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How do we measure/detect/analyze 
vortices causing the forces in 
vortex-dominated and unsteady 
(and maybe turbulent?) flow fields? 

Lagrangian quantities: define a 
coherent structure from distinctions 
in material transport
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Cylinder in cross flow 

Vortex dynamics (unsteady 
shedding) 

Comparison with force/pressure 

3D turbulent channel 

Vortex tracking (structure 
velocity)
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vortex shedding from cylinder in cross-flow
2D, Re=100, Immersed boundary calculation 

(thanks to P. Munday, K. Taira, FSU)

Q
nFTLE
pFTLE

Rockwood & Green 2013
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finite-time Lyapunov exponent
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many data sets start with a velocity field

This is numerical data, but we can also acquire velocity fields 
from experiments: particle image velocimetry
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Eulerian: take gradients of the velocity field

Vorticity is the most common Eulerian criteria (∇×u)
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Lagrangian:  calculate quantities along fluid trajectories
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initialize a fluid trajectory at each grid point, 
keep track of x-location

x-location of trajectories at t0
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integrate fluid trajectories in time 
update x-location on original grid

x-location of trajectories at t1 > t0
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integrate fluid trajectories in time 
update x-location on original grid

x-location of trajectories at t2 > t1 > t0
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FTLE from gradient of integrated fluid trajectory final 
locations (flowmap: vector field) to find separation/

attraction lines
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a Lagrangian coherent structure is the ridge of the FTLE 
field, shows where trajectories sharply behave differently
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and they do a good job of distinguishing among 
vortices 
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can also watch fluid trajectories in backward time to 
get a negative-time FTLE field

eee
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e

nFTLE are attracting lines - look just like flow visualization
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Vortex separation 

Timing, where could we sense from surface, what regions 
would be “sensitive” to flow control 

New way of thinking about an old problem

Q nFTLE pFTLE
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Non-parallel intersections of negative-
time and positive-time FTLE ridges act as 
saddle points in the flow field 

Saddle sits on, and then separates from 
cylinder surface at shedding

Q
nFTLE
pFTLE

Rockwood & Green 2013
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objective shedding ID?

“Vortex center” is point of max Q 

Two distinct phases evident in tracking saddle 

Slow phase while vortex still forming, still attached 

Acceleration to convection speed as vortex sheds

Rockwood & Green 2013
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matching with experimental data

Experimental PIV data, Syracuse CoE water tunnel facility 
Re = 19000 
Phase averaged by pressure transducer at 70o 
See similar saddle point departure 
Some differences in general structure shape (but same features)
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Behavior of the diagnostic (following LCS saddles) is consistent 
across Re, experimental/numerical

3D

3D

2D
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Max lift (vertical force) on the cylinder coincides with 
the saddle point departure timing 
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Compare with the pressure distribution on the cylinder surface 
What locations will see maximum pressure fluctuations? 

Coincide with saddle departure 
Full flow field evolution (of interest) reduced to one red “x”

     pressure coefficient 
x   saddle 
o   vortex center
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Distinct behavior of Lagrangian saddle at time of vortex shedding 

Surface pressure behavior shows shedding coinciding with pressure minima/
peak vertical force 

Can we use pressure signals on the surface to infer the behavior of the 
shedding wake? 

Preliminary data from Re=400 3D numerical solution and Re=19000 
experimental data indicate potentially yes

Re=400, num Re=19000, exp
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Can we find/track similar coherent structures in 3D turbulence?
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turbulent channel simulation

Simulation based on Kim, Moin, Moser 1987 

Structure generation and evolution in 3D space and time 

How do LCS saddles do at tracking structures here?

Reτ=180
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But first, a little history…
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nFTLE (Green et al. 2007) on isolated hairpin (Zhou et al. 1999)
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Loss of “hyperbolicity” along nFTLE ridge showed where secondary 
vortex would emerge (Green et al. 2007)
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That was actually correlated with the appearance of pFTLE ridges 
and saddles (Green et al. 2010)
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Have more recently looked at new Lagrangian methods to identify 
fluid that is contained within secondary hairpin 

Can we connect it with wall signatures in pressure, shear, etc?
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Not yet 

Difficult to separate material from close to the wall and the 
material in the hairpin 

Constant entrainment and detrainment
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Not yet 

Difficult to separate material from close to the wall and the 
material in the hairpin 

Constant entrainment and detrainment 

Still, do these features of the Lagrangian FTLE field have any 
meaning in 3D turbulence? 

What happens when we look for saddles?



Recurrence, Self-Organization, and the Dynamics of Turbulence 
Kavli Institute for Theoretical Physics, 12 January 2017

For now, just tracking in the 2D plane (y+=50)

nFTLE
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Can start to compare structure velocity (as 
determined from saddles) to turbulent flow 
properties (mean velocity profile) 

Same trend as seen in Kim & Hussain, 1993

y/h

U
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Point of overlap closer to the wall 
than earlier work  

New results not statistically 
converged 

FTLE not great near the wall 

Fewer saddles mid-channel
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For now, just tracking in 2D planes (although FTLE calculated with full 3D data) 

LCS are really co-dimension 1 structures - saddles are co-dimension 2. Really 
curves in 3D space, not as straightforward to track. 

Can we use saddles to identify individual structures to watch dynamics 
(behavior, lifespan, etc)? 

Can we use correlate saddles (or diagnostics of saddles, saddle distributions) 
to correlate to wall measurements?
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some notes…

FTLE requires lots of velocity data support to calculate 

Dimension, spatial resolution, temporal resolution 

Despite previous point, relatively insensitive to velocity field errors 

Individual particle trajectories are sensitive, but it takes large, 
persistent errors to affect identification of separatrices in flow field 

Implementation in full turbulence IS tricky 

Flowmap integration time related to relevant time scale 

Might be filtering faster time scales, not capturing slower ones
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LCS saddles a different way to identify and track coherent 
structures 

Need algorithms/software for tracking (especially in 3D) 

Great for flow visualization, but should be a quantitative way to 
access what we intuit by eye in flow viz 

Looking for quantitative connections between visible vortex 
dynamics and flow structure, pressure, shear, forces, etc

Thanks: Sam Taira (FSU)
This work was supported by the Air Force Office of Scientific Research  

under AFOSR Award No. FA9550-14-1-0210.

summary
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9th International Symposium on Turbulence and Shear Flow Phenomena, 1 July 2015

Dimensionality issues

In experiments, can be difficult to get 
full volume of 3-component data in 3D 
flows 
Calculate nFTLE in a plane 

Use full volume of three-component 
data - let particle trajectories fly 
Use only in-plane velocities, assume 
v=0 (simulated 2D PIV) 

Not just a matter of filtering out smaller 
scales, important qualitative differences

Rockwood et al.,  Chaos 2015 
(submitted)

“2D” nFTLE

“3D” nFTLE

Turbulent 
channel DNS

Reτ=180
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• Cubic splines can be impractical in full 3D space over the whole 
time of interest

• Is there a smarter way to recreate the intermediate velocity fields?
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• For turbulent channel, use Taylor’s hypothesis (frozen eddy) and 
shift velocity field by it’s mean profile

• Advection contributed by turbulent circulations themselves is small and 
therefore the advection of a field of turbulence past a fixed point can be 
taken to be entirely due to the mean flow

• Instead of interpolating in time, shift velocity field according to the 
mean velocity profile

• Cubic splines can be impractical in full 3D space over the whole 
time of interest

• Is there a smarter way to recreate the intermediate velocity fields?
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nFTLE using shifted fields

streamwise 
velocity
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nFTLE using shifted fields

streamwise 
velocity

50 dt

velocity field shifting


