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Motivation

Lorenz system:

= a(y—x),
= pX—y—xz,

z = xy—bz,

Unstable manifolds shape the
attractor.



Motivation
Plane Couette flow (Gibson, Halcrow, Cvitanovi¢ (2008))

FIGURE 5. A state space portrait of plane Couette flow for Re = 400 and [L.,L,, L:] =
[27t/1.14, 2, 47t/5], projected from 61506 dimensions to 2. The labeled points are exact equilib-
rium (steady-state) solutions of the Navier-Stokes equation (see §[3); the curved trajectories are
fully-resolved time-dependent numerical integrations of Navier-Stokes projected onto the (e, ez2)
plane defined by (@3). W%, the 1d unstable manifold of the ‘lower-branch’ equilibrium ugs,
and 7. W%, its half-cell translation in z, are shown with thick blue lines. Wﬁél'z), a 2d portion
of the unstable manifold of the ‘newbie’ equilibrium uxg, is shown with thin black and red spi-
rals emanating from uyg. Similarly, the thin green lines spirally out of uyp and 7.uyp indicate
WJ;;S and TzW,}‘;as, the 2d unstable manifolds of uys and its half-cell translation 7.uys within
the S-invariant subspace Us. Open dots along W} show initial conditions for Newton-GMRES
searches used to find uxg. The plane of the projection is defined in terms of the equilibrium
solutions; it is dynamically invariant and independent of the numerical representation. See §|
and §[43]for discussions of the projection and the dynamics.




The problem

e Continuous symmetries — relative invariant solutions
e Can be avoided in invariant subspaces of plane Couette flow

e Cannot be avoided in pressure-driven flows (pipes, channels)



Relative equilibria and relative periodic orbits




Symmetry reduction




Pipe flow

e Navier-Stokes equations for fluctuations around base flow:

ur+uyp-Vu+u-Vugp+u- Vu——Vp+32£2+R Vu

e 3 = B(r) ensures constant-flux

e Incompressibility: V-u=0

e No-slip on the wall: u(z,6,r =D/2) =0

e Periodic in axial and azimuthal directions:
u(z,0,r)=u(z+L,0,r) and u(z,0,r) = u(z,0 + 2m,r)

Navier-Stokes equations along with incompressibility and boundary
conditions induces a finite-time flow

x(1) = 7 (x(0)),

where x is the state space vector corresponding to a point in the
space of allowable velocity fields.



Symmetries

e Translation: g-(Nu(z,r,0) =u(z—1,r,0)
¢ Rotation: go(p)u(z,r,0) =u(z,r,0 — )
° Reﬂection: O'[U, v, W](27 r, 9) = [U, v, —W](Z, r

e Equivariance under SO(2), x O(2)y:

G = {gz(/)7 g0(¢)7 U}

e In state space:

gf7(x) =1"(gx), where g € G

_9)



Symmetry reduction

e Each solution x has infinitely many “symmetry copies” on its
“group orbit”:
ng - {gXIVg S G}
e Symmetry reduction is a coordinate transformation x — X
such that each group orbit Mg, is represented by a single
point X.



SO(2) symmetry reduction: First Fourier mode slice

Project the solution x(7) onto a subspace where group orbits are
circular, then fix the polar angle on this projection:

Let & be a state space vector

corresponding to the velocity field as
[0,V W'](z,0,r) = Jo(ar) cos(2mz/L) X(/szf)’/ \\?\(Tz)
then x(71 qb(Tl)
a = (%), @=(xal-L/AS) RN’
i > S
X = g(-Nx, I=—arga;+ia K(r1x(0) X(m2) 21

2w
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Why call it a slice?

“Polar” coordinate
transformation defines a
codimension-1 “slice hyperplane”
in state space:

(R()=%,t)) =0, (t,(R), t.) >0

e t,(X) = T,% : Group tangent
o T,: Generator of infinitesimal translations i.e. g (/) = &'z

o t, = t,(X') : Slice tangent



Projecting perturbations

Small perturbations dx to x can
be brought to the slice by the
transformation

. (, et Nox
b= (1 Gy e )




Projection operator

t(R) @t
(tz(%), t)

allows us to project tangent space onto the slice.

H(x)=1-

Example: If x = v(x) = limg,_o fO7(x)/d7 then
£ =0() = v(R) —
is the symmetry reduced state space velocity.

By acting with H(x), we are able to bring stability eigenvectors of
traveling waves and Floquet vectors of relative periodic orbits to
the slice.



Unstable manifolds of traveling waves

“Asymmetric’ traveling wave, S1
Invariant under “shift-and-reflect”

xs1 = 082(L/2)xs1

Lies on laminar-turbulent boundary

Has two real unstable (> 0)
stability eigenvalues

Here, computed at Re = 3000 for a pipe
of length L =5D.

(Pringle & Kerswell 2007, Mellibovsky & Meseguer 2007)



Unstable manifold of S1
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Unstable manifold of S1
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Unstable manifold of S1
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Unstable manifold of S1
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Unstable manifold of S1
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Recurrences on the unstable manifold




A new traveling wave on the “edge”

Initial condition:

Converged solution:

A12 = 0.131 £0.178/
A34 = 0.095 £ 0.066/
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“Almost” complete picture
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“Destabilizing” turbulence

moderate perturbation
25 h“

large perturbation

Perturbation energy /turbulent kinetic energy
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Too much turbulence kills turbulence

SO(2), x SO(2)gy-reduced
manifold:
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Too much turbulence kills turbulence




Localized relative periodic orbits
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Although the equations governing fluid flow are well known, there are no analytical expressions that
describe the complexity of turbulent motion. A recent proposition is that in analogy to low dimensional
chaotic systems, turbulence is organized around unstable solutions of the governing equations which
provide the building blocks of the disordered dynamics. We report the discovery of periodic solutions
which just like intermittent turbulence are spatially localized and show that turbulent transients arise from
one such solution branch.
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Poincaré section
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Unstable manifold of the lower branch at Re= 1700
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Heteroclinic connection




On the same scale

n=0(LB):




Puff formation from a random initial perturbation
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Flow structures




Conclusions

e We computed and visualized unstable manifolds of traveling
waves and relative periodic orbits

e We found a new traveling wave on the laminar-turbulent
boundary of a small pipe

e We found strong numerical evidence of a heteroclinic
connection between localized relative periodic solutions of
pipe flow
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Complex conjugate eigenvalues

A1 = ptiw
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Projection

. B 89f9(x)|9:¢ ®VU()?) (x)5x
o= <1 079 () s, VU(x») V(99



