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Symmetry Classification
Wigner ’51, Dyson ’62, Altland and Zirnbauer ’97, Schnyder et al ’08

Always present: diffuson
R

A

Time-reversal symmetry (T):

H = UHT U�1; T 2 = UU� = �1 Cooperon
R

A

Chiral symmetry (C):

H = �UHU�1 RR diffuson
R

R

Particle-hole symmetry (CT):

H = �UHT U�1; CT 2 = UU� = �1 RR Cooperon
R

R
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Symmetry Classification
Wigner ’51, Dyson ’62, Altland and Zirnbauer ’97, Schnyder et al ’08

T 2 C CT 2 NL�M �1 �2 �3 WL
A 0 0 0 U(2N)=U(N)� U(N) 0 Z 0 0(-)

AI 1 0 0 Sp(2N)=Sp(N)� Sp(N) 0 0 0 -

AII -1 0 0 O(2N)=O(N)� O(N) Z2 Z2 0 +

AIII 0 1 0 U(N) Z 0 Z �0

BDI 1 1 1 U(2N)=Sp(2N) Z 0 0 �0

CII -1 1 -1 U(N)=O(N) Z Z2 Z2 �0

D 0 0 1 O(2N)=U(N) 0 Z 0 +

C 0 0 -1 Sp(2N)=U(N) 0 Z Z2 -

DIII -1 1 1 O(N) Z2 0 Z +

CI 1 1 -1 Sp(2N) 0 0 Z -
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Classification: Bott periodicity
Kitaev ’08, Schnyder et al ’08

T 2 C CT 2 NL�M �1 �2 �3 �4

A 0 0 0 U(2N)=U(N)� U(N) 0 Z 0 Z

AIII 0 1 0 U(N) Z 0 Z 0

AI 1 0 0 Sp(2N)=Sp(N)� Sp(N) 0 0 0 Z

BDI 1 1 1 U(2N)=Sp(2N) Z 0 0 0

D 0 0 1 O(2N)=U(N) 0 Z 0 0

DIII -1 1 1 O(N) Z2 0 Z 0

AII -1 0 0 O(2N)=O(N)� O(N) Z2 Z2 0 Z

CII -1 1 -1 U(N)=O(N) Z Z2 Z2 0

C 0 0 -1 Sp(2N)=U(N) 0 Z Z2 Z2

CI 1 1 -1 Sp(2N) 0 0 Z Z2
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Classification of topological insulators
Kitaev ’08, Schnyder et al ’08

Z topology
Let �d = Z (as in QHE at d = 2)

=) topological term may appear in d dimensions
=) (d � 1)-dimensional surface states delocalized

=) d-dimensional Z topological insulator

Z2 topology
Let �d = Z2 (as on the d = 2 surface of 3D BiSb)

=) topological term with � = �

=) absence of localization (as in graphene with potential disorder)
=) (d + 1)-dimentional Z2 topological insulator
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Classification of topological insulators
Kitaev ’08, Schnyder et al ’08

T 2 C CT 2 1D 2D 3D 4D
A 0 0 0 0 Z 0 Z

AIII 0 1 0 Z 0 Z 0

AI 1 0 0 0 0 0 Z

BDI 1 1 1 Z 0 0 0

D 0 0 1 Z2 Z 0 0

DIII -1 1 1 Z2 Z2 Z 0

AII -1 0 0 0 Z2 Z2 Z

CII -1 1 -1 Z 0 Z2 Z2

C 0 0 -1 0 Z 0 Z2

CI 1 1 -1 0 0 Z 0
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Graphene

  

Chiral structure: two sublattices: A, B

Two valleys of the spectrum: K, K0

linear dispersion: " = v0jpj

Massless Dirac Hamiltonian in each valley: H = v0σp, σ = f�x ; �yg

Vacancies preserve chiral symmetry (class BDI)
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Generating function

Matrix Green function [Nazarov ’94]

Ǧ =

 
� + i0� H ��(x)vx sin �

2
��(x � L)vx sin �

2 �� i0� H

!�1

Generating function (free energy): F(�) = Tr log Ǧ�1(�)

=) Conductance: G = �
2e2

h
@2F

@�2

�����
�=0

=) Fano factor: F =
1
3
�

2
3

@4F=@�4

@2F=@�2

�����
�=0

Clean graphene

F0(�) = �
W�2

�L
, G =

4e2

�h
W
L

, F =
1
3

Introduction From ballistics to diffusion From diffusion to localization Summary

Pavel Ostrovsky – Localization in disordered systems with chiral symmetry 28 October 2011 11/27



On-site potential

From lattice to Dirac: Ψi = hui jΦ(r)i
jΦ(r)i – smooth envelope function (Dirac Hamiltonian)

Bloch function hui j =

8<
:

(ei�+=2; 0; 0; e�i�+=2); ri 2 A;

(0; iei�
�

=2; ie�i�
�

=2; 0); ri 2 B:

On-site potential in the Dirac language: juiiVihui j
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Phases �� depend on sublattice and
“color” of the site:
�� = �� + 2K � ri = �� + 2�ic=3

Color index: c = 0;�1
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Unfolded representation

Generating function

F(�) = F0 + Tr log(1� Ǧ0V ) with V =
P

m jumiV (rm)humj

Unfolding: F(�) = F0 + log det
�
�nm � VnhunjǦ0(rn; rm)jumi

�
Vacancies Vn !1: F(�) = F0 + log dethunjǦ0(rn; rm)jumi

Conductance

G =
4e2

�h

�
W
L

+ �Tr[K ;Y ](K + K T )�1[K T ;Y ](K + K T )�1
�

Kmn =
e

i
2 (�m��n)

sin �
2L

�
�mxm + �nxn + i(ym � yn)

� , Y = L�1 diagfyng

�i = �1 and �i are sublattice and color of i th vacancy

Inversion of an N � N matrix =) extremely efficient numerics!
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Vacancies: numerics

HaL
∆ = 1

∆ = 1�3

∆ = 1�4

∆ = 1�5

∆ = 1�7

∆ = 1�9
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Single color, armchair boundary (� = 0)

Sublattice imbalance � = (nA � nB)=n

Unstable fixed point for � = 0 (conductivity saturates at � � 2e2=h)

Stable fixed point for nB 6= nA with � �
4e2

�h
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Vacancies: scaling

ln ∆

ln
n
Ξ2

HbL

HL�ΞL
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@4
e
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h
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Crossover curves collapse in units of L=�

Power law scaling n�2 � �0:72

Novel strong-coupling criticality in class BDI beyond sigma model
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From metal to insulator

Gradually remove sites from graphene
Metal-insulator transition expected!
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Numerics: Chiral Network Models
Bocquet and Chalker ’03

Chiral unitary (AIII) network model

Both critical (Gade) and localized phase observed
Similar results for dimerized lattice model [Motrunich et al ’02]
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Localization from metallic perspective
Gade and Wegner ’91, Gade ’93

2D nonlinear sigma model for a chiral system

S [Q] =

Z
d2x

�
�

8�
tr
h
rQ�1rQ

i
�

c
8�

h
trQ�1rQ

i2
�

Matrix field

Q 2

8>><
>>:

U(N); unitary (AIII);

U(N)=Sp(N); orthogonal (BDI);

U(N)=O(N); symplectic (CII):

Replica limit N ! 0 is assumed

� – conductivity per square
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Localization from metallic perspective
Gade and Wegner ’91, Gade ’93

Rewrite Q = ei�U (det U = 1)

S [U; �] =

Z
d2x

�
�

8�
tr
h
rU�1rU

i
+ N

�
� + Nc

8�

�
(r�)2

�

Decoupled Gaussian theory in �:

d
d lnL

(� + Nc) = 0

Replica limit

d�
d lnL

= �N
dc

d lnL
N!0
! 0

Absence of localization to all orders in perturbation theory!
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Status quo

Apparent controversy
Strong disorder induces localization in a chiral system
(intuition + numerics)

No traces of localization in the perturbation theory in the metallic limit
(Gade and Wegner)

How to resolve?

Take into account non-perturbative effects
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Bypass Gade and Wegner argument

Loophole to escape Gade and Wegner argument:
det Q = ei� 2 U(1) ' S

1

) vortex excitations allowed!

Recalls Berezinskii-Kosterlitz-Thouless transition!
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BKT Transition
Berezinskii ’70, Kosterlitz and Thouless ’73

Continuum limit of xy-model: S[�] =
J
2

Z
d2x (r�)2

Vortex excitations with core energy Score

Large J (low temperature):
=) vortices strongly bound in tiny dipoles

=) ordered phase (quasi long-range order)
Small J (high temperature):

=) vortex plasma, disordered phase
Renormalization group (fugacity y = L2e�Score)

dJ
d ln L

= �y2J2

dy
d ln L

= (2� �J) y
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BKT Transition
Berezinskii ’70, Kosterlitz and Thouless ’73

2 - ΠJ

y

RG-flow in the vicinity of the critical “end” point.
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RG: background field formalism
Polyakov ’75, Pruisken ’87

Bare action

S0[Q] =

Z
d2x

�
�0

8�
tr
h
rQ�1rQ

i
�

c0

8�

h
trQ�1rQ

i2
�

Separate fast and slow variables Q = U�1Q̃V
Q̃ – fast; U, V – slow

Integrate out fast variables

Sigma-model action for slow Q0 = U�1V with corrected constants
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Renormalization group

Expand the fast field Q̃ near 1
=) One-loop perturbative RG:

d�
d ln L

= 0;
dc

d ln L
= 1

Exact in AIII class [Guruswamy et al ’00]

Include one vortex-antivortex dipole in Q̃
(lowest order in fugacity y = L2e�Score)

d�
d ln L

= ��y2;

dc
d ln L

= 1� (� + 2c)y2;

dy
d ln L

=

�
2�

� + c
4

�
y
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Flow diagram

In terms of stiffness parameter K = (� + c)=4

d�
d ln L

= ��y2;
dK

d ln L
=

1
4
� 2Ky2;

dy
d ln L

= (2� K ) y

1.0 1.5 2.0 2.5 3.0
0.0

0.1

0.2

0.3

0.4

0.5

K

y

Fixed points:

metal (Gade)

critical

insulator

No minimal metallic
conductivity
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Vortices vs. topology

Chiral symplectic class CII admits Z2 �-term
) Vortices attract instantons
) Vortex-instanton fusion changes Score 7! Score + i�
) Internal Z2 degree of freedom in each vortex

Chiral unitary class AIII admits Wess-Zumino term
) Vortices break global gauge symmetry
) Internal “Goldstone” degree of freedom in each vortex
) Random ImScore

Presence of topological terms in sigma-model action
prevents the theory from vortices!
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Summary

Ballistics, Diffusion
1 Efficient approach to studying transport in strongly disordered

systems is developed
2 The theory is applied to graphene with vacancies
3 Various novel strong-coupling critical regimes are identified

Diffusion, Localization
1 Renormalization of sigma model due to vortices
2 Non-perturbative weak localization correction in chiral systems
3 Topological prevention of vortex-induced localization

PRL 105, 266803 (2010); PRL 106, 166806 (2011); in preparation
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