Exact invariant solutions for coherent turbulent motions in Couette & Poiseuille flows

Carlo Cossu IMFT-CNRS, Toulouse, France

Recurrence, Self-Organization, and the Dynamics Of Turbulence KITP, Santa Barbara (CA), USA 9-13 January 2017

Motivation

Near-wall streaky motions

Near-wall streaks known since 1967

Scale in wall (inner) units: $\lambda_z^+ \sim 100$, $\lambda_x^+ \sim 250\text{-}1000$

Self-sustained process main source of turbulent kinetic energy at low-moderate Re

Figure from Kline et al. (1967)

The large-scale emerging peak

Figure 3

Contour maps showing the variation of one-dimensional premultiplied spectra with wall-normal position for two Reynolds numbers. An inner and an outer peak are noted at the higher Reynolds number. Figure taken from Hutchins & Marusic (2007a). Reprinted with permission from CUP.

from Smits et al. (ARFM, 2011)

Large and very large scale motions

Outer peak \leftrightarrow structures scaling with outer length scale δ Typical spanwise spacing: $\lambda_{7}/\delta \sim 1.5-2.5$

LSM: large-scale motions (LSM) $\rightarrow \lambda_x/\delta \sim 5$

VLSM very large-scale motions: $\lambda_x/\delta \sim 25$ or more

Couette flow: δ =2h $\rightarrow \lambda_z \sim 4.5$ - 5.5h, $\lambda_x \sim 10h$ (LSM) and 50h or more (VLSM)

Figure trom Bernardını, Pirozzoli & Orlandi, JFM 201 Outer peak: conjectured to be dominant at very high Re (industrial, geophysical applications) —

large interest in LSM & VLSM

Origin of outer-scaling motions still unclear (and debated)

Origin/nature of LSM & VLSM

"LSMs are believed to be created by the vortex packets formed when multiple hairpin structures travel at the same convective velocity" (Smits et al. ARFM 2011). See also Kim & Adrian (1999), Zhou et al. (1999), Guala et al. (2006), Balkumar & Adrian (2007)

Figure from Adrian (2007)

Figure from Kim & Adrian (1999)

is this the only possible explanation?

Recent results suggest other mechanisms might be at work:

Large-scale motions independent of details of near-wall cycle (perturbed with roughness)

→ no need of near-wall cycle?

(Flores et al. 2006, 2007)

Linear optimal perturbation analysis: Large-scale coherent perturbations to turbulent mean flows can be highly amplified → large scale structures able to efficiently extract energy from the mean flow

(del Alamo & Jiménez 2006, Cossu & Pujals 2009, Pujals et al. 2010, Hwang & Cossu 2010a,2010b, Willis et al. 2010)

Ingredients of a coherent SSP

2006-2010 in collaboration with Grégory Pujals, Sébastien Depardon Yongyun Hwang, Junho Park

Maximum amplification in channel flow

Gmax increases with Re!

Pujals, Garcia-Villalba, Depardon & Cossu, *Phys. Fluids* 2009 see also Alizard et al. *J. Fluid Mech.* 2015

Optimal perturbations in channel flow

Cossu & Hwang J. Fluid Mech. 2010

Large-scale peak in turbulent shear flows

Plane channel (
$$Re_{\tau} > \approx 500$$
):

del Alamo & Jiménez JFM 2006, Pujals et al. Phys. Fluids 2009

Pipe flow (
$$Re_{\tau} > \approx 500$$
):

$$m=1 (\lambda_z=2\pi R/m\approx 6R)$$

Willis, Hwang & Cossu Phys. Rev E 2010

Couette flow (
$$Re_{\tau} \approx 50$$
):

$$\lambda_z$$
=4.5h

Hwang & Cossu JFM 2010

Boundary layer (ZPG) (
$$Re_{\delta*} > \approx 5000$$
):

$$\lambda_{z} \approx 6 - 8\delta$$

Cossu et al. JFM 2009

Results of optimal temporal growth (Gmax) analysis.

Similar scales obtained for stochastic forcing Larger scales obtained for optimal harmonic forcing

Secondary instability of coherent streaks

Temporal growth rate of secondary fundamental sinuous modes

Critical As = 21%Ue (< laminar $A_{s,crit}$!)

w-component of the most unstable secondary mode

Park, Hwang & Cossu, C.R.Ac.Sci. Méc. 2011 see also Alizard Phys. Fluids 2015

→ a coherent SSP might be at play at all amplified scales

"Coherent SSP" because Reynolds stresses of (incoherent) fluctuations are accounted ...suggestive results. BUT Can large-scale motions really (self) sustain in the absence of active small-scale motions?

How can you prove that?

Removing small-scale active structures from the picture: coherent self-sustained motions at all scales

2009-2015 in collaboration with Yongyun Hwang & Subhandu Rawat

Near-wall cycle analysis:

remove potentially active large scales by using small periodic domains → minimal flow unit (Jiménez & Moin 1991)

Analysis of large-scale motions: must remove active small scales to prove that large scales are self-sustained. How can this be done?

Idea #1: solve Navier-Stokes equations on very coarse grid larger than near-wall structures → tested: inaccurate solutions (few points) & unphysical energy production peak at grid scale → not a good idea...

Idea #2: use a `reasonable' grid (good resolution) + use filter → **quench the energy production of small scales & take into account dissipation** → no unphysical energy production peak at grid scale

The over-damped LES technique

Integrate (LES) equations for the filtered motions:

$$\frac{\partial \overline{u}_i}{\partial t} + \overline{u}_j \frac{\partial \overline{u}_i}{\partial x_j} = -\frac{\partial \overline{q}}{\partial x_i} + \nu \frac{\partial^2 \overline{u}_i}{\partial x_j^2} - \frac{\partial \overline{\tau}_{ij}^r}{\partial x_j}$$

Use purely dissipative Smagorinsky model

$$\overline{ au}_{ij}^r = -2v_t\overline{S}_{ij}$$
 $v_t = D(C_s\overline{\Delta})^2\overline{S}_{ij}$
Eddy viscosity
Smagorinsky constant
Smagorinsky mixing length for residual motions (Mason & Callen 1986)
 $v_t = D(C_s\overline{\Delta})^2\overline{S}_{ij}$

Passivate' increasing range of small scales → increase I₀

Idea (Cossu & Hwang 2010, 2011): increase Cs instead of Δ (grid size) \rightarrow increase I_0 & keep a good resolution

Survival of large-scale motions: Poiseuille flow

streamwise velocity levels u_{τ}^+ =-2

LSM survive
when smaller-scale
active structures
are quenched
(Hwang & Cossu 2010c)

Channel flow Re_{τ}=550 Surviving structures: $\lambda_z \approx 1.5h$, $\lambda_x \approx 3-4h$ (peaks) same size of original LSM!

Surviving large-scale motions

PIV data ZPG boundary layer (Dennis & Nickels JFM 2011)

Survival of large-scale motions: Couette flow

reference LES (Cs=0.05)

small-scales artificially damped

Large-scale motions survive without active buffer-layer processes

Large-scale streaks structure

reference LES (Cs=0.05)

overdamped LES (Cs=0.14)

Survival of log-layer motions (universal)

streamwise velocity levels u_{τ}^+ =-2.5

Hwang & Cossu Phys. Fluids 2011

 $u^{+} = -2.5$

Also intermediate (log-layer) motions survive when smaller-scale active structures are quenched

Intermediate coherent motions (from overdamped LES) are self-similar (like Townsend's attached eddies!)

Box spanwise size

Partial summary

A continuum of self-sustained coherent motions exists (scales from those of buffer-layer streaks to those of LSM & VLSM).

These motions directly extract energy from the mean flow (coherent lift-up).

No bottom-up or top-down mechanism needed. Different scales interact mainly via U.

Motions issued from (the overdamped LES) equations (not from a priori assumptions)

We believe that these motions are Towsend's attached eddies (see also work by Y Hwang)

A step further

What is the nature of these self-sustained coherent motions?

`Phase-space' interpretation?

Repeat what done in transitional flows → look for invariant solutions

Large eddy coherent solutions (LECS): Steady solutions in plane Couette flow

2011-2014 in collaboration with Subhandu Rawat & François Rincon (IRAP Toulouse)

Setting

Use the LSM-box $L_x \times L_z = 11h \times 5.5h$:

- same size of most energetic LSM
- optimal size at which the NCBW steady solutions of the Navier-Stokes equations appear a the lowest Re in Couette flow (Waleffe 2003)

Start with surviving LSM in overdamped LES (Cs=0.14) at low but fully turbulent Re=750 (Re $_{\tau}$ =52)

Compute steady solutions by using Newton-based method (peanuts) interfaced to LES code (diablo) \rightarrow needs an initial guess

Initial guess: edge state at Cs=0.14

Edge tracking using mean flow + coherent large-scale perturbation (amplitude used as bisection parameter)

$$u_0 = U(y) + A_0 u'_0(x,y,z)$$

Continuation in Cs at Re=750

Edge state used as initial guess for Newton continuation in Cs at Re=750 in the LSM-box → upper branch & continuation to Navier-Stokes solutions

Reynolds number continuation in a LSM-box

Cs=0 (Navier-Stokes) continuation to lower Re

The filtered steady solutions are connected to the NCBW branch of Navier-Stokes solutions

Upper branch continuation to higher Re

Cs=0 & Cs=0.05 upper branch continuation fails when Re > \sim 1000 \rightarrow alternative paths

UB coherent structures for higher Re

Reynolds number continuation in a minimal flow unit

The two continuation paths

Test: continue NCBW solutions in a minimal flow unit $L_x^+=250$, $L_z^+=100$ (size shrinking in outer units)

Continuation in the minimal flow unit

rms velocity profiles of converged solutions for Re=400, 750, 1100 and 1600 expressed in wall units

Solutions do not converge to constant shape in wall units → NCBW upper-branch solutions probably more related to LSM dynamics than to the near-wall dynamics

Large eddy coherent solutions (LECS): travelling wave solutions in plane Poiseuille flow

2013-2016 in collaboration with Subhandu Rawat (IMFT, Toulouse), François Rincon (IRAP Toulouse), Yongyun Hwang (Imperial) Ashley Willis (Sheffield), Jae Sung Park & Mike Graham (Wisconsin)

Single-streak high-Re TW solutions

TW solutions in LSM box can be continued to very high Reynolds numbers (with Hwang & Willis, 2016)

Plane channel flow LSM box: Lx=3h, Lz=1.5h continuation to high Re

Multi-streaks travelling wave solutions

Plane channel flow, Re 2000 with Lx=6.28h, Lz=5.55 h NS solutions issued by a saddle-node infinite period bifurcation and computed by continuation in Lz

Reverse-continuation from Navier-Stokes (Cs=0) upper-branch traveling wave exact solution to Cs=0.05 (reference LES solutions)

Multi-streaks travelling wave solutions

3D view

low-speed streaks (green: u+=-2% & streamwise vorticity (red /blue=±65% of max)

low-speed streaks & eddy viscosity (yellow: v_t/v=6.6%)

wallnormal rms profiles

Park & Graham P4 travelling wave solutions

Reverse continuation from Navier-Stokes (Cs=0) P4 TW ECS solution of Park & Graham (JFM 2015) $Lx=\pi h$, $Lz=\pi h/2$

P4-LECS UB solutions at Re=3500

streaks & streamwise vorticity

streaks & eddy viscosity associated to unresolved (small-scale) motions

Park & Graham P4 travelling wave solutions

Higher Cs ~improves upper branch solutions BUT deteriorates lower branch solutions if large

Cs=0.05 to stabilize the (subharmonic) turning point of the Navier-Stokes (Cs=0) LB solution

Summary

Found steady & travelling-wave `large-eddy' solutions of the filtered (coherent) large-scale motions

These solutions take into full account the effect of residual motions (inhomogeneous eddy viscosity)

Averaging of small scales → steady filtered LSM solutions even with unsteady small-scale motions

Solutions of the filtered equations can be connected to solutions of the Navier-Stokes equations. Reverse also works (but not always)

A final remark

Saddles: the high Re problem for the NS eqs.

Additional steady or TW solutions *of the Navier-Stokes equations* appear when Re increases → difficult to compute all of them in the developed turbulent regime

Turbulent solutions spend only 10-20% of the time near saddles already at transitional Re (Schneider et al 2007, Kerswell & Tutty 2007)

→ look at periodic solutions to build turbulent statistics from averaging of `exact' solutions (not successful yet)

High Re most of the energy is in large-scale motions → Can a few exact solutions of the *filtered* equations capture the dynamics of large-scale motions at large Re? If yes, is this enough to converge meaningful turbulent statistics?

Thank you for listening

papers available on:

http://www.enseignement.polytechnique.fr/profs/mecanique/Carlo.Cossu and/or Google Scholar / ResearchGate / ORCID / Researcher ID https://www.imft.fr/COSSU-Carlo-130

Acknowledgments: PSA, PRES Toulouse & Région Midi-Pyrénees (financial support) diablo (LES), peanuts (Newton), channelflow (DNS in MFU)