Search for the "ULTIMATE STATE" in turbulent Rayleigh-Benard convection

Guenter Ahlers

Department of Physics and iQCD, UCSB
Denis Funfschilling
LSGC CNRS - GROUPE ENSIC, BP 451, 54001 Nancy
Eberhard Bodenschatz
Max Planck Institute for Dynamics and Self-Organization, Goettingen

$$
\begin{aligned}
& \mathrm{Ra}=4.6 \times 10^{8} \\
& \mathrm{Pr}=6.0
\end{aligned}
$$

Search for the "ULTIMATE STATE" in turbulent Rayleigh-Benard convection A progress report

Guenter Ahlers
Department of Physics and iQCD, UCSB
Denis Funfschilling
LSGC CNRS - GROUPE ENSIC, BP 451, 54001 Nancy
Eberhard Bodenschatz
Max Planck Institute for Dynamics and Self-Organization, Goettingen
Assisted by
Xiaozhou He
Artur Kubitzek
Holger Nobach
Andreas Renner
Max Planck Institute for Dynamics and Self-Organization, Goettingen

Supported by the Max Planck Society and the Volkswagen Stiftung Work at UCSB supported by NSF Grant DMR07-02111

Search for the "ULTIMATE STATE" in turbulent Rayleigh-Benard convection

Guenter Ahlers

Department of Physics and iQCD, UCSB
Denis Funfschilling
LSGC CNRS - GROUPE ENSIC, BP 451, 54001 Nancy
Eberhard Bodenschatz
Max Planck Institute for Dynamics and Self-Organization, Goettingen

$$
\begin{aligned}
& \eta_{K}=\left(v^{3} / \varepsilon_{u}\right)^{-1 / 4} \\
& \eta_{K} / \mathrm{L}=\operatorname{Pr}^{1 / 2}[\mathrm{Ra}(\mathrm{Nu}-1)]^{-1 / 4}
\end{aligned}
$$

(see, e.g., Lohse and Xia,
Annu. Rev. Fluid Mech. 42, 335 (2009))

$$
\begin{aligned}
R \mathrm{Ra} & =4.6 \times 10^{8} \\
\mathrm{Pr} & =6.0 \\
\eta_{K} / \mathrm{L} & =6 \times 10^{-3} \\
\left(\eta_{\mathrm{K}}\right. & \sim 0.5 \mathrm{~mm})
\end{aligned}
$$

Some [e.g. Sugiyama et al., EPL 80, 34002 (2007)] argue that the System is turbulent when
$\ell_{\text {coher }} / L=10 \eta_{K} / L<0.1$

\uparrow Q $\quad \begin{array}{r}\eta_{K} L \\ L\end{array}=6 \times 10^{-2}$ Movie by K.Q. X
Nusselt number $\mathrm{Nu}=(\mathrm{QL} / \Delta \mathrm{T}) / \lambda$
Prandtl number $\operatorname{Pr}=v / \kappa$

See e.g. Ahlers, Grossmann, and Lohse, Rev.Mod.Phys. 81, 503 (2009).
D. Lohse and K.-Q. Xia, Annu. Rev. Fluid Mech. 42, 459 (2010).
G. Ahlers, Physics 2, 74 (2009).

$$
R a<R a^{*} \simeq 10^{14}:
$$

Thin thermal boundary layers above (below) the bottom (top) plate control the heat transport when Ra is not too large. Then, from experiment,

$$
N u \sim R a^{\gamma_{e f f}} \operatorname{Pr}^{0.0} \quad \gamma_{e f f} \simeq 0.31
$$

$R e_{s}>R e_{s}^{*} \simeq 400$
(or equivalent fluctuations):
The "Kraichnan" regime

$$
N u \sim R a^{1 / 2}
$$

with logarithmic corrections due to the viscous sublayer:

$$
\begin{aligned}
& N u \sim R a^{1 / 2}(\ln R a)^{-3 / 2} \operatorname{Pr}^{-1 / 4} \\
& \text { for } 0.1 \leq \operatorname{Pr} \leq 1
\end{aligned}
$$

R. H. Kraichnan, Turbulent thermal convection at arbitrary Prandtl numbers, Phys. Fluids 5, 1374 (1962)

The LSC applies a shear to the boundary layers (BL) and is expected to cause a BL shear instability when the shear Reynolds number $\operatorname{Re}_{\mathrm{s}}$ exceeds a critical value $\mathrm{Re}_{\mathrm{s}}{ }^{*} \sim=400$.

Various attempts to observe the Kraichnan predictions:

A.) Systems "without" boundaries where $\mathrm{Nu} \sim \mathrm{Ra}^{1 / 2}$ is expected:
1.) DNS for RBC with periodic BCs
2.) DNS for Rayleigh-Taylor instability
3.) salt diffusion in a vertical pipe
4.) RBC in a vertical column with wide top and bottom entrance sections
5.) Local heat flux measurements for RBC
B.) Systems with boundaries where $\mathrm{Nu} \sim \mathrm{Ra}^{1 / 2} /[\log (\mathrm{Ra})]^{3 / 2} \sim \mathrm{Ra}^{0.39}$ is expected :
6.) Turbulent Taylor-Couette flow
7.) RBC experiments using He near its critical point
8.) RBC experiments using classical gases under pressure
D. Lohse and F. Toschi, Phys. Rev. Lett. 90, 034502 (2003).

DNS, using periodic BCs in the vertical direction

Kolmogorov scaling and Intermittency in Rayleigh-Taylor turbulence

Boffetta, Mazzino, Musaccio, and Vozella, Phys. Rev. 79, 065301R (2009).

Cold fluid above hot fluid
No boundaries!
$\mathrm{Nu} \sim \mathrm{Ra}{ }^{0.5}$

M.R. Cholemari and J.H. Arakeri,

Int. J. Heat Mass trans. 48, 4467 (2005);
J. Fluid Mech. 621, 69 (2009)

$$
R a=\frac{g\left(\Delta \rho /\left(\rho_{0} L\right) d^{4}\right.}{\nu \alpha}
$$

$$
\mathrm{d}=\text { slot width }
$$

Nu defined in terms of concentration flux

$$
N u=\frac{\langle f l u x\rangle}{\alpha \Delta C / L}
$$

They claim to get $\mathrm{Nu} \sim \mathrm{Ra}^{0.5}$

So they tried

$$
\begin{aligned}
& d=\theta / \beta \\
& \theta=\mathrm{rms} \text { fluct. of } \mathrm{T}
\end{aligned}
$$

Note that depends on Ra !
Kraichnan assumes a length that depends only on the geometry.

$$
R a=\frac{g \alpha \beta d^{4}}{\kappa \nu} \quad N u=Q / \lambda \beta
$$

$$
\beta=d T / d z
$$

Using the slot width for d did not give a power law for $\mathrm{Nu}(\mathrm{Ra})$.
M. Gibert, H. Pabiou, F. Chilla, and B. Castaing, "High-Rayleigh-number convection in a vertical ch
 Phys. Rev. Lett. 96, 084501 (2006),
Gibert et al., Phys. Fluids 21, 035019 (2009).
X.D. Shang,P. Tong, and K.Q. Xia, Phys. Rev. Lett. 100, 244503 (2008) [see also S. Grossmann and D. Lohse, Phys. Fluids 16, 4462 (2004)].
$N u(x, y)=\frac{\langle w(x, y, t) \theta(x, y, t)\rangle_{t}}{\kappa \nu}$

Torque scaling in turbulent Taylor-Couette flow
D.P.M. van Gils, S.G. Huisman, G.-W. Bruggert, C. Sun, and D. Lohse, Phys. Rev. Lett. 106, 024502 (2011)
$\mathrm{Nu}_{\omega} \sim$ flux of angular velocity from the inner to the outer cylinder $\longrightarrow \mathrm{Nu}$
$\mathrm{Ta} \sim\left(\Omega_{\mathrm{i}}-\Omega_{0}\right)^{2} \longrightarrow \mathrm{Ra}$
B. Eckhardt, S. Grossmann, and D. Lohse, J. Fluid Mech. 581, 221 (2007).
van Gils et al. find $\mathrm{Nu}_{\omega} \sim \mathrm{Ta} \mathrm{a}^{0.38}$, consistent with turbulent BLs. In Taylor-Couette flow, the driving applies shear directly to the BLs; thus the BLs are driven into the turbulent state more easily than is the case for RBC where the thermal driving induces a large-scale circulation (or fluctuations) which in turn (as a secondary effect) applies the shear to the BLs.

How to get large Ra:

$$
R a=\frac{\alpha g \Delta T L^{3}}{\kappa \nu}
$$

To get large Ra, use a sample with large L (then Γ will necessarily be small).

Use a fluid with large $\alpha / \kappa \nu$

RBC in aspect ratio
$\mathrm{D} / \mathrm{L}=1 / 2$, using
He^{4} near its CP ($\sim 5 \mathrm{~K}$)

At CP:
$R a \rightarrow \infty$
$\operatorname{Pr} \rightarrow \infty$
Solid circles:
X. Chavanne,
F. Chilla, B. Chabaud,
B. Castaing, and B. Hebral,

Phys, Fluids 13, 1300 (2001)
Open squares:
J. Niemela, L. Skrbek, K. R. Sreenivasan, and R.J. Donnelly,
Nature 404, 837 (2000)
$\mathrm{L}=1 \mathrm{~m}$!

X. Chavanne, F. Chilla, B. Castaing, B. Hebral, B. Chabaud, and J. Chaussy, Phys. Rev. Lett. 79, 3648 (1997), " Observation of the ultimate regime in Rayleigh-Bl'enard convection".

Red circles: Chavanne, X., F. Chilla, B. Chabaud, B. Castaing, and B. Hebral, Phys, Fluids 13, 1300 (2001) (the "GRENOBLE" data).

Black squares: Niemela, J., L. Skrbek, K. R. Sreenivasan, and R. Donnelly, Nature 404, 837 (2000) (the "OREGON" data).

Both experiments were done with helium near 5 K . It seemed desirable to have another set of measurements, preferably not with helium at low temperatures but rather at ambient temperatures with more classical experimental techniques.

March 2007: Eberhard said to me "I will build a very large pressure vessel at my Institute in Goettingen for various experiments. Why not put a very large convection cell into it?"

Both experiments were done with helium near 5 K . It seemed desirable to have another set of measurements, preferably not with helium at low temperatures but rather at ambient temperatures with more classical experimental techniques.

March 2007: Eberhard said to me "I will build a very large pressure vessel at my Institute in Goettingen for various experiments. Why not put a very large convection cell into it?"

How to get large Ra:

$$
\begin{aligned}
& R a=\frac{\alpha g \Delta T L^{3}}{\kappa \nu} \\
& R a=\frac{\alpha g \Delta T L^{3} \rho^{2} C_{P}}{\lambda \eta} \\
& R a \propto \frac{\rho^{2}}{\lambda \eta} \propto \frac{P^{2} M^{2} L^{3}}{\lambda \eta} \quad \eta=\text { scattering radius }
\end{aligned}
$$

To get large Ra, use a high molecular weight gas at high pressure in a sample with large L .
SF_{6} at pressures up to 19 bars !

Under turret, 1.5 m X 4m
The Uboot of Goettingen

P up to 19 bars
Gases: $\mathrm{He}, \mathrm{N} 2$, Air, SF_{6}

G. Ahlers, D. Funfschilling, and E. Bodenschatz, New J. Phys. 11, 123001 (2009).

Size of smallest coherent structures (eddies?) is expected to be $\ell_{\text {coher }} \sim=10 \eta_{K}$ Which is of order half a mm near $\mathrm{Ra}=10^{15}$. But $e_{\text {coher }} / L \sim=2 \times 10^{-4}$.
$\operatorname{Re}_{\mathrm{s}} \sim=800$.

Plusses: Chavanne et al., Phys. Fluids 13, 1300 (2001).
Stars: Niemela et al., Nature 404, 837 (2001).
D. Funfschilling, E. Bodenschatz, G. Ahlers, Phys. Rev. Lett.103, 014503 (2009).
G. Ahlers, E. Bodenschatz, D. Funfschilling, and J. Hogg, J. Fluid Mech. 641, 157 (2009).
G. Ahlers, D. Funfschilling, and E. Bodenschatz, New J. Phys. 11, 123001 (2009).

"Open Sample"

Plusses: Chavanne et al.,
Phys. Fluids 13, 1300 (2001).
Stars: Niemela et al.,
Nature 404, 837 (2001).
D. Funfschilling, E. Bodenschatz, G. Ahlers, Phys. Rev. Lett.103, 014503 (2009).
G. Ahlers, E. Bodenschatz, D. Funfschilling, and J. Hogg, J. Fluid Mech. 641, 157 (2009).
G. Ahlers, D. Funfschilling, and E. Bodenschatz, New J. Phys. 11, 123001 (2009).

"Open Sample"

"Multiple scaling in the ultimate regime of thermal convection" S. Grossmann and D. Lohse, Phys. Fluids, in print.

These data are for the "Open Sample". In June 2010 the gap between the sidewall and the plates was sealed to create the "Closed Sample".

Black symbols: Open sample
Colored symbols: Closed sample
Middle branch "M": $T_{m}-T_{U}>0$
Upper branch "U": $T_{m}-T_{U}<0$

Circles: leveled cell
Diamonds: cell tilted through 0.8 degrees
Purple: Upper branch
Red: Middle branch

There is a similarity to a subcritical bifurcation (or first-order phase transition) "unfolded" by a "field" h, with $h \sim T_{m}-T_{U}$.

But it is unknown why $\mathrm{T}_{\mathrm{m}}-\mathrm{T}_{U}$ should couple to the system and act like a field.
Although there is a continuity of states at relatively small Ra, the "pure" system ($\mathrm{h}=0$) would have two distinct states.

Summary

"Open" Sample:
1.) There is a sharp transition in the heat transport at $\mathrm{Ra}^{*}=4 \times 10^{13}$.
2.) For $R a<R a^{*}$ we find $N u \sim R a^{0.308}$.
3.) For $\mathrm{Ra}>\mathrm{Ra}^{*}$ there is a Lower branch with $\mathrm{Nu} \sim \mathrm{Ra}^{0.25}$.
4.) For $\mathrm{Ra}>\mathrm{Ra}^{*}$ there is an Upper branch where $\mathrm{Nu} \sim \mathrm{Ra}^{0.35}$.
5.) The transition from one branch to the other occurs when the temperature difference between the sample and the Uboot is changed.

Summary

"Closed" Sample:
1.) The lower branch seen with the open sample no longer exists.
2.) The upper branch seen with the open sample still exists.
3.) There is a "Middle" branch with $\mathrm{Nu} \sim \mathrm{Ra}^{0.318}$.
4.) The transition from one branch to the other occurs when the temperature difference $T_{m}-T_{U}$ between the sample and the Uboot is changed.
5.) For relatively small Ra all Nu between the two branches can be reached by varying $T_{m}-T_{U}$.
6.) For relatively large Ra Nu changes discontinuously as $T_{m}-T_{U}$ passes through zero, indicating that there are two distinct states.
7.) There are similarities to a continuous phase transition in the presence of a field, with $T_{m}-T_{U}$ playing the role of the field; but it remains unknown how this field couples to the system.

