2 r \mathcal{L}_{\text{f}}} = \text{Det}(D[Q])$$
$$= e^{i S_{\text{top}}[Q]} |\text{Det}(D[Q])|$$

theta angle can be tuned

$$\theta = \sigma_{xy}/(e^2/h)$$

Critical point for pleateau transition

Nonlinear sigma model for the symplectic class

N-G bosons Diffuson & Cooperon metallic Ordered phase Disordered phase insulating Matrix fields $Q^2 = 1_{4N}, \quad Q^T = Q, \quad \text{Tr } Q = 0$ Target space $G / H = O(4N)/O(2N) \times O(2N)$ $\pi_{2}(G / H) = Z_{2}$ Fendley, PRB (2001) 2 distinct sectors in the space of field configurations $e^{-S_1} - e^{-S_2}$ $e^{-S_1} + e^{-S_2}$ or

(no top. term)

32

(with Z_2 top. term)

A single Dirac fermion with random scalar potential

$$H = -iv\left(\sigma_{x}\partial_{x} + \sigma_{y}\partial_{y}\right) + V\left(x, y\right)\sigma_{0} \qquad \qquad \overline{V\left(\vec{r}\right)} = 0, \quad \overline{V\left(\vec{r}\right)V\left(\vec{r}\right)} = g\delta\left(\vec{r} - \vec{r}\right)$$

time-reversal symmetry $i\sigma_y H^*(-i\sigma_y) = H$

(fermionic) replica, disorder averaging, H-S decoupling with a matrix field, Integrating out fermions, gradient expansion around a saddle point

1

Nonlinear sigma model with Z2 topological term

$$S = \frac{1}{t} \int d^2 r \operatorname{tr} \left(\partial Q \right)^2 + i\pi n \left[Q \right]$$
$$e^{i\pi n \left[Q \right]} = \pm$$

Ryu, Mudry, Obuse, & AF, PRL 2007 Ostrovsky, Gornyi, & Mirlin, PRL 2007

Similar to the NLSM at the IQH plateau transition $\theta = \pi$

gapless spectra (no localization)

$$H = -iv \left(\sigma_{x}\partial_{x} + \sigma_{y}\partial_{y}\right) + V(x, y) \sigma_{0}$$

Direct numerical calculations of the beta function $\beta(g) = \frac{d \ln g}{d \ln L}$
Nomura, Koshino, & Ryu, PRL (2007)
$$\int \frac{1}{p} \int \frac{1}{p}$$

No localization at all

perfect metal

Including other disorder terms:

$$H = -i\hbar v_F \boldsymbol{\sigma} \cdot \nabla + V(\mathbf{x}) + \boldsymbol{\sigma} \cdot \mathbf{a}(\mathbf{x}) + \boldsymbol{\sigma}_F m(\mathbf{x})$$

Ripples in corrugated graphene = a random vector potential

Nomura, Ryu, Koshino, Mudry, AF, PRL 100, 246806 (2008)

(i) Suppressed (anti)localization effect (ii) Exactly at the IQH plateau transition point between $\sigma_{xy} = \pm \frac{1}{2}^{35}$

Conclusions

No localization at all! (topological metal) (2) weak topological insulator

In general, there is localizationdelocalization transition