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* Viscoelastic RT turbulence 



The addition of long-chain polymers has dramatic effects on flowing fluids 

Drag reduction: 
drag coefficient 

can be reduced by polymers up to 
about 80% (Toms 1949) 

  
f =

work done by force
kinetic energy in mean flow

In a pipe... 

  
f =

Δp R
ρU2 L



Numerical simulations of drag reduction 

Turbulence drag reduction has been observed in numerical simulations of 
channel flow based on viscoelastic models of polymer solution (Oldroyd-B, FENE-P) 
[Sureshkumar et al, POF 9, (1997), Ptasinski et al, 
JFM 490 (2003), De Angelis et al, PRE 67 (2003)] 

Y. Dubief 



Modeling polymers: Oldroyd-B 
Dumbbell: 2 massless beads connected by a spring 
one relaxation time 
no polymer-polymer interaction 
always smaller than Kolmogorov scale 
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From single polymer to elastic field 
Polymer conformation tensor 

Feedback on the flow: elastic stress tensor 
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f – friction coef 
K0 – elastic modulus 



Drag reduction in the absence of boundaries 

Numerical simulations of viscoelastic Kolmogorov flow show DR phenomenology 

Navier-Stokes forced with F=(Fcos(kz),0,0) ,    mean velocity: <u>=(Ucos(kz),0,0) 

  
f = F  L

U2

[Boffetta, Celani, Mazzino, PRE 71 (2005)] 

Drag coefficient 

mean velocity increases 
Reynolds stress decreases 

Laminar: F=νU/L2  and  
  
f = 1

Re



  Re
c
≈ El −2/3

Collapse of drag coefficients at different elasticity 

Balkovsky, Fouxon, Lebedev, PRE 64 (2001) 

Lumley’s time criterion: 
onset of drag reduction when      ∇u  τ −1



Effects of polymers on homogeneous-isotropic turbulence: 
* reduction of turbulent fluctuations below the Lumley scale 
* steeper energy spectrum at small scales 
* reduced viscous dissipation 
* increased turbulent fluctuations at large scale (not always) 

[De Angelis et al, JFM 531 (2005), Liberzon et al, POF 17 (2005), Berti et al, EPL 76 (2006), 
 Ouelette et al, JFM 629 (2009)] 

“Drag reduction” in absence of mean flow 

   L = (ετ)1/2

Berti et al, EPL 76 (2006) Ouelette et al, JFM 629 (2009) 

simulation experiment 

  Wi = τ / τ
k



Is there any effect of polymers on turbulent convection ? 

Does polymers make heat transfer more efficient ? 

Not clear:  

Ahlers and Nikolaenko, Rayleigh-Benard experiment: negative 
[PRL 104, 034503 (2010)] 

Benzi et al, shell model and mean temperature gradient: positive 
 [PRL 104, 024502 (2010)] 

Numerical study of the problem in Rayleigh-Taylor turbulence 

Boffetta, Mazzino, Musacchio and Vozella 
JFM 643, 127 (2010) 
PRL 104, 184501 (2010) 
PRE 83, 056318 (2011). 



Rayleigh-Taylor setup and instability 
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For small A the Boussinesq approximation for an 
incompressible fluid holds: 

  

∂tu + u ⋅∇u = −∇p + νΔu − βgT
∂tT + u ⋅∇T = κΔT
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Atwood: 

Time evolving turbulence 
with initial conditions:    

u(x, 0) = 0
T (x, 0) = −(1 / 2)θ

0
sgn(z)
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T2 
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T1 
Instability on the interface of two fluids of 
different densities with relative acceleration. 

Single fluid with temperature jump: θ0=T2-T1 



Phenomenology of RT turbulence 

Turbulent mizing layer of width h(t)     h(t) ≈ Agt2 

Large scale velocity fluctuations          urms(t)≈Agt 

Kinetic energy pumped in the system at a rate 
   
ε

I
 u3

h
 (Ag)2t

Energy balance:  
turbulent kinetic energy  E=(1/2) <u2> produced from 
potential energy P=-βg <zT> 
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Dimensional balance:  
   

du
rms
2

dt
 βgθ

0
u

rms
therefore 

-> time evolving turbulence 

  
ε = ν (∇u)2



Evolution of the mixing layer 

  α = h(t) / (Agt2)

t=1.4 
t=2.0 
t=2.6 
t=3.2 



Small scale theory of RT turbulence 

  ε(t) ≈ (Ag)2t

M. Chertkov, PRL 91 (2003) 

Ansatz: buoyancy negligible at small scales 
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small scale fluctuations follow Kolmogorov-Obukhov scaling 
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Inconsistent in 2D where the energy flows to large scale (buoyancy dominated) 

passive temperature in turbulent flow with time dependent flux 



Buoyancy balances inertia at all scales 
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direct cascade of temperature fluctuations 

small scale fluctuations follow Bolgiano scaling 
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RT turbulence in 2D 

A.Celani, A.Mazzino, L.Vozella, PRL 96 (2006) 

M. Chertkov, PRL 91 (2003) 



Energy flux 

t=2.4 τ 
t=2.6 τ 
t=2.8 τ 
t=3.0 τ 

Inertial range of scale-independent kinetic energy flux Π(k,t) 

   
ε = Π(k,t) ≈

u
L
3

h
 t

RT as an adiabatically 
evolving turbulence 

(small scales adapt to 
large scale variations) 

inertial 

buoyancy 

t=3.0 τ 

Buoyancy contribution to the energy flux 
becomes negligible at small scales 
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Spectra collapse 
(Kolmogorov scaling) 

Collapse of kinetic energy and 
temperature variance spectra at 
t/τ=1.0, 1.4, 1.8, 3.8 

Insets: time evolution of kinetic 
energy dissipation ε ≈ t and  
temperature variance dissipation 
εT ≈ t-1 

Spatial-temporal scaling in agreement 
with dimensional theory 

   

E(k,t)  t2/3k −5/3
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Adiabatic evolution of a Kolmogorov spectrum 
is compatible with energy balance only if the integral scale L evolves according to 

  E(k,t) = C ε2/3(t)k −5/3

A remark on the evolution of the spectrum 
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Time dependent input εI(t) 
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In RT turbulence 
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Velocity correlation scale L(t) vs 
mixing layer width h(t) 



Mixing efficiency: turbulent heat transport 
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In Rayleigh-Taylor turbulence dimensionless 
numbers Re, Ra, Nu grow in time 

Dimensionally, because                  and 
                  one has    u  βgθ

0
t

   h  βgθ
0
t2

   
Re  Pr−1/2 Ra1/2

Nu  Pr1/2 Ra1/2

ultimate state regime 
[Kraichnan, 1962] 

256x256x1024 (☐) 512x512x2048 ()  1024x1024x2048 (Δ)  

Ra1/2 

Re 

Nu 



Viscoleastic Rayleigh-Taylor turbulence 
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Numerical model: Oldroyd-B model + temperature within Boussinesq approximation 

small Atwood: no direct effect of temperature fluctuations on polymers 



Coil-stretch transition in RT turbulence 

Lumley scale: τp/τ(rL)=1  

Kolmogorov timescale decreases in time 

   
τ
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Weissenberg number increases and 
coil-stretch transition at time 
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For t>Ttr:

 * linear growth of mean elongation

    (from energy balance)

 * self-similar evolution of the right tail of

    pdf (viscoelastic effect: polymers reduce

    velocity gradients) 

τp=10 



Two effects induced by polymers: 
- faster thermal plumes: acceleration of mixing layer growth (“drag” reduction) 
- small scale turbulence reduced: heat transfer enhancement 

Newtonian viscoelastic 

temperature field 



Accelerated growth 
of the mixing layer 

When polymers are stretched 
mixing layer grows faster than 
in the Newtonian case (up to 
50% larger at final time). 

Consistent with the speed-up of 
RT instability (linear analysis) 
G.Boffetta, A.Mazzino, S.Musacchio, 
L.Vozella, JFM 643 (2010)  

Assuming a linear temperature profile: 

Kinetic energy of large scale plumes: 
  
ΔP = P(0) − P(t) ≈ 1
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Drag coefficient 
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Interpretation in terms of drag reduction 

where   h(t) = αAgt2

30% reduction of drag coefficient f 



Energy spectra 

τp 

τp 

more energy at large scales (mixing layer accelerates) 
less energy at small scales (reduced mixing)  

consistent with what observed in homogeneous-isotropic turbulence 



Energy balance and asymptotic behavior 
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Energy balance 
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At variance with Newtonian case 
not all terms in energy balance  
can have same temporal scaling 

We observe that 

  Σ ≈ K ≈ t2

and elastic dissipation dominates 
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Heat transfer enhancement 

Nu is larger in presence 
of polymers. 

Nu increases more than Ra 
therefore  

  Nu = C Pr1/2 Ra1/2

τp 

τp=0

τp=1

τp=2

τp=10


C increases with polymers 
(about 50%) 



The origin of heat transfer enhancement ? 

  
Nu = 1

kθ
0

hw
rms

T
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C (w,T )

(30% more) τp=0

τp=1

τp=2


  
C (w,T ) =

wT

w
rms

T
rms

faster thermal plumes 
(h and w), reduced 
turbulent mixing (T) 
and stronger correlation 
between T and w 
(more coherent plumes) 

Effects of polymers: 30% increase of h, 15% increase for wrms, 
10% increase for Trms, 20% increase for Cwt 


