From the topological invariants to the characterization of the edge states

Victorgurarie

work with A. Essin

KITP, Oct 2011

Topological invariants

It is possible to go directly from topological invariants to edge states without studying Hamiltonians, Schrödinger equation or responses.

 $N_{d} = N_{d-2}(\Lambda) - N_{d-2}(-\Lambda)$ Bulk invariant
in d dimensions
Edge invariant

G. Volovik, 1980s; VG, A. Essin, PRB 2011

1. Bulk invariant N_d

 Bulk invariant N_d
 d-1 dimensional edge with d-1 momenta

- 1. Bulk invariant Nd
- 2. d-1 dimensional edge with d-1 momenta
- 3. Edge is **not** an insulator

- 1. Bulk invariant Nd
- 2. d-1 dimensional edge with d-1 momenta
- 3. Edge is **not** an insulator
- 4. Fix $p_{d-1} = \Lambda$ some large number
- 5. Now the edge is an d-2 dim insulator

- 1. Bulk invariant Nd
- 2. d-1 dimensional edge with d-1 momenta
- 3. Edge is **not** an insulator
- 4. Fix $p_{d-1} = \Lambda$ some large number
- 5. Now the edge is an d-2 dim insulator
- 6. Calculate its invariant $N_{d-2}(\Lambda)$

- 1. Bulk invariant Nd
- 2. d-1 dimensional edge with d-1 momenta
- 3. Edge is **not** an insulator
- 4. Fix $p_{d-1} = \Lambda$ some large number
- 5. Now the edge is an d-2 dim insulator
- 6. Calculate its invariant $N_{d-2}(\Lambda)$
- 7. Claim: $N_d = N_{d-2}(\Lambda) N_{d-2}(-\Lambda)$

Example: an edge of a 4D All insulator

This edge is taken as

$$H = v \sum_{i=x,y,z} \sigma_i p_i - \mu$$

because it is

1. linear in momenta 2. time-reversal invariant $H(p) = \sigma_y H^*(-p)\sigma_y$

But does it have the right edge invariant?

Example: an edge of a 4D All insulator

This edge is taken as

$$H = v \sum_{i=x,y,z} \sigma_i p_i - \mu$$

because it is

1. linear in momenta 2. time-reversal invariant $H(p) = \sigma_y H^*(-p)\sigma_y$

But does it have the right edge invariant?

Fix $p_z = +\Lambda$ or $p_z = -\Lambda$

 $H = v\sigma_x p_x + v\sigma_y p_y \pm v\Lambda\sigma_z - \mu$ Effectively 2D.

 $N_2(\Lambda) - N_2(-\Lambda) = 1$ Well known relation. LFSG, 1994 Yes, it is an edge.

+

Plan

$N_d = N_{d-2}(\Lambda) - N_{d-2}(-\Lambda)$

1. Derive this result

2. Use this result to study something useful

Topological invariant for even dimensions type $\mathbb Z$

Matsubara Green's function

 $G_{ab}(\omega,\mathbf{p})$

Topological invariant for even dimensions type \mathbb{Z}

Matsubara Green's function

$$G_{ab}(\omega,\mathbf{p})$$

topological invariant

known numerical coefficient, not particularly relevant

 $N_d = C_d \epsilon_{\alpha_0 \dots \alpha_d} \operatorname{tr} \int d\omega d^d p \, G^{-1} \partial_{\alpha_0} G \dots G^{-1} \partial_{\alpha_d} G$ Summation over each $\alpha = \omega, p_1, \ldots, p_d$ is implied

Topological invariant for even dimensions type \mathbb{Z}

Matsubara Green's function

$$G_{ab}(\omega,\mathbf{p})$$

topological invariant

known numerical coefficient, not particularly relevant

If d=2 this coincides with the TKNN invariant. Niu, Thouless, Wu (1985)

Domain walls N_R N_L S No translational invariance in the "s" direction Domain wall (edge)

1. Mixed Green's function $G_{ab}(\omega; p_1 \dots p_{d-1}; s, s')$

2. Wigner transformed Green's function

$$G_{ab}(\omega; p_1 \dots p_d; s) = \int dr \, e^{ip_d r} \, G_{ab}(\omega; p_1 \dots p_{d-1}; s + \frac{r}{2}, s - \frac{r}{2})$$

Domain walls N_R N_L No translational invariance in the "s" direction Domain wall (edge)

- 1. Mixed Green's function $G_{ab}(\omega; p_1 \dots p_{d-1}; s, s')$
- 2. Wigner transformed Green's function

$$G_{ab}(\omega; p_1 \dots p_d; s) = \int dr \, e^{ip_d r} \, G_{ab}(\omega; p_1 \dots p_{d-1}; s + \frac{r}{2}, s - \frac{r}{2})$$
3. Inverse Green's function K

 $ds' K_{ab}(\omega; p_1 \dots p_{d-1}; s, s') G_{bc}(\omega; p_1 \dots p_{d-1}; s', s'') = \delta_{ac} \delta(s - s'')$

Domain walls N_R N_L No translational invariance in the "s" direction Domain wall (edge)

- 1. Mixed Green's function $G_{ab}(\omega; p_1 \dots p_{d-1}; s, s')$
- 2. Wigner transformed Green's function

$$G_{ab}(\omega; p_1 \dots p_d; s) = \int dr \, e^{ip_d r} \, G_{ab}(\omega; p_1 \dots p_{d-1}; s + \frac{r}{2}, s - \frac{r}{2})$$

3. Inverse Green's function K

4. Local inverse $G_{ab}^{-1}(\omega; p_1 \dots p_d; s) G_{bc}(\omega; p_1 \dots p_d; s) = \delta_{ac}$

Domain walls Local invariant, defined with Wigner Green's functions and Wigner inverse $N_d = C_d \,\epsilon_{\alpha_0 \dots \alpha_d} \operatorname{tr} \, \int d\omega d^d p \, G^{-1} \partial_{\alpha_0} G \dots G^{-1} \partial_{\alpha_d} G$ N_R N_L No translational invariance in the "s" direction Domain wall (edge) 1. Mixed Green's function $G_{ab}(\omega; p_1 \dots p_{d-1}; s, s')$

2. Wigner transformed Green's function

$$G_{ab}(\omega; p_1 \dots p_d; s) = \int dr \, e^{ip_d r} \, G_{ab}(\omega; p_1 \dots p_{d-1}; s + \frac{r}{2}, s - \frac{r}{2})$$

3. Inverse Green's function K

4. Local inverse $G_{ab}^{-1}(\omega; p_1 \dots p_d; s) G_{bc}(\omega; p_1 \dots p_d; s) = \delta_{ac}$

Topological invariant as a flux

 $\omega; p_1 \dots p_d; s$ d+2 dimensional space

$$n_{\alpha_0} = C_d \,\epsilon_{\alpha_0 \dots \alpha_{d+1}} \operatorname{tr} G^{-1} \partial_{\alpha_1} G \dots G^{-1} \partial_{\alpha_{d+1}} G$$

 $\partial_{\alpha}n_{\alpha} = 0$ divergentless d+2 dimensional vector

$$N(s) = \int d\omega d^d p \, n_s$$

Topological invariant as a flux

 $\omega; p_1 \dots p_d; s$ d+2 dimensional space

$$n_{\alpha_0} = C_d \epsilon_{\alpha_0 \dots \alpha_{d+1}} \operatorname{tr} G^{-1} \partial_{\alpha_1} G \dots G^{-1} \partial_{\alpha_{d+1}} G$$

 $\partial_{\alpha}n_{\alpha} = 0$ divergentless d+2 dimensional vector

$$N_R - N_L = \int d\omega \, d^d p \, ds \, \partial_\alpha n_\alpha$$

Topological invariant as a flux

 $\omega; p_1 \dots p_d; s$ d+2 dimensional space

$$n_{\alpha_0} = C_d \,\epsilon_{\alpha_0 \dots \alpha_{d+1}} \operatorname{tr} G^{-1} \partial_{\alpha_1} G \dots G^{-1} \partial_{\alpha_{d+1}} G$$

 $\partial_{\alpha}n_{\alpha} = 0$ divergentless d+2 dimensional vector

 $\omega; p_1 \dots p_{d-1}$ d-1 dimensional space spanning the edge

$$r_{\alpha_{0}} = C_{d-2} \epsilon_{\alpha_{0}...\alpha_{d-1}} \operatorname{Tr} \left[K \partial_{\alpha_{1}} G \dots K \partial_{\alpha_{d-1}} G \right]$$

mixed Green's functions
$$G_{ab} \left(\omega; p_{1} \dots p_{d-1}; s, s' \right)$$

$$\operatorname{Tr} AB = \sum_{ab} \int ds ds' A_{ab}(\omega; p_{1} \dots p_{d-1}; s, s') B_{ba}(\omega; p_{1} \dots p_{d-1}; s', s)$$

 $\omega; p_1 \dots p_{d-1}$ d-1 dimensional space spanning the edge

$$\begin{aligned} r_{\alpha_0} &= C_{d-2} \, \epsilon_{\alpha_0 \dots \alpha_{d-1}} \mathrm{Tr} \, \left[K \, \partial_{\alpha_1} G \dots K \, \partial_{\alpha_{d-1}} G \right] \\ & \text{mixed Green's functions} \\ G_{ab} \, (\omega; p_1 \dots p_{d-1}; s, s') \\ \mathrm{Tr} \, AB &= \sum_{ab} \int ds ds' \, A_{ab}(\omega; p_1 \dots p_{d-1}; s, s') B_{ba}(\omega; p_1 \dots p_{d-1}; s', s) \\ \partial_{\alpha} r_{\alpha} &= 0 \quad \text{divergentless } d \text{ dimensional vector} \end{aligned}$$

 $\omega; p_1 \dots p_{d-1}$ d-1 dimensional space spanning the edge

$$r_{\alpha_0} = C_{d-2} \epsilon_{\alpha_0 \dots \alpha_{d-1}} \operatorname{Tr} \left[K \partial_{\alpha_1} G \dots K \partial_{\alpha_{d-1}} G \right]$$

mixed Green's functions
$$G_{ab} \left(\omega; p_1 \dots p_{d-1}; s, s' \right)$$

$$\operatorname{Tr} AB = \sum_{ab} \int ds ds' A_{ab}(\omega; p_1 \dots p_{d-1}; s, s') B_{ba}(\omega; p_1 \dots p_{d-1}; s', s)$$

$$\partial_{\alpha} r_{\alpha} = 0 \quad \text{divergentless } d \text{ dimensional vector}$$

Gradient expansion shows $\int d\mathbf{S}^{d+1} \cdot \mathbf{n} = \int d\mathbf{S}^{d-1} \cdot \mathbf{r}$

 $\omega; p_1 \dots p_{d-1}$ d-1 dimensional space spanning the edge

$$r_{\alpha_{0}} = C_{d-2} \epsilon_{\alpha_{0}...\alpha_{d-1}} \operatorname{Tr} \left[K \partial_{\alpha_{1}} G \dots K \partial_{\alpha_{d-1}} G \right]$$

mixed Green's functions
$$G_{ab} \left(\omega; p_{1} \dots p_{d-1}; s, s' \right)$$

$$\operatorname{Tr} AB = \sum_{ab} \int ds ds' A_{ab} (\omega; p_{1} \dots p_{d-1}; s, s') B_{ba} (\omega; p_{1} \dots p_{d-1}; s', s)$$

 $\partial_{\alpha}r_{\alpha} = 0$ divergentless *d* dimensional vector

 $\omega; p_1 \dots p_{d-1}$ d-1 dimensional space spanning the edge

 $\omega; p_1 \dots p_{d-1}$ d-1 dimensional space spanning the edge

$$r_{\alpha_{0}} = C_{d-2} \epsilon_{\alpha_{0}...\alpha_{d-1}} \operatorname{Tr} \left[K \partial_{\alpha_{1}} G \dots K \partial_{\alpha_{d-1}} G \right]$$

mixed Green's functions

$$G_{ab} (\omega; p_{1} \dots p_{d-1}; s, s')$$

$$Tr AB = \sum_{ab} \int ds ds' A_{ab} (\omega; p_{1} \dots p_{d-1}; s, s') B_{ba} (\omega; p_{1} \dots p_{d-1}; s', s)$$

$$\partial_{\alpha} r_{\alpha} = 0 \quad \text{divergentless } d \text{ dimensional vector}$$

$$N_{d-2}(p_{d-1}) = C_{d-2} \epsilon_{\alpha_{0}...\alpha_{d-2}} \int d\omega d^{d-2} p K \partial_{\alpha_{0}} G \dots K \partial_{\alpha_{d-2}} G \qquad \Lambda$$

$$\int d\mathbf{S}^{d-1} \cdot \mathbf{r} = N_{d-2}|_{p_{d-1}=\Lambda} - N_{d-2}|_{p_{d-1}=-\Lambda} \qquad \omega; p_{1} \dots p_{d-2}$$

$$N_{d} = N_{d-2}(\Lambda) - N_{d-2}(-\Lambda)$$

Application 1: IQHE

$$N_2 = \sigma_{xy} = 1$$

$$p$$

$$N_0(\Lambda) - N_0(-\Lambda) = 1$$

Application 1: IQHE

$$N_2 = \sigma_{xy} = 1$$

$$p$$

$$N_0(\Lambda) - N_0(-\Lambda) = 1$$

$$N_0(p) = \int \frac{d\omega}{2\pi i} K \partial_\omega G = \frac{1}{2} \sum_n \operatorname{sign} \epsilon_n(p) \qquad G = \frac{1}{i\omega - \epsilon_n(p)}$$

Application 1: IQHE

$$N_2 = \sigma_{xy} = 1$$

$$P$$

$$-\Lambda$$

$$P$$

$$P$$

$$N_0(\Lambda) - N_0(-\Lambda) = 1$$

$$N_0(p) = \int \frac{d\omega}{2\pi i} K \partial_\omega G = \frac{1}{2} \sum_n \operatorname{sign} \epsilon_n(p) \qquad G = \frac{1}{i\omega - \epsilon_n(p)}$$

There has to be a level such that $\epsilon_m(\Lambda) > 0$, $\epsilon_m(-\Lambda) < 0$ This is the edge state!

 $\uparrow \epsilon$

Application 2: disorder

Old idea of Thouless, Wu, Niu: impose phases across the system

$$heta_x \qquad G_{ij}(\omega, \theta_x, \theta_y \dots)$$

 $N_d = C_d \epsilon_{\alpha_0 \dots \alpha_d} \operatorname{tr} \int d\omega d^d \theta \, G^{-1} \partial_{\alpha_0} G \dots G^{-1} \partial_{\alpha_d} G$
Summation over each $\alpha = \omega, \theta_1, \dots, \theta_d$ is implied

П

Application 2: disorder

Old idea of Thouless, Wu, Niu: impose phases across the system

$$heta_x \qquad G_{ij}(\omega, \theta_x, \theta_y \dots)$$

 $N_d = C_d \epsilon_{\alpha_0 \dots \alpha_d} \operatorname{tr} \int d\omega d^d \theta \, G^{-1} \partial_{\alpha_0} G \dots G^{-1} \partial_{\alpha_d} G$
Summation over each $\alpha = \omega, \theta_1, \dots, \theta_d$ is implied

This edge level must be delocalized

 $N_0(\Lambda) - N_0(-\Lambda) = 1$

Application 2: disorder

Old idea of Thouless, Wu, Niu: impose phases across the system

 θ_x

Ш

 $G_{ij}(\omega,\theta_x,\theta_y\dots)$

Application 3: 1D insulators

Need chiral symmetry: $G_{ij}(\omega) = -\sum \Sigma_{ik} G_{kl}(-\omega) \Sigma_{lj}$

kl

Application 3: 1D insulators

Need chiral symmetry: $G_{ij}(\omega) = -\sum_{kl} \Sigma_{ik} G_{kl}(-\omega) \Sigma_{lj}$

Often realized as hopping on a bipartite lattice

$$\sum_{ij} = (-1)^{i} \delta_{ij}$$

$$\sum_{ij} = (-1)^{i} \delta_{ij}$$

$$\int_{t^*} \hat{H} = \sum_{i} \left[t \hat{a}_{i+1}^{\dagger} \hat{a}_{i} + t^* \hat{a}_{i}^{\dagger} \hat{a}_{i+1} \right]$$

Topological invariant:

$$N_1 = \operatorname{tr} \left. \int \frac{dp}{4\pi i} \Sigma G^{-1} \partial_p G \right|_{\omega=0}$$

Application 3: 1D insulators

Need chiral symmetry: $G_{ij}(\omega) = -\sum_{kl} \Sigma_{ik} G_{kl}(-\omega) \Sigma_{lj}$

Often realized as hopping on a bipartite lattice

$$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

Topological invariant: $N_1 = \operatorname{tr} \left. \int \frac{dp}{4\pi i} \Sigma G^{-1} \partial_p G \right|_{\omega=0}$

 $N_1 = N_{-1}(\Lambda) - N_{-1}(-\Lambda)? = #$ zero energy states at the boundary

$$\hat{H} = \sum_{i} \left[\left(t + (-1)^{i} \delta t \right) \hat{a}_{i+1}^{\dagger} \hat{a}_{i} + \left(t + (-1)^{i} \delta t \right) \hat{a}_{i}^{\dagger} \hat{a}_{i+1} \right] \qquad N_{1} = \theta(\delta t)$$

Application 3: 1D interacting insulators

More generally, need a "particle-hole" symmetry:

Example: particles hopping on a bipartite lattice with Hubbard interactions

$$G_{ij}(\omega) = -\sum_{kl} \sum_{ik} G_{kl}(-\omega) \sum_{lj}$$
$$N_1 = \operatorname{tr} \left. \int \frac{dp}{4\pi i} \sum_{j} G^{-1} \partial_p G \right|_{\omega} =$$

$$G_{ij}|_{\omega=0} \psi_j = 0.$$

this is a zero

 $\hat{\Sigma}^{\dagger} a_i^{\dagger} \hat{\Sigma} = \Sigma_{ij} a_j$

 $\hat{\Sigma}^{\dagger}\hat{H}\hat{\Sigma} = \hat{H}^*$

no interactions $G = \left[i\omega - H\right]^{-1}$ no zeros

Spin 1/2 fermion hopping on a 1D lattice with a large Hubbard repulsion **U**, <u>one</u> fermion per site

Where are the edge states?

S. Manmana, A. Essin, VG, work in progress

Spin 1/2 fermion hopping on a 1D lattice with a large Hubbard repulsion **U**, <u>one</u> fermion per site

Where are the edge states?

S. Manmana, A. Essin, VG, work in progress

Spin 1/2 fermion hopping on a 1D lattice with a large Hubbard repulsion **U**, <u>one</u> fermion per site

Where are the edge states?

S. Manmana, A. Essin, VG, work in progress

Spin 1/2 fermion hopping on a 1D lattice with a large Hubbard repulsion **U**, <u>one</u> fermion per site

Where are the edge states?

S. Manmana, A. Essin, VG, work in progress

Spin 1/2 fermion hopping on a 1D lattice with a large Hubbard repulsion **U**, <u>one</u> fermion per site

Where are the edge states?

S. Manmana, A. Essin, VG, work in progress

Spin 1/2 fermion hopping on a 1D lattice with a large Hubbard repulsion **U**, <u>one</u> fermion per site

Where are the edge states?

S. Manmana, A. Essin, VG, work in progress

Spin 1/2 fermion hopping on a 1D lattice with a large Hubbard repulsion **U**, <u>one</u> fermion per site

Where are the edge states?

S. Manmana, A. Essin, VG, work in progress

Zeros at the edge $G_{ij}(0)\psi_j = 0$

Spin 1/2 fermion hopping on a 1D lattice with a large Hubbard repulsion **U**, <u>one</u> fermion per site

edge states?

S. Manmana, A. Essin, VG, work in progress

Haldane chain

Application 4: FQHE at simple fractions

Edge Green's function

$$N_2 \neq \sigma_{xy} = \frac{1}{2k+1}$$

$$P \qquad \begin{array}{c} \text{Edge Green's function} \\ G = \frac{(i\omega + vp)^{2k}}{i\omega - vp} \\ \text{X.G. Wen, 1989} \end{array}$$

$$N_0(p) = \int \frac{d\omega}{2\pi i} K \partial_\omega G = \frac{1}{2} \sum_n \left[\operatorname{sign} \epsilon_n(p) - \operatorname{sign} r_n(p) \right]$$
poles zeros

$$N_0(\Lambda) - N_0(-\Lambda) = 2k + 1 = N_2$$

From Thouless' to Wen's topological order?

Application 5: topological insulators (class All)

 \mathbb{Z}_2 structure has to be studied by dimensional reduction $G(\omega, p_1, p_2) \rightarrow G(\omega, p_1, p_2, q_1, q_2)$ unphysical momenta $G(\omega, \mathbf{p}, \mathbf{q}) = \sigma_y G^T(\omega, -\mathbf{p}, -\mathbf{q})\sigma_y$ TR invariance

Application 6: Fractional topological insulators

Edge Green's functions

1. Two FQHE with opposite chirality

$$G(\omega, p) = \begin{pmatrix} \frac{(i\omega + vp)^{2k}}{i\omega - vp} & 0\\ 0 & \frac{(i\omega - vp)^{2k}}{i\omega + vp} \end{pmatrix}$$

2. Add *q*-dependence

$$G = \begin{pmatrix} \frac{i\omega+p}{\omega^2+p^2+q^2} \left(\frac{(i\omega+p)^2}{\omega^2+\Lambda^2}\right)^n & \frac{q_x+iq_y}{\omega^2+p^2+q^2} \\ \frac{q_x-iq_y}{\omega^2+p^2+q^2} & \frac{i\omega-p}{\omega^2+p^2+q^2} \left(\frac{(i\omega-p)^2}{\omega^2+\Lambda^2}\right)^n \end{pmatrix}$$

3. Calculate $N_4 = N_2|_{p=\Lambda} - N_2|_{p=-\Lambda} = 2k+1$

4. Topologically protected since $N_4 = \text{odd}$

Conclusions

Bulk-edge correspondence is an interesting tool.

