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Outline

• Introduction.   

• Isotropic 3D LLs of Dirac fermions from non-minimal coupling. 

• Isotropic 3D LLs of non-relativistic fermions from Aharanov-
Casher coupling – strong TI insulators. 

• Generalization to arbitrary dimensions.
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• 2D Landau levels in the external magnetic fields.  

2D quantum Hall effect with LLs

• Magnetic band-structure characterized by the topological 
TKNN (Chern) number. 

• Chiral edge modes responsible for quantized transverse 
charge transport; stable against disorder and interactions.
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Quantum Hall state
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Quantum Anomalous Hall model without LLs  

• Chern number             if             ,   
Mass changes sign at K1,2.   
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• Honeycomb lattice with complex-valued next-nearest neighbor 
hopping.
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F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988); X. L 
Qi, et al, PRB 74,85308 (2006)
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2D time-reversal invariant TIs with and without LLs   

• The Kane-Mele model: two copies of Haldane model.

• Bernevig--Zhang model: LLs with opposite chiralities for spin 
up and down electrons. ---- fractional 2D TIs. 

Quantum spin Hall state

• Odd numbers of helical edge modes are stable against disorder; 
topological Z2-index. 
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• 2D TIs without LLs were 
predicted and realized in 2D 
HgTe/HgCdTe quantum wells.
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• Various 3D strong TIs based Bloch-wave band structures with 

non-trivial Z2 index have been predicted and realized.

• Odd numbers of surface 

Dirac cones detected  by 

ARPES, quantum oscillations, 

STM etc. 

Bi2Te3, Bi2Se3, etc IOP, Osaka, Princeton, 

Stanford, Tsinghua, Wuerzburg, etc

3D strong TIs without LLs   
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• Question: can we construct 3D strong TIs based on LLs?  

Here we mean 3D isotropic LLs, not stacked 2D LL layers. 
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Motivation of 3D strong TIs with LLs ?   

• How to characterize the topo-properties within harmonic 

potentials, one of the simplest types of inhomogeneity? (open)

LL in arbitrary-D flat space= harmonic  oscillator + spin-

orbit coupling  simple enough for the qual exam. 

• LL wavefunctions are simple, explicit, and elegant. 

• Flat spectra + analytical properties may facilitate the study of 

high dimensional fractional TIs due to interactions (open). 
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• Particles couple to the SU(2) gauge field on the S4 sphere.  
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• Second Hopf mapping. The spin value             .
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• Single particle LLLs

 4D integer and fractional TIs with time reversal symmetry

 Dimension Reduction to 3D and 2D TIs (Qi, Hughes, Zhang).  
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Science 294, 824 (2001). 

Pioneering Work: LLs on 4D-sphere ---Zhang and Hu

• 4D LLs in flat space – Elvang and Polchinski, 2002. 
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E = v0| p | massless Dirac 

spectrum

v0 = 106 m/s = c/300

Quantum Hall Effect of Relativistic Fermions

Graphene Landau Levels

Generalize to 3D and above with spherical symmetry?

G. Semenoff, Phys. Rev. Lett., 53, 2449 (1984); 
Novoselov, Geim et al., Nature 438, 197 (2005);
Y. Zhang, P. Kim et al, Nature 438, 201,(2005)
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Outline

• Introduction.   

• Isotropic 3D LLs of Dirac fermions from non-minimal coupling. 

• Isotropic 3D LLs of non-relativistic fermions from 
Aharanov-Casher coupling – strong TI insulators. 

• Possible realizations?

A brief review of Landau levels (LLs) and topological band states



Review: 2D LLs in the symmetric gauge   

• 2D LL Hamiltonian = 2D harmonic oscillator  (HO)+ orbital 
Zeeman. 
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Different organization leads to non-trivial topo-structure
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• When viewed horizontally, they are topologically trivial. 

• LLL wavefunctions. 

• When viewed along the diagonal line because                         , 
they become LLs.  
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• Replace the U(1) potential to the SU(2) gauge potential in 3D.

• 3D LL Hamiltonian = 3D HO + spin-orbit coupling.

How to work in 3D? – Aharanov-Casher potential !!  
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• has the same set of eigenstates of 3D HO in the 

eigen basis of j. 
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• The full 3D rotational symm.  +  time-reversal symm.
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Constructing 3D Landau Levels from 3D HO Eigen-states
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3D LL wavefunctions
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• The LLL wavefunctions: 

22
4/

,,,
)(),(

g

zz

lr

jlj

lLLL

jj
eYrr








r
n

• : spin-orbit coupled 

spherical harmonics with the 

positive helicity.  
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The highest weight state in the 3D Landau Levels
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• The highest weight state as coherent states. 

• The highest weight states form over-

complete basis for all the jz eigenstates. 

• The highest weight state            .  Both      and      are conserved. 
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2D-like LLs with spin perpendicular 

to the plane of the orbital motion.
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Understanding the highest weight state from classical EOM
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• If we fix the direction of    , and 

choose r, and p in the plane 

perpendicular to ,  then the 

motion is coplanar, which 

reduces to the 2D cyclotron 

motion. The plane of motion 

passes the center. 

• Helical structure: we can rotate 

the motion plane and S together.  

S


S


18



19

Review: chiral liquid of 2D QHE edge
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• Each LL contributes a branch of 

chiral edge modes.  

• As m goes large, eigen-states are 

pushed to the open edge, and develop 

dispersion.
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Halperin, PRB, 25, 2185 (1982) 



Helical Surface Modes
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3D strong TI from Landau Levels
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• Each LL contributes to one helical Fermi surfaces

• Strong Z2 TI
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Odd filling gives odd numbers of Dirac Fermi surface.
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Non-uniform Particle Density in 3 Dimensions

2j+1 degenerate states
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• Estimation based on classic radius of LLL orbits. 
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• Exact calculation of particle density for filled LLLs.
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• Introduction.   

• Square root problem: 3D Isotropic LLs of Dirac 
fermions from non-minimal coupling. 

• 3D Isotropic LLs of non-relativistic fermions from Aharanov-
Casher coupling – strong TI insulators. 

A brief review of Landau levels (LLs) and topological band states

Outline

• Generalization to higher dimensions.



Review:  2D LL Hamiltonian of Dirac Fermions 
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• Rewritten in terms of complex combinations of phonon operators.
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• LL dispersions:  nE
n




• Zero energy LL is a branch of half-fermion 
modes due to the chiral symmetry.   
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• Graphene QHE exhibits a pair of the above LL Hamiltonian. 24
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3D LL: Dirac equation in phase-space
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• Generalizing                2D harmonic oscillator operators   
to                      3D harmonic oscillator operators .
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• This Lagrangian shows non-minimal Pauli coupling.

• A related Hamiltonian was studied before under the name of 
Dirac oscillator, but its connection to LL and topological properties 
was not noticed. 
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Benitez, et al, PRL, 64, 1643 (1990)



• If we only keep the     and    terms in the 3D Dirac LL 

Hamiltonian, it reduces to 2 copies of 2D Dirac LL Hamiltonian.

Reduce back to 2D
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• They are time-reversal pairs, which can be considered as 
quantum spin Hall LLs of Dirac fermions. 
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• The square of           gives two copies of          with opposite 
helicity eigenstates.
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• LL solutions: dispersionless with respect to j. Eigen-states 
constructed based on non-relativistic LLs. 
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A square root problem:

The zeroth LL:
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Zeroth LLs as half-fermion modes

• The LL spectra are symmetric with respect to zero energy, thus 
each state of the zeroth LL contributes    ½- fermion charge 
depending on the zeroth LL is filled or empty. 

G. Semenoff, Phys. Rev. Lett., 53, 2449 (1984).
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• For the 2D case, the vacuum charge  density is                    ,  
known as parity anomaly. 

• For our 3D case, the vacuum charge 
density is plus or minus of the half of 
the particle density of the non-
relativistic LLLs ---- “parity”-type 
anomaly? 
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Helical surface mode of 3D Dirac LL
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• The mass of the vacuum outside   M
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• Roughly, this is the square root problem 

of the open boundary problem of 3D non-

relativistic  LLs. 

• Each surface mode for n>0 of the 

non-relativistic case splits a pair 

surface modes for the Dirac case.

• The surface mode of  Dirac zeroth-LL 

of is singled out. Whether it is upturn 

or downturn depends on the sign of 

the vacuum mass. 
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• Introduction.   

• Isotropic 3D LLs of Dirac fermions from non-minimal coupling. 

• Isotropic 3D LLs of non-relativistic fermions from Aharanov-
Casher coupling – strong TI insulators. 

A brief review of Landau levels (LLs) and topological band states

Outline

• Generalization to higher dimensions.
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Non-relativistic LLs in D-dimensions
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• D-dimensional LL Hamiltonian = D-dimensional harmonic 

oscillator  (HO)+ spin-orbit coupling. 
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• If D=2k+1, SO(D) has one fundamental spinor, H is irreducible. 

• If D=2k, SO(D) has two fundamental spinors, H is reducible. 

• Generalizing the 3 2×2 Pauli matrices {σx, σy, σz} 

to (2k+1) 2k×2k  Γ-matrices  )(
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LL Hamiltonian of Dirac Fermions in Arbitrary Dimensions
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• For odd dimensions.

• For even dimensions.
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Conclusions

• We generalize 2D LLs to 3 dimensions and above with the full 

rotational symmetry, including both non-relativistic and relativistic 

cases. 

• The non-relativistic D-dimensional LL problem is a  

D dimensional harmonic oscillator + spin-orbit coupling.

• The relativistic version is a square-root problem corresponding 

to Dirac equation with non-minimal coupling.  

• Each filled LL contributes to a helical surface mode. For the 3D 

non-relativistic LLs, the system is a 3D TI if odd LLs are filled. 

• Open questions: interaction effects; experimental realizations; 

characterization of topo-properties with harmonic potentials 


