

Non-Abelian topological orders in superconducting states

ISSP, The University of Tokyo,
Masatoshi Sato

In collaboration with

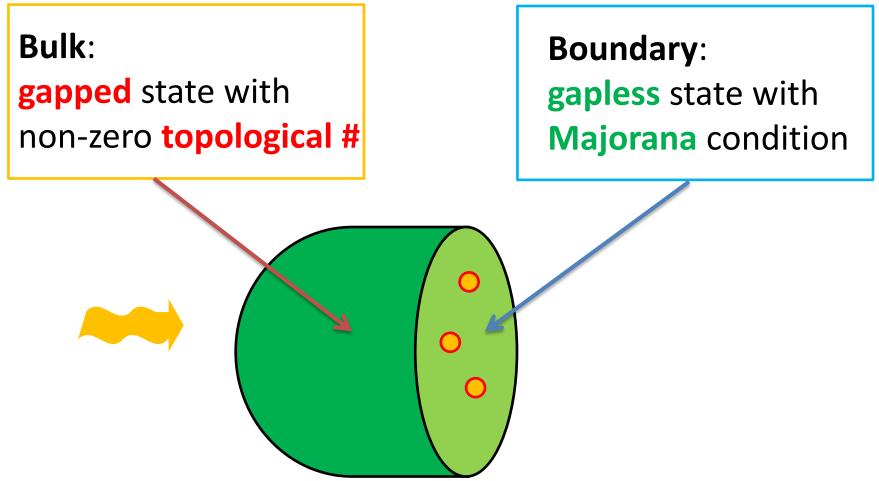
- Satoshi Fujimoto (Kyoto University)
- Yoshiro Takahashi (Kyoto University)
- Yukio Tanaka (Nagoya University)
- Keiji Yada (Nagoya University)
- Akihiro Ii (Nagoya University)
- Ai Yamakage (Nagoya University)
- Takehito Yokoyama (Tokyo Institute for Technology)
- Satoshi Sasaki (Osaka Univerisy)
- M. Kriener (Osaka University)
- Kouji Segawa (Osaka University)
- Yoichi Ando (Osaka University)

Outline

- 1. Non-Abelian anyons in topological superconductors
 - chiral p-wave superconductor
 - non-Abelian anyon in s-wave SC
- 2. Gapless Topological Superconductors

What is topological superconductor?

Topological superconductors



The gapless boundary state = Majorana fermion

Majorana Fermion

Dirac fermion with Majorana condition

1. Dirac Hamiltonian

$$\mathcal{H}(\mathbf{k}) = \boldsymbol{\sigma} \cdot \mathbf{k}$$
, or $\mathcal{H}(k_x) = ck_x$

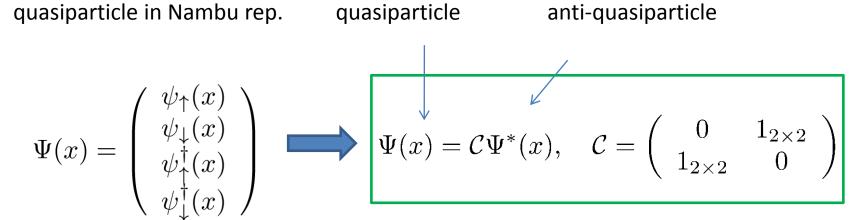
2. Majorana condition

$$\Psi = C \Psi^* \mbox{ particle = antiparticle}$$

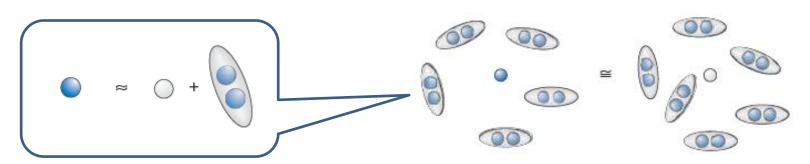
For the gapless boundary states, their Hamiltonians are naturally given by the Dirac Hamiltonians

How about the Majorana condition?

The Majorana condition is imposed by superconductivity



Majorana condition



different bulk topological # = different Majorana fermions

2+1D time-reversal breaking SC	2+1D time-reversal invariant SC	3+1D time-reversal invariant SC
1 st Chern # (TKNN82, Kohmoto85)	Z ₂ number (Kane-Mele 06, Qi et al (08))	3D winding # (Schnyder et al (08))
1+1D chiral edge mode	1+1D helical edge mode	2+1D helical surface fermion
Sr ₂ RuO ₄	Noncentosymmetric SC (MS-Fujimto(09))	³ He B

A representative example of topological SC:

Chiral p-wave SC in 2+1 dimensions

[Read-Green (00)]

BdG Hamiltonian

spinless chiral p-wave SC

$$\mathcal{H} = \sum_{\mathbf{k}} \epsilon(\mathbf{k}) c_{\mathbf{k}}^{\dagger} c_{\mathbf{k}} + \frac{1}{2} \sum_{\mathbf{k}} \left[\Delta(\mathbf{k}) c_{\mathbf{k}}^{\dagger} c_{-\mathbf{k}}^{\dagger} + \text{h.c.} \right]$$
$$= \frac{1}{2} \sum_{\mathbf{k}} \left(c_{\mathbf{k}}^{\dagger}, c_{-\mathbf{k}} \right) \mathcal{H}(\mathbf{k}) \left(\begin{array}{c} c_{\mathbf{k}} \\ c_{-\mathbf{k}}^{\dagger} \end{array} \right) + \text{const.}$$

with

$$\mathcal{H}(k) = \left(egin{array}{ccc} \epsilon(k) & \Delta(k) \ \Delta(k)^* & -\epsilon(k) \end{array}
ight)$$

$$\epsilon(\mathbf{k}) = -2t_x \cos k_x - 2t_y \cos k_y - \mu$$

$$\Delta(\mathbf{k}) = d(\sin k_x + i \sin k_y)$$

$$\sim d(k_x + i k_y)$$

chiral p-wave

Topological number = 1st Chern number

TKNN (82), Kohmoto(85)

$$A_i(\mathbf{k}) = i \sum_{a \in \text{filled}} \langle u_a(\mathbf{k}) | \frac{\partial}{\partial k_i} | u_a(\mathbf{k}) \rangle$$

$$\nu_{\text{Ch}} = \frac{1}{2\pi} \int d^2k [\partial_{k_x} A_y(\mathbf{k}) - \partial_{k_y} A_x(\mathbf{k})]$$

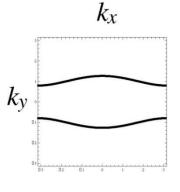
$$= -\frac{1}{2} \sum_{\Delta(k_0)=0} \operatorname{sgn}\epsilon(k_0) \cdot \operatorname{sgn}[\det(\partial_i R^j(k_0))]$$

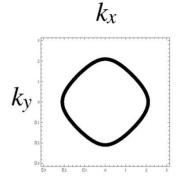
$$(\Delta(\mathbf{k}) = R^1(\mathbf{k}) + iR^2(\mathbf{k}))$$
MS (09)

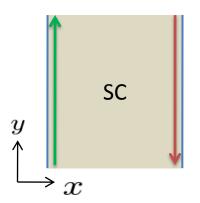
Edge state

$$\mu = -1$$
, $d = 0.5$

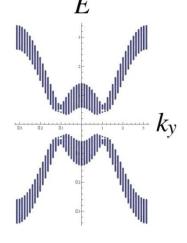
Fermi surface

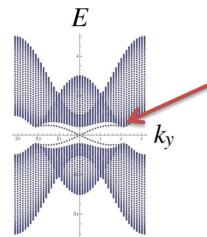






Spectrum





2 gapless edge modes (left-moving, right moving, on different sides on boundaries)

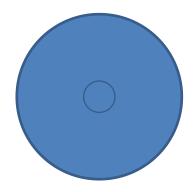
Majorana fermion

 $t_x = 1, t_y = 0.2 \quad t_x = t_y = 1$ $\nu_{\text{Ch}} = 0 \qquad \nu_{\text{Ch}} = 1$

Bulk-edge correspondence

In the second case, there also exist a Majorana zero mode in a vortex

$$\gamma_0^\dagger = \gamma_0$$



We need a pair of the zero modes to define creation op.

vortex 1
$$\gamma_0^{(1)} \qquad \gamma_0^{(2)} \qquad \gamma_0^{(2)} \qquad \gamma_0^{(1)} \qquad \gamma_0^{(2)} \qquad \gamma_0^{(1)} \qquad \gamma_0^{(1$$

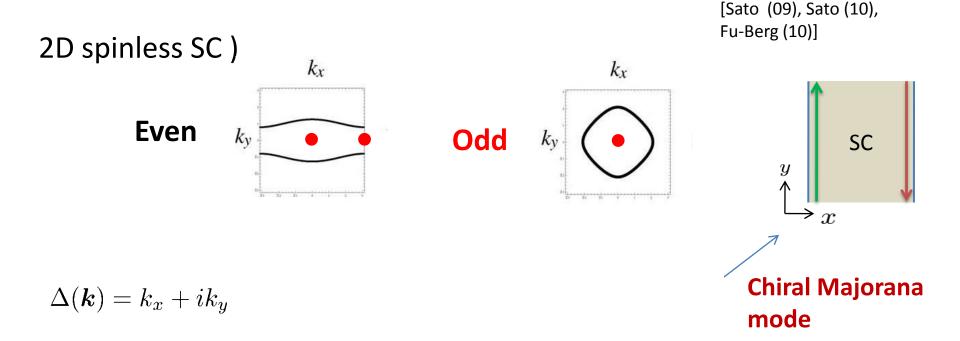
$$\gamma^{\dagger} = \frac{\gamma_0^{(1)} + i\gamma_0^{(2)}}{\sqrt{2}} \qquad \{\gamma^{\dagger}, \gamma\} = 1$$

non-Abelian anyon

topological quantum computer

For spin-triplet SCs (or odd parity SCs), there exists a simple criterion for topological phases

If the number of TRIMs enclosed by the Fermi surface is odd, the spin-triplet SC is (strongly) topological.



3D time-reversal invariant spin-triplet SC)

$$d_x(\mathbf{k}) = k_x, d_y(\mathbf{k}) = k_y, d_z(\mathbf{k}) = k_z$$

With proper topology of the Fermi surface, spin-triplet SCs (or odd-parity SCs) naturally become topological.

Is it possible to realize non-Abelian anyon in swave superconducting state?

Yes!

- A) MS, Physics Letters B535,126 (03), Fu-Kane PRL (08)
- B) MS-Takahashi-Fujimoto, Phys. Rev. Lett. 103, 020401 (09); MS-Takahashi-Fujimoto, Phys. Rev. B82, 134521 (10) (Editor's suggestion), J. Sau et al, PRL (10), J. Alicea PRB (10)

Key point: Spin-orbit interaction

Majorna fermion in spin-singlet SC

MS, Physics Letters B535,126 (03)

1 2+1 dim Dirac fermion + s-wave Cooper pair

$$\mathcal{H} = \left(egin{array}{ccc} -i\sigma_i\partial_i & \Phi^* \ \Phi & -i\sigma_i\partial_i \end{array}
ight)$$

$$\Phi = \Phi_0 f(r) e^{i heta}$$
 vortex

Zero mode in a vortex

[Jackiw-Rossi (81), Callan-Harvey(85)]

With Majorana condition, non-Abelian anyon is realized [MS (03)]

Available online at www.sciencedirect.com

 $\mathsf{nce} d$ direct.

PHYSICS LETTERS E

Physics Letters B 575 (2003) 126-130

www.elsevier.com/locate/physletb

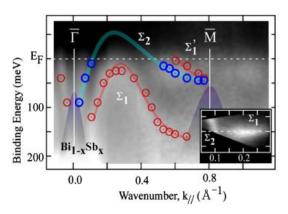
Non-Abelian statistics of axion strings

Masatoshi Sato

On the surface of topological insulator

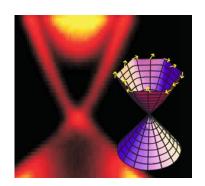
[Fu-Kane (08)]

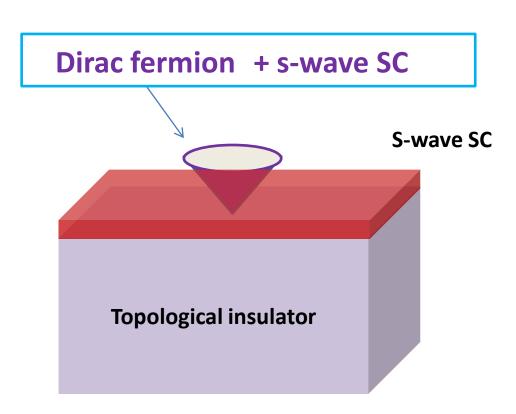
 $Bi_{1-x}Sb_x$ Hsieh et al., Nature (2008)



Nishide et al., PRB (2010)

Bi₂Se₃ Hsieh et al., Nature (2009)





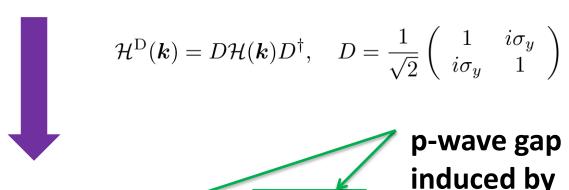
Spin-orbit interaction
=> topological insulator

2nd scheme of Majorana fermion in spin-singlet SC

2 2+1 dim s-wave SC with Rashba spin-orbit interaction

[MS, Takahashi, Fujimoto PRL(09) PRB(10)]

$$\mathcal{H}(\boldsymbol{k}) = \left(\begin{array}{ccc} \epsilon_{\boldsymbol{k}} - h\sigma_z + \boldsymbol{g_k} \cdot \boldsymbol{\sigma} & i\psi_{\mathrm{S}}\sigma_y \\ -i\psi_{\mathrm{S}}\sigma_y & -\epsilon_{\boldsymbol{k}} + h\sigma_z + \boldsymbol{g_k} \cdot \boldsymbol{\sigma}^* \end{array}\right)^{\mathrm{Rashba SO}}$$

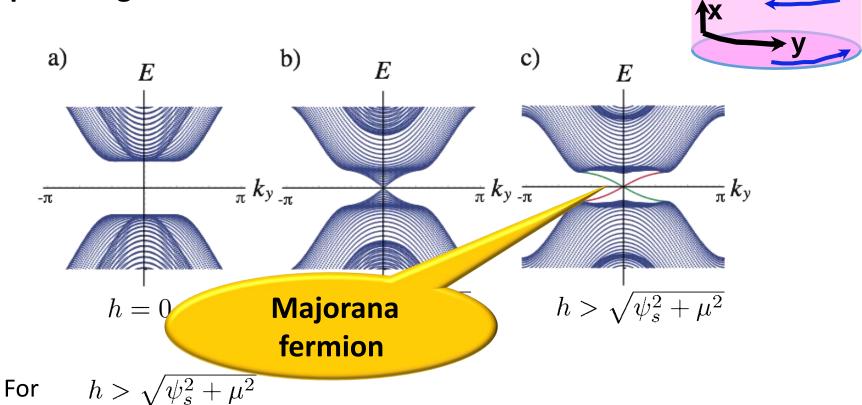


$$\mathcal{H}^{\mathrm{D}}(m{k}) = \left(egin{array}{ccc} \psi_{\mathrm{s}} - h\sigma_z & i\epsilon_{m{k}}\sigma_y - im{g}_{m{k}}\cdotm{\sigma}\sigma_y \\ i\epsilon_{m{k}}\sigma_y + im{g}_{m{k}}\sigma_ym{\sigma} & -\psi_{\mathrm{s}} + h\sigma_z \end{array}
ight)$$
 Rashba SO int.

p-wave gap is

Gapless edge states

[MS, Takahashi, Fujimoto PRL(09)]



a single chiral gapless edge state appears like p-wave SC!

Chern number

nonzero Chern number

$$Q = 1$$

topologically equivalent to spinless chiral pwave SC

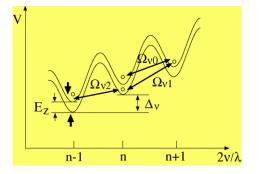
$$h > \sqrt{\psi_s^2 + \mu^2}$$

strong magnetic field is needed

How to suppress orbital depairing effect

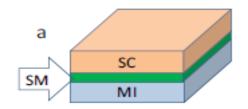
a) s-wave superfluid of cold atoms with laser generated Rashba SO

coupling



[Sato-Takahashi-Fujimoto PRL(09)]

b) semiconductor-superconductor interface



[J.Sau et al. PRL(10) J. Alicea, PRB(10)]

c) semiconductor nanowire on superconductors

Summary (part 1)

With proper topology of Fermi surfaces, topological SCs are naturally realized in spin-triplet (odd-parity) SCs.

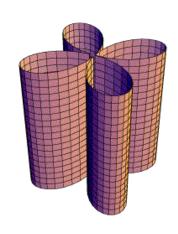
But with SO interaction, spin-singlet SCs can be topological as well.

Gapless topological phase in superconductors

MS-Fujimoto, Phys. Rev. Lett. 105, 217001 (10) Sasaki, Kriener, Segawa, Yada, Tanaka, MS, Ando, Phys. Rev. Lett. 107, 217001 (11)

Motivation

We usually suppose full-gapped bulk spectrum for topological SCs. However, unconventional SCs often support bulk nodes in the gap function.



High-Tc cuprate

Can we use such nodal SCs to realize Majorana fermion?

We find two classes of topological SCs with gap nodes.

1. 2D time-reversal breaking topological nodal SCs

MS-Fujimoto, Phys. Rev. Lett. 105, 217001 (10)

2. 3D time-reversal invariant topological nodal SCs

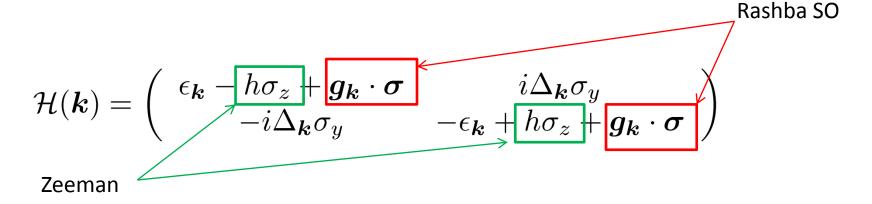
Sasaki, Kriener, Segawa, Yada, Tanaka, MS, Ando, Phys. Rev. Lett. 107, 217001 (11)

- They support non-zero bulk topological # defined in the entire space of the BZ.
- Existence of Majorana fermions on the boundary

2D Time-reversal breaking topological nodal SC

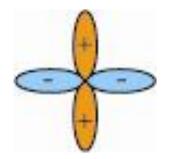
Model: 2d d-wave superconductor with Rashba SO int

[MS, Fujimoto PRL (10)]



dx²-y² -wave gap function

$\Delta_{\mathbf{k}} = \Delta_0(\cos k_x - \cos k_y)$



dxy-wave gap function

$$\Delta_{\mathbf{k}} = \Delta_0 \sin k_x \sin k_y$$

To understand what happens, we use the dual transformation again

$$\mathcal{H}(\mathbf{k}) = \begin{pmatrix} \epsilon_{\mathbf{k}} - h\sigma_z + \mathbf{g}_{\mathbf{k}} \cdot \boldsymbol{\sigma} & i\Delta_{\mathbf{k}}\sigma_y \\ -i\Delta_{\mathbf{k}}\sigma_y & -\epsilon_{\mathbf{k}} + h\sigma_z + \mathbf{g}_{\mathbf{k}} \cdot \boldsymbol{\sigma} \end{pmatrix}$$

$$\mathcal{H}^{\mathrm{D}}(\mathbf{k}) = D\mathcal{H}(\mathbf{k})D^{\dagger}, \quad D = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i\sigma_y \\ i\sigma_y & 1 \end{pmatrix}$$

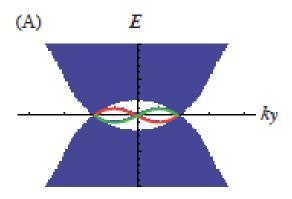
$$\mathcal{H}^{\mathrm{D}}(\mathbf{k}) = \begin{pmatrix} \Delta_{\mathbf{k}} - h\sigma_{z} & -i\epsilon_{\mathbf{k}}\sigma_{y} - i\mathbf{g}_{\mathbf{k}} \cdot \boldsymbol{\sigma}\sigma_{y} \\ i\epsilon_{\mathbf{k}}\sigma_{y} + i\mathbf{g}_{\mathbf{k}}\sigma_{y}\boldsymbol{\sigma} & -\Delta_{\mathbf{k}} + h\sigma_{z} \end{pmatrix}$$

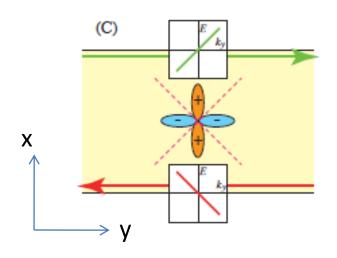
p-wave gap is induced by Rashba SO int.

Edge state

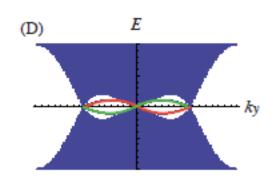
$$(h^2 > \mu^2)$$

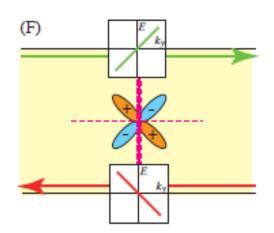
dx²-y²-wave gap function





dxy-wave gap function





There also exist a Majorana zero mode in a vortex

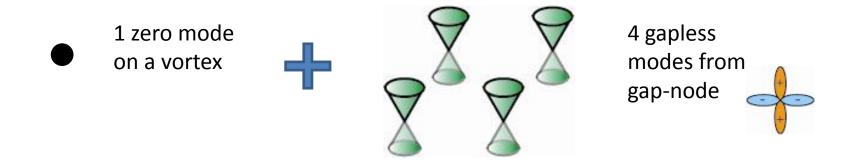
$$\gamma = \int \left[u_{\uparrow} \psi_{\uparrow}^{\dagger} + u_{\downarrow} \psi_{\downarrow}^{\dagger} + u_{\uparrow}^{*} \psi_{\uparrow} + u_{\downarrow}^{*} \psi_{\downarrow} \right]$$

$$u_{\uparrow} = i e^{i \frac{n-1}{2} \theta} f(r), \quad u_{\downarrow} = -i e^{i \frac{n+1}{2} \theta} f(r) \qquad f(r) = \sqrt{\frac{h}{\pi \lambda r}} e^{-\frac{h}{2\lambda} r}$$

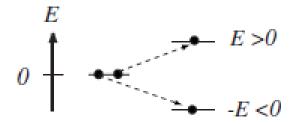
Zero mode satisfies Majorana condition! $\gamma^{\dagger} = \gamma$

Non-Abelian anyon

The Majorana zero mode is stable against nodal excitations

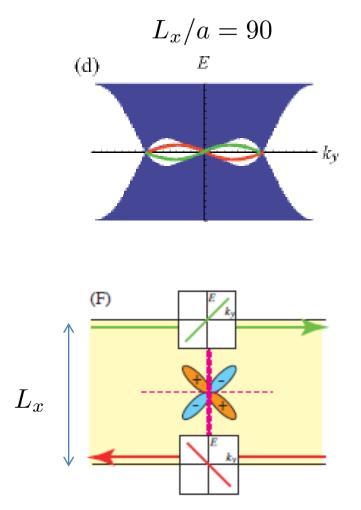


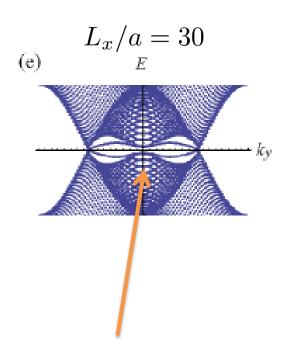
From the particle-hole symmetry, zero modes become massive in pair.



At least one Majorana zero mode survives

The nodal excitations may change the finite size effect





Long-range tunneling between two edges due to the nodal excitations

Topological phase in 2D TRB nodal SCs is characterized by the parity of the Chern number $(-1)^{\nu_{\rm Ch}}$

[MS, Fujimoto PRL (10)]

$$(-1)^{\nu_{\rm Ch}} = -1$$

$$(-1)^{\nu_{\rm Ch}} = 1$$

There exist an odd number of gapless Majorana fermions

+ nodal excitation

Topologically stable Majorana fermion

There exist an even number of gapless Majorana fermions

+ nodal excitation

No Majorana fermion survives

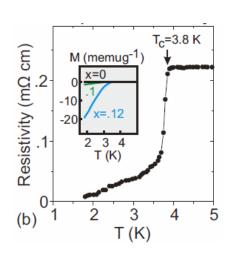
3D time-reversal invariant topological nodal SC

[Sasaki, Kriener, Segawa, Yada, Tanaka, MS, Ando PRL (11)]

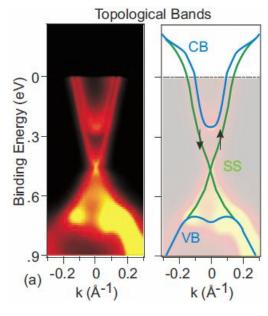
Cu_xBi₂Se₃



Superconducting only for $0.10 \le x \le 0.30$



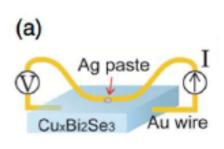


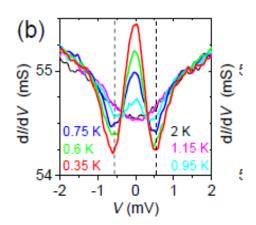


Recent measurement of tunneling conductance shows a pronounced zero-bias conductance peak

Evidence of Majorana fermion on the surface

[Sasaki, Kriener, Segawa, Yada, Tanaka, MS, Ando PRL (11)]





Proposed gap functions

[Fu-Berg (10)]

	gap type	parity	energy gap structure
Δ_1	$\begin{array}{l} \Delta_{\uparrow\downarrow}^{11} = -\Delta_{\downarrow\uparrow}^{11} = \Delta_{\uparrow\downarrow}^{22} = -\Delta_{\downarrow\uparrow}^{22} \\ \Delta_{\uparrow\downarrow}^{11} = -\Delta_{\downarrow\uparrow}^{11} = -\Delta_{\uparrow\downarrow}^{22} = \Delta_{\downarrow\uparrow}^{22} \end{array}$	even	full gap
Δ_2	$\Delta_{\uparrow\downarrow}^{12} = -\Delta_{\downarrow\uparrow}^{12} = \Delta_{\uparrow\downarrow}^{21} = -\Delta_{\downarrow\uparrow}^{21}$	odd	full gap
Δ_3	$\Delta_{\uparrow\downarrow}^{12} = \Delta_{\downarrow\uparrow}^{12} = -\Delta_{\uparrow\downarrow}^{21} = -\Delta_{\downarrow\uparrow}^{21}$	odd	point node
Δ_4	$\begin{array}{c} \Delta_{\uparrow\uparrow}^{12} = \Delta_{\downarrow\downarrow}^{12} = -\Delta_{\uparrow\uparrow}^{21} = -\Delta_{\downarrow\downarrow}^{21} \\ \Delta_{\uparrow\uparrow}^{12} = -\Delta_{\downarrow\downarrow}^{12} = -\Delta_{\uparrow\uparrow}^{21} = \Delta_{\downarrow\downarrow}^{21} \end{array}$	odd	point node

• Δ_2 is full gapped and topological

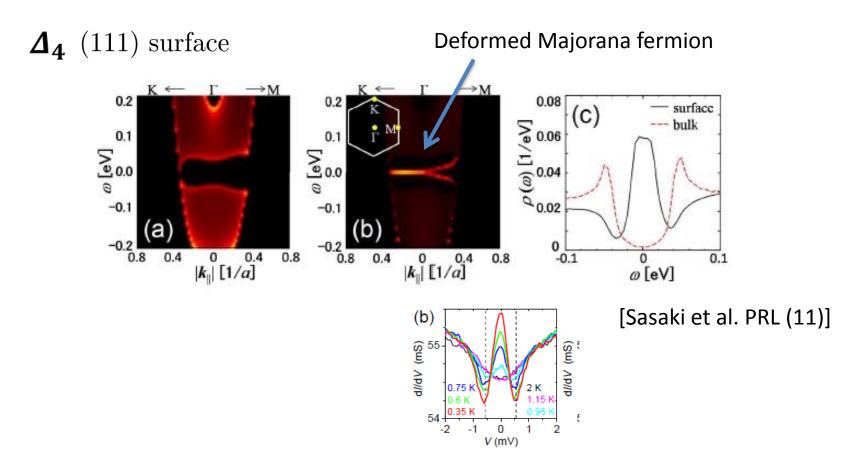
[Fu-Berg (10), Sato(10)]

• Δ_3 and Δ_4 are nodal but topological

[SKSYTSA(10)]

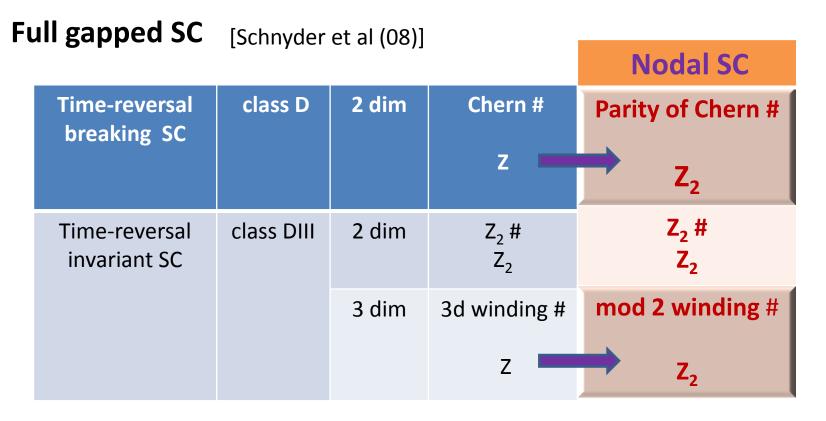
The both cases can be consistent with the experimental result for tunneling conductance.

Surface state of nodal topological SC



However, to determine the actual gap function, we need a further theoretical investigation on the tunneling conductance.

Topological phase in 3D TRI nodal SCs is characterized by the parity of 3d winding number (= mod 2 winding number) $(-1)^{\nu_w}$

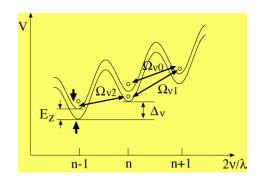


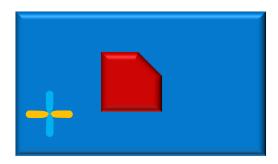
[MS-Fujimoto (10), STSYTSA (11)]

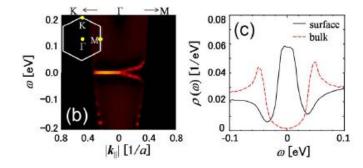
Summary

With SO interaction, various superconductors become topological superconductors

- 1. Majorana fermion in spin singlet SCs
- 2. Majorana fermion in nodal SC





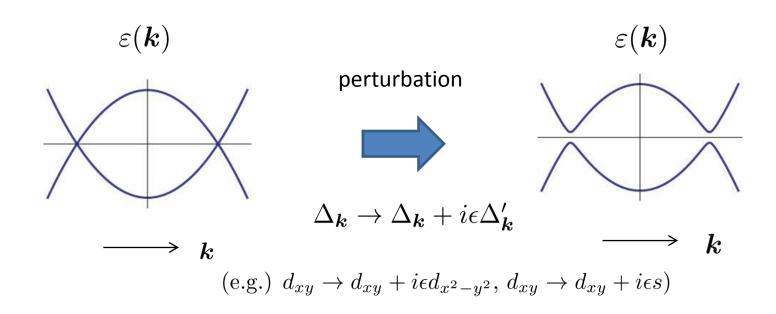


Reference

- Non-Abelian statistics of axion strings, by MS, Phys. Lett. B575, 126(2003),
- Topological Phases of Noncentrosymmetric Superconductors: Edge States, Majorana Fermions, and the Non-Abelian statistics, by MS, S. Fujimoto, PRB79, 094504 (2009),
- Non-Abelian Topological Order in s-wave Superfluids of Ultracold Fermionic Atoms, by MS, Y. Takahashi, S. Fujimoto, PRL 103, 020401 (2009),
- Non-Abelian Topological Orders and Majorna Fermions in Spin-Singlet Superconductors, by MS, Y. Takahashi, S.Fujimoto, PRB 82, 134521 (2010) (Editor's suggestion)
- Existence of Majorana fermions and topological order in nodal superconductors with spin-orbit interactions in external magnetic field, PRL105,217001 (2010)
- Anomalous Andreev bound state in Noncentrosymmetric superconductors, by Y. Tanaka, Mizuno, T. Yokoyama, K. Yada, MS, PRL105, 097002 (2010)
- Surface density of states and topological edge states in noncentrosymmetric superconductors by K. Yada, MS, Y. Tanaka, T. Yokoyama, PRB83, 064505 (2011)
- •Topology of Andreev bound state with flat dispersion, MS, Y. Tanaka, K. Yada, T. Yokoyama, PRB 83, 224511 (2011)
- Topological superconductivity in Cu_xBi₂Se₃, S. Sasaki, M. Kriener, K. Segawa, K. Yada, Y. Tanaka, MS, Y. Ando, PRL 107, 217001 (2011).

Topological # in nodal SC

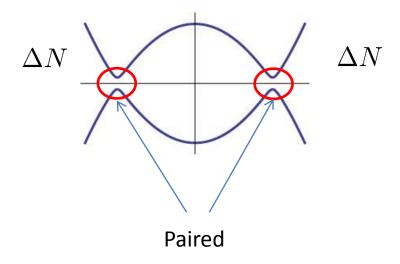
Formally, the bulk topological # in nodal SCs can be defined after removing the gap node by perturbation.



However, sometimes, the resultant bulk topological # depends on the perturbation.

Chern # 3D winding #

However, the parity of the topological # does not have the ambiguity.



- Because of the particle-hole symmetry, nodes are paired in the momentum space.
- Each node may give an ambiguity, but the total ambiguity of the topological # should be even since nodes are paired.
- We have a unique value of the parity of the topological #