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Motivation
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Lorenz system:

ẋ = σ(y − x) ,

ẏ = ρx − y − xz ,

ż = xy − bz ,

Unstable manifolds shape the
attractor.



Motivation
Plane Couette flow (Gibson, Halcrow, Cvitanović (2008))



The problem

• Continuous symmetries → relative invariant solutions

• Can be avoided in invariant subspaces of plane Couette flow

• Cannot be avoided in pressure-driven flows (pipes, channels)



Relative equilibria and relative periodic orbits



Symmetry reduction



Pipe flow

• Navier-Stokes equations for fluctuations around base flow:

uτ + uHP · ∇u+ u · ∇uHP + u · ∇u = −∇p + 32
β
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ẑ+

1

Re
∇2u

• β = β(τ) ensures constant-flux

• Incompressibility: ∇ · u = 0

• No-slip on the wall: u(z , θ, r = D/2) = 0

• Periodic in axial and azimuthal directions:
u(z , θ, r) = u(z + L, θ, r) and u(z , θ, r) = u(z , θ + 2π, r)

Navier-Stokes equations along with incompressibility and boundary
conditions induces a finite-time flow

x(τ) = f τ (x(0)),

where x is the state space vector corresponding to a point in the
space of allowable velocity fields.



Symmetries

• Translation:

• Rotation:

• Reflection:

gz(l)u(z , r , θ) = u(z − l , r , θ)

gθ(φ)u(z , r , θ) = u(z , r , θ − φ)

σ[u, v ,w ](z , r , θ) = [u, v ,−w ](z , r ,−θ)

• Equivariance under SO(2)z ×O(2)θ:

G = {gz(l), gθ(φ), σ}

• In state space:

gf τ (x) = f τ (gx) , where g ∈ G



Symmetry reduction

• Each solution x has infinitely many “symmetry copies” on its
“group orbit”:

Mgx = {g x | ∀g ∈ G}

• Symmetry reduction is a coordinate transformation x → x̂
such that each group orbit Mgx is represented by a single
point x̂ .



SO(2) symmetry reduction: First Fourier mode slice

Project the solution x(τ) onto a subspace where group orbits are
circular, then fix the polar angle on this projection:

Let x̂ ′ be a state space vector
corresponding to the velocity field

[û′, v̂ ′, ŵ ′](z , θ, r) = J0(αr) cos(2πz/L)

then

a1 = 〈x , x̂ ′〉 , a2 = 〈x , gz(−L/4)x̂ ′〉

x̂ = gz(−l)x , l =
L

2π
arg a1 + ia2

x(τ2)
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a2
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x(τ0)

Budanur et al. (2015) PRL, Willis, Short, Cvitanović (2016) PRE



Why call it a slice?

“Polar” coordinate
transformation defines a
codimension-1 “slice hyperplane”
in state space:

〈x̂(τ)−x̂ ′, t ′z〉 = 0 , 〈tz(x̂), t ′z〉 > 0

M̂

x(τ)

x̂(τ)x̂ ′

t ′z

x̂(0)

• tz(x̂) = Tz x̂ : Group tangent

• Tz : Generator of infinitesimal translations i.e. gz(l) = e lTz

• t ′z = tz(x̂ ′) : Slice tangent



Projecting perturbations

Small perturbations δx to x can
be brought to the slice by the
transformation

δx̂ =

(
1− tz(x̂)⊗ t ′z
〈tz(x̂), t ′z〉

)
gz(−l)δx

U(x̂) = 0

x

x + δx

x̂
x̂ + δx̂

gz(−l)

gz(−l − δl)



Projection operator

H(x) = 1− tz(x̂)⊗ t ′z
〈tz(x̂), t ′z〉

allows us to project tangent space onto the slice.

Example: If ẋ = v(x) = limδτ→0 f
δτ (x)/δτ then

˙̂x = v̂(x̂) = v(x̂)− 〈t
′
z , v(x̂)〉
〈tz(x̂), t ′z〉

tz(x̂)

is the symmetry reduced state space velocity.

By acting with H(x), we are able to bring stability eigenvectors of
traveling waves and Floquet vectors of relative periodic orbits to
the slice.



Unstable manifolds of traveling waves

• “Asymmetric” traveling wave, S1

• Invariant under “shift-and-reflect”

xS1 = σgz(L/2)xS1

• Lies on laminar-turbulent boundary

• Has two real unstable (µ > 0)
stability eigenvalues

Here, computed at Re = 3000 for a pipe
of length L = 5D.

(Pringle & Kerswell 2007, Mellibovsky & Meseguer 2007)



Unstable manifold of S1

x̂φ(τ = 0) = x̂S1+ε

(
V̂1

µ1
cosφ+

V̂2

µ2
sinφ

)
, e1,2 = 〈x̂φ(τ), V̂1,2〉



Unstable manifold of S1

x̂φ(τ = 0) = x̂S1+ε

(
V̂1

µ1
cosφ+

V̂2

µ2
sinφ

)
, e1,2 = 〈x̂φ(τ), V̂1,2〉



Unstable manifold of S1



Unstable manifold of S1



Unstable manifold of S1



Recurrences on the unstable manifold

τ = 0 τ = 250 τ = 330



A new traveling wave on the “edge”

Initial condition:

Converged solution:

λ1,2 = 0.131± 0.178i
λ3,4 = 0.095± 0.066i

λ5 = 0.073

x(0) = xNew ± εV5



“Almost” complete picture

λ1,2 = 0.131± 0.178i

λ3,4 = 0.095± 0.066i



“Destabilizing” turbulence

Kühnen et al. (2017) to appear



Too much turbulence kills turbulence
SO(2)z × SO(2)θ-reduced
manifold:



Too much turbulence kills turbulence

N:

τ = 0 τ = 35 τ = 70



Localized relative periodic orbits



Poincaré section

x̂p

v̂(x̂p)

〈x̂P − x̂p, v̂(x̂p)〉 = 0

〈v̂(x̂P), v̂(x̂p)〉 > 0

U(x̂P) = 0

x̂

x̂ + δx̂

x̂P
x̂P + δx̂P

f τ (x̂)

f τ+δτ (x̂ + δx̂)

δx̂P =

(
1− v̂(x̂P)⊗ v̂(x̂p)

〈v̂(x̂P), v̂(x̂p)〉

)
df τ (x̂)

dx̂
δx̂



Unstable manifold of the lower branch at Re= 1700
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x̂P(δ) = x̂p,P ± εΛδ1V̂1,P , δ ∈ (0, 1]



Heteroclinic connection
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On the same scale

n = 0 (LB):

n = 9 (closest approach to UB):

n = 20:



Puff formation from a random initial perturbation
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Flow structures
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Conclusions

• We computed and visualized unstable manifolds of traveling
waves and relative periodic orbits

• We found a new traveling wave on the laminar-turbulent
boundary of a small pipe

• We found strong numerical evidence of a heteroclinic
connection between localized relative periodic solutions of
pipe flow
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Complex conjugate eigenvalues

λ1,2 = µ± iω

x̂(0) = x̂TW + εe
2πµ
ω
δRe V̂1 , δ = (0, 1]



Projection

U(x̃) = 0

x

x + δx

x̃
x̃ + δx̃

f φ(x)

f φ+δφ(x + δx)

δx̃ =

(
1−

∂θf
θ(x)|θ=φ ⊗∇U(x̃)

〈∂θf θ(x)|θ=φ, ∇U(x̃)〉

)
∇f φ(x)δx


