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Talk Outline 

 

•  Motivation	
–  Some	geophysical	and	astrophysical	flows.	
–  The	need	to	go	beyond	DNS	–	but	where?	

•  Reduced	Models	

•  The	Quasilinear	approximation	
–  When	does	linearising	about	the	adjusted	(to	the	fluctuation	

interactions)	mean	state	work?	

•  The	Generalised	Quasilinear	Approximation:	Some	
model	problems…	
–  Jet	formation	
–  Magnetised	Taylor-Couette	(HMRI)	
–  Rotating	Couette	flow	

•  [Direct	Statistical	Simulation]	
•  Conclusions	



The	“Big	Bad”	flows	of	AGFD	
© John Gibson 

The other guys’ programme 



•  Often important to derive “reduced” models of turbulence that 
yield insight into the dynamics/statistics of the full problems in 
certain parameter regimes   

•  Dynamical Systems theory 
•  Find building blocks of turbulence 
•  Fully nonlinear solutions 

•  Asymptotic theories (talks by KAJ, GPC) 
•  Models valid in some asymptotic wedge in parameter space. 
•  Often validity of models extends beyond the formal limit of the theory. 

•  Statistical Models 
•  Derived to yield information about the statistical properties of a system 
•  Or the statistical properties of certain unresolved scales. 
•  Rely on truncations/approximations 

•  Often unwarranted (e.g. homogeneity, isotropy) 
Herring (1963), Kraichnan (1980), Farrell & Ioannou (2007, 2009), Tobias et al (2011), Squire & 
Bhattacharjee (2014, 2015),  Marston et al (2014), Bakas & Ioannou (2011, 2013), Srinivasan & Young 
(2012), Parker & Krommes (2013,2014), Tobias & Marston (2013), Constantinou et al (2016) 

Reduced Models 

DYN SYS 

ASYMP STAT/DSS 



•  Energy	input	at	small/
moderate	scales	
–  large	scales/mean	flows	
emerge	owing	to	
correlations	in	
turbulence	(rotn/strat)		

•  Convective	driving	of	mean	
flows	in	planets/stars	

•  Driving	of	jets	on	giant	
planets	

•  Large-scale	Dynamos	
–  e.g.	solar	cycle	

•  Energy	input	via	mean	
flows/fields	at	large	scales	
–  small	scales	emerge	
owing	to	instability	of	
large	scales.	

–  these	act	back	to	modify	
large	scales	flows	

•  KH	instability	
•  Taylor-Couette	
•  Magnetorotational	Instability	
•  Joint	tachocline	instabilities	
•  Pipe	Flow	
•  Rotating	Couette	Flow	

Two types of turbulent interaction with means 



Low-order statistics: smoother in space than instantaneous flow.   

Statistics evolve slowly in time, or not at all, and hence may be 
described by a fixed point, or at least a slow manifold. 

An aside: Direct Statistical Simulation: 
Why simulate the statistics? 

Statistics are less sensitive to changes in underlying parameters 
than detailed dynamics. 

 
In geophysics/astrophysics correlations are non-local  and highly 

anisotropic and inhomogeneous.  Statistical formulations must 
respect this. They should also respect conservation laws 

Statistics usually describe mean/average behaviour and 
variations about that mean (e.g. 2pt correlations) 

Solution of Statistical Equations is an old idea: Boussinesq, 
Reynolds, Lorenz, Herring, Kraichnan, Frisch, Farrell, Ioannou 



•  Eddies sheared apart by mean flows; exact in certain asymptotic limits  
•  Conservation of global linear and quadratic invariants 

•  Constrained triad decimation in pairs (Kraichnan 1985) 
•  No local cascade or inverse cascade (all non-local) 
•  The (inhomogenous/anisotropic) statistical formulation of this approach is CE2/

SSST 

            Degrees of Approximation   
 Quasilinear Approximation (QL) 

EENL/PIN 



The effectiveness of this approximation in fluids is often measured  
by the Kubo number  (see e.g. Diamond et al 2005,  
Tobias & Marston 2016) 
 
If this approximation works the mean adjusts owing to perturbation/perturbation 
interactions only. The perturbations only respond to the mean 
 
The statistical formulation of this approximation can be shown to  
break down as one moves away from statistical equilibrium  (Tobias & Marston 2013) 

            Degrees of Approximation   
 Quasilinear Approximation (QL) 

R =
urms⌧c

lc



          When does QL work for turbulence? 

•  Kubo number small 
•  Zonostrophy parameter large 
•  Eddy/eddy à eddy nonlinearity subdominant  

✔ 

✗ 



Generalised Quasilinear Approximation (GQL): 
Separate Triads Into Long and Short Scale interactions 

•  Energy can be scattered between short-scale modes via interactions with the 
large-scale flows. 

•  Energy can be scattered into “long” via interactions of short at different 
wavenumbers. 

•  Quadratic Conservation laws are maintained. 
•  Here we give examples for spatial scale interactions (wavenumbers) 



 
 
 
 
 
 
 
 
 
 

 

QL vs GQL: Beyond Quasilinearity 

 

•  QL/GQL		have	been	tested	via	direct	numerical	simulation	
on	3	paradigm	problems	

	

	
–  Rotating	Couette	

flow	(3D)	
•  Tobias	&	Marston	

(2016)	

–  Instability	for	
anticyclonic	shear	

–  Transport	of	
absolute	vorticity	

–  Energy	to	small	
scales	

	
–  Helical	

Magnetorotational	
instability	(2D)	

•  Magnetised	Taylor-
Couette	(Child,	
Hollerbach,	Marston	
&	Tobias,	Journal	of	
Plasma	Physics,	2016)	

–  Large-scale	
instability	

–  Energy	to	small	
scales	

	

	
–  Driving	of	Barotropic	

jets	on	a	sphere	and	
beta-plane	

•  	Marston,	Chini	&	Tobias	
(PRL,	2016)	

–  Inverse	anisotropic	
cascade	

–  Reynolds	stresses	
–  Energy	to	large	scales.	
–  See	also	Constantinou	et	al	

(2016)	

	



Paradigm Problems 
 @tq = L[q] +N [q q] + f(t)

@t⇣ = �⇣ � ⌫4r4⇣ � v.r(⇣ + 2⌦ sin ✓) + ⌘(t)

⇣ = (r⇥ v) · r̂

Radial component  
of the vorticity 

Rhines (1975), Vallis & Maltrud  (1993),  Galperin et al (2006, 2010),  Farrell & Ioannou  (2007),  
Tobias, Dagon & Marston (2011), Scott & Dritschel (2012), Srinivasan & Young (2012), Tobias & 
Marston (2013), Bakas & Ioannou (2014), Constantinou et al (2016) 

1. Barotropic turbulence. 2D flow on a rotating sphere or beta-plane 
 



DNS Movie of hydro jet formation 

Relative Vorticity 



Jet	(mean	flow)	formation	

Zonal Mean Zonal Vorticity 

Zonal Mean Zonal Relative Velocity 

Time 

Time 



Hydrodynamic:	QL	DSS	
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•  Detailed	comparison:	QL	reproduces	mean	shape	of	
jet	fairly	well	(except	at	poles	where	mean	is	small)	

•  No	eddy-eddy	scattering	and	no	forcing	at	the	poles)	



Covariance/2pt	correlation?	
	

	

	

DNS 

DNS 



Barotropic Jet. QL vs GQL (sphere) 

 
Marston, Chini & Tobias (PRL, 2016) 
•  QL (and therefore CE2) overemphasises 

the role of waves. 
•  Overemphasises long range correlations 
•  Can not scatter energy to where there is 

no direct forcing (i.e. the poles) 



Vorticity Power Spectra (GQL) 

“Truth” 

•  GQL can scatter energy 
between small scales off the 
large scales 

•  This is impossible in standard 
quasilinear closure… 

•  Hence QL overemphasises the 
importance of the Rossby 
wave instability of the 
emerging mean flow. 



Quasilinear	approx	may	break	down	as	
one	moves	away	from	statistical	

equilibrium	

Jets on a β-plane: decreasing Zonostrophy Parameter: Jupiter jets 
à Ocean jets 

Move further away from equilibrium. More energy in eddies… 
Need to include more sophisticated interactions 
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Barotropic Jet. QL vs GQL (Beta-plane) 
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•  On a beta-plane even QL with a small cut-off Λ=3 can reproduce merging of jets. 
•  QL struggles to get number of jets correct. 
•  Formal derivation of GQL can be achieved via asymptotic expansion 

•  Small parameter is related to degree of lack of statistical equilibrium 
•  In this case, the small parameter can be related to ratio of dissipation to forcing. 

Low modes High modes 



 
 
 
 
 
 
 
 
 
 

 

Axisymmetric Helical MRI. QL vs GQL 

 

•  Helical	MRI	

	
–  Helical	Magnetorotational	instability	

(2D,	axisymmetric)	
•  Forward	cascade	
•  Magnetised	Taylor-Couette	(Child,	Hollerbach,	

Marston	&	Tobias,	Journal	Plasma	Physics,	2016)	

	

Full DNS 

Λ=0 

Λ=3 

Two Point Correlation Functions 



 
 
 
 
 
 
 
 
 
 

 

Rotating Couette Flow 

 

	

•  Narrow	gap	limit	of	Taylor-Couette	flow	(Faisst	&	Eckhardt	(2000))	
•  Experiments:	Tilmark	&	Alfredsson	(1992),	Hiwatashi	et	al	(2007),	

Tsukahara	et	al	(2010)	
•  Some	very	complicated	dynamics	at	moderate	Re	

–  	co-existence	of	coherent	structures	and	turbulence	Bech	&	Andersson	(1996,	1997)	
–  Wall	shear	stress	non-monotonic	function	of	Rotation.	Salewski	&	Eckhardt	(2015)	

•  Two	important	non-dimensional	parameters	
–  Reynolds	number:	Re	=	Uh/ν
–  Rossby	number:	Ro	=	U/ (2 Ω h)		
–  	(Note	in	literature	some	use	Rotation	number	Ro	=	(2 Ω h)	/U	)	
–  à	Ro	=	1/Ro	!	



•  Re=1200, Ro=100 (weakly rotating). 
•  Evolves to a state with 2 time-dependent wavy 

rolls. 
•  Has transport both by these coherent 

structures and by turbulence (Bech & 
Andersson 1996,1997) 

•  Kubo number R ~ 0.5 
•  (Evolution is via a state with 3 straight rolls.) 

 
•  Solved using pseudo-spectral Dedalus 

framework  dedalus-project.org 



Snapshot of flow in plane z=0.1 
Mean Flow 

y 

x 

y 



Mean flows, dissipation rate, and spectra can  
be reproduced even if the cut-off is O(5) in each 
direction. 
 
Note the QL approximation performs more poorly. 
even if quasilinear in one direction and fully 
nonlinear in the other (cf Thomas et al 2014, 2015) 



Second cumulant can  
be reproduced even if  
The cut-off is O(5) in each 
Direction! 



GQL can lead to a closure for DSS (GCE2) 

Closure 



Model	Reduction	via	POD	
•  POD	usually	used	as	a	tool	to	analyse	modes	of	

greatest	importance	in	flows	(eg	atmospheric	
flows,	experiments)	
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FULL	DNS	

QUASILINEAR	DNS	
(QL-DNS)	

GENERALISED	
QUASILINEAR	DNS	

(GQL-DNS)	

CE2	(SSST)	
eCE2	

GCE2	

GCE2	
	(cutoff	à	large)	

CE2.5	
Inhom/

anisotropic	
EDQNM	

CE3	

Approximation Statistical Theory 

Some eddy/eddyà eddy 
 interactions 

Marston, Qi & Tobias (2017), arXiv:1412.0381 (2014)  



Conclusions 

 

•  The	Quasilinear	Approximation	can	be	valid	in	cases	where	the	
projection	for	the	third	cumulant	onto	the	second	cumulant	is	
small	(low	Kubo	number)	

•  A	better	approximation	is	GQL,	which	generalises	the	definition	of		
“mean”	to	large-scales	
–  Allows	for	scattering	of	energy	from	eddies	at	one	scale	to	

another	via	the	large	scales	(non-local	transfer)	
–  Conserves	quadratic	invariants	
–  Can	form	the	basis	of	a	statistical	closure	(GCE2)	
–  GQL	is	better	at	reproducing	the	low-order	statistics	of	flows	

than	QL.	
•  Driving	of	mean	flows	
•  Magnetised	Taylor	Couette	
•  Rotating	Couette	

–  Can	be	generalised	to	timescales,	rather	than	spatial	scales.	
–  Could	form	the	basis	of	a	subgrid	statistical	model	

•  Statistical	models	(DSS)	can	be	made	more	efficient	using	POD	
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Direct Statistical Simulation via Cumulants 

Take PDE or set of PDEs 

Define Cumulants 

Derive Evolution Eqns for 
Cumulants 

Truncate cumulant hierarchy 

e.g. Momentum, induction, energy equations 

1st cumulants: means 
2nd cumulants: two-point  correlation functions 
                          cross correlations 

Use Hopf functional technique or brute force 

@tq = L[q] +N [q q] + f(t)

c1 = hq0(x)i, c2 = hq0(x1)q
0(x2)i, c3 = hq0(x1)q

0(x2)q
0(x3)i etc.

c3 = hq0(x1)q
0(x2)q

0(x3)i

Truncation at second order is a Quasilinear, 
self-consistent mean-field theory (CE2) 
Formally analogous to Farrell & Ioannou S3T 
Truncation at third order is an anisotropic,  
inhomogeneous EDQNM (CE3) 

Split into means and fluctuations 
Reynolds averaging 

 

Conservation Laws 
Realizability 

… 


