Polymer Heat Transport Enhancement in Thermal Convection: the Case of Rayleigh-Taylor Turbulence

Guido Boffetta (Torino) Andrea Mazzino (Genova), Stefano Musacchio (Nice) Lara Vozella (Genova)

Outline

- * Viscoelastic models (why numerical simulation can be useful)
- * Rayleigh-Taylor turbulence
- * Viscoelastic RT turbulence

The addition of long-chain polymers has dramatic effects on flowing fluids

Numerical simulations of drag reduction

Turbulence drag reduction has been observed in numerical simulations of channel flow based on viscoelastic models of polymer solution (Oldroyd-B, FENE-P) [Sureshkumar et al, POF 9, (1997), Ptasinski et al, JFM 490 (2003), De Angelis et al, PRE 67 (2003)]

FIG. 3. The rms velocity fluctuations as a function of the distance from the wall. Curves 1N, 2N and 3N show the streamwise, the wall-normal and the spanwise components for the Newtonian flow, respectively; curves 1V, 2V and 3V show corresponding data for the viscoelastic flow.

Modeling polymers: Oldroyd-B

Dumbbell: 2 massless beads connected by a spring one relaxation time no polymer-polymer interaction always smaller than Kolmogorov scale

$$\frac{d\mathbf{R}}{dt} = \left(\mathbf{R} \cdot \nabla\right) \mathbf{u} - \frac{1}{\tau} \mathbf{R} + \left(2R_0^2 / \tau\right)^{1/2} \xi$$

nK $R^2 \tau$

2μ

From single polymer to elastic field Polymer conformation tensor $\sigma_{ij} = R_0^{-2} \langle R_i R_j \rangle$

R

 $\tau = f / K_{0}$ $R_0^2 = kT / K_0$ f - friction coef K₀ - elastic modulus

$$\Theta_{t}\sigma + (\mathbf{u}\cdot\nabla)\sigma = (\nabla\mathbf{u})'\cdot\sigma + \sigma\cdot(\nabla\mathbf{u}) - 2\frac{\sigma-1}{\sigma}$$

Feedback on the flow: elastic stress tensor $T_{ij}^{P} = nK_{0} \langle R_{i}R_{j} \rangle = nK_{0}R_{0}^{2}\sigma_{ij}$

$$\partial_{\tau} \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\frac{\nabla p}{\rho} + v\Delta \mathbf{u} + \mathbf{f} + \frac{2\eta v}{\tau} \nabla \cdot \sigma$$

zero-shear contribution to total viscosity: $\mu(1+\eta)$

[Boffetta, Celani, Mazzino, PRE 71 (2005)] Drag reduction in the absence of boundaries Numerical simulations of viscoelastic Kolmogorov flow show DR phenomenology Navier-Stokes forced with F=(Fcos(kz),0,0), mean velocity: <u>=(Ucos(kz),0,0) Drag coefficient $f = \frac{FL}{U^2}$ 0.18 n=0 (newtonian) El=0.005, Sc=0.016, n=0 0.16 El=0.010, Sc=0.016, n=0 0.14 El=0.019, Sc=0.005, n=1 El=0.019, Sc=0.008, n=0 Laminar: $F=vU/L^2$ and $f=-\frac{1}{2}$ 0.12 El=0.019, Sc=0.013, n=0 El=0.019, Sc=0.016, n=0 Re 0.1 El=0.019, Sc=0.016, n=0 El=0.019, Sc=0.016, n=0 0.08 El=0.019, Sc=0.016, n=1 El=0.019, Sc=0.031, η=0 $\pi/2$ 0.06 El=0.031, Sc=0.016, n=0 El=0.031, Sc=0.016, n=0 0.04 El=0.031, Sc=0.016, n=0 viscoelastic 0.02 100 200 300 400 500 Re = UL/vnewtonian zL $2\eta v_0 \tau^{-1} < \sigma_{xz} >$ 0 π/ 2 ۰ ۲

0

-π/2

2

3

2

mean velocity increases Reynolds stress decreases

Collapse of drag coefficients at different elasticity

```
Lumley's time criterion: onset of drag reduction when \nabla u \sim \tau^{-1}
```

 $\text{Re}_{c} \approx El^{-2/3}$

Balkovsky, Fouxon, Lebedev, PRE 64 (2001)

"Drag reduction" in absence of mean flow

Effects of polymers on homogeneous-isotropic turbulence:

- * reduction of turbulent fluctuations below the Lumley scale $\ell_{1} = (\epsilon \tau)^{1/2}$
- * steeper energy spectrum at small scales
- * reduced viscous dissipation
- * increased turbulent fluctuations at large scale (not always)

[De Angelis et al, JFM **531** (2005), Liberzon et al, POF **17** (2005), Berti et al, EPL **76** (2006), Ouelette et al, JFM **629** (2009)]

simulation

experiment

20

15

Is there any effect of polymers on turbulent convection?

Does polymers make heat transfer more efficient?

Not clear:

Ahlers and Nikolaenko, Rayleigh-Benard experiment: negative [PRL 104, 034503 (2010)]

Benzi et al, shell model and mean temperature gradient: positive [PRL 104, 024502 (2010)]

Numerical study of the problem in Rayleigh-Taylor turbulence

Boffetta, Mazzino, Musacchio and Vozella JFM **643**, 127 (2010) PRL **104**, 184501 (2010) PRE **83**, 056318 (2011).

Rayleigh-Taylor setup and instability

Instability on the interface of two fluids of different densities with relative acceleration.

Single fluid with temperature jump: $\theta_0 = T_2 - T_1$

Atwood: $A \equiv \frac{\rho_1 - \rho_2}{\rho_1 + \rho_2} \simeq \frac{1}{2} \beta \theta_0$ (β : thermal expansion coef.)

For small A the Boussinesq approximation for an incompressible fluid holds:

 $\begin{cases} \partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + v\Delta \mathbf{u} - \beta \mathbf{g}T \\ \partial_t T + \mathbf{u} \cdot \nabla T = \kappa \Delta T \end{cases}$

Time evolving turbulence with initial conditions:

 $\begin{cases} \mathbf{u}(\mathbf{x},0) = 0 \\ T(\mathbf{x},0) = -(1/2)\theta_0 \operatorname{sgn}(z) \end{cases}$

Phenomenology of RT turbulence

Energy balance:

turbulent kinetic energy $E=(1/2) < u^2$ produced from potential energy $P=-\beta g < zT$ $\varepsilon = v \langle (\nabla u)^2 \rangle$

$$\frac{dE}{dt} = \beta g \left\langle wT \right\rangle - \varepsilon = -\frac{dP}{dt} - \varepsilon$$

Dimensional balance:

$$\frac{du_{rms}^2}{dt} \simeq \beta g \theta_0 u_{rms}$$

Large scale velocity fluctuations u_{rms}(t)≈Agt

Turbulent mizing layer of width $h(t) = h(t) \approx Agt^2$

Kinetic energy pumped in the system at a rate

$$\varepsilon_{I} \simeq \frac{u^{3}}{h} \simeq (Ag)^{2}t$$

-> time evolving turbulence

Small scale theory of RT turbulence

Ansatz: buoyancy negligible at small scales

M. Chertkov, PRL **91** (2003) $\begin{cases} \partial_{t} \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + v\Delta \mathbf{u} - \beta \mathbf{g} T \\ \partial_{t} T + \mathbf{u} \cdot \nabla T = \kappa \Delta T \end{cases}$

 $\beta g \delta_r T \ll \frac{\delta_r u^2}{r}$ (small Richardson number)

passive temperature in turbulent flow with time dependent flux

 $\varepsilon(t) \approx (Ag)^2 t$

small scale fluctuations follow Kolmogorov-Obukhov scaling

$$\delta_{r} u(t) \simeq u_{L}(t) \left(\frac{r}{h(t)}\right)^{1/3} \simeq (\beta g \theta_{0})^{2/3} t^{1/3} r^{1/3}$$
$$\delta_{r} T(t) \simeq \theta_{0} \left(\frac{r}{h(t)}\right)^{1/3} \simeq \frac{\theta_{0}}{(\beta g \theta_{0})^{1/3}} t^{-2/3} r^{1/3}$$

1/3

consistency:

 $Ri = \frac{\beta g \delta_r T(t)}{\delta u^2(t) / r} \simeq \left(\frac{r}{L(t)}\right)^{2/3} \to 0$

Inconsistent in 2D where the energy flows to large scale (buoyancy dominated)

RT turbulence in 2D

Buoyancy balances inertia at all scales

 $\beta g \delta_r T \approx \frac{\delta_r u^2}{r}$ (Ri=O(1))

direct cascade of temperature fluctuations $\varepsilon_{T}(t) \approx \frac{\delta_{r} u \delta_{r} T^{2}}{r} \approx \frac{\delta_{r} u^{5}}{r^{3} (\beta g)^{2}} \approx \frac{u_{L}^{5}}{h^{3} (\beta g)^{2}}$

small scale fluctuations follow Bolgiano scaling

$$\delta_r u(t) \simeq u_L(t) \left(\frac{r}{h(t)}\right)^{3/5} \simeq (\beta g \theta_0)^{2/5} t^{-1/5} r^{3/5}$$

$$\delta_r T(t) \simeq \theta_0 \left(\frac{r}{h(t)}\right)^{1/5} \simeq \frac{\theta_0}{(\beta g \theta_0)^{1/5}} t^{-2/5} r^{1/5}$$

A.Celani, A.Mazzino, L.Vozella, PRL 96 (2006)

M. Chertkov, PRL **91** (2003) $\begin{cases} \partial_{t} \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + v\Delta \mathbf{u} - \beta \mathbf{g} T \\ \partial_{t} T + \mathbf{u} \cdot \nabla T = \kappa \Delta T \end{cases}$

Energy flux

Inertial range of scale-independent kinetic energy flux $\Pi(k,t)$

$$\varepsilon = \Pi(k,t) \approx \frac{u_{L}^{3}}{h} \approx t$$

RT as an adiabatically evolving turbulence (small scales adapt to large scale variations)

Spectra collapse (Kolmogorov scaling)

Collapse of kinetic energy and temperature variance spectra at $t/\tau=1.0$, 1.4, 1.8, 3.8

Insets: time evolution of kinetic energy dissipation $\varepsilon \approx t$ and temperature variance dissipation $\varepsilon_T \approx t^{-1}$

Spatial-temporal scaling in agreement with dimensional theory

 $E(k,t) \simeq t^{2/3} k^{-5/3}$ $E_{T}(k,t) \simeq t^{-4/3} k^{-5/3}$

A remark on the evolution of the spectrum

Time dependent input $\varepsilon_{I}(t)$ $\frac{dE}{dt} = \varepsilon_{I}(t) - \varepsilon_{v}$

Adiabatic evolution of a Kolmogorov spectrum $E(k,t) = C\varepsilon^{2/3}(t)k^{-5/3}$ is compatible with energy balance only if the integral scale L evolves according to

 $\frac{d}{dt}(L\varepsilon)^{2/3}=\varepsilon$

In RT turbulence

$$\varepsilon_{I}(t) = -\frac{dP}{dt} \simeq t$$

which gives

 $L(t)\simeq t^2 \propto h(t)$

Velocity correlation scale L(t) vs mixing layer width h(t)

Mixing efficiency: turbulent heat transport

In Rayleigh-Taylor turbulence dimensionless numbers Re, Ra, Nu grow in time

Dimensionally, because $u \simeq \beta g \theta_0 t$ and $h \simeq \beta g \theta_0 t^2$ one has

 $Re \simeq Pr^{-1/2} Ra^{1/2}$ $Nu \simeq Pr^{1/2} Ra^{1/2}$

ultimate state regime [Kraichnan, 1962]

Viscoleastic Rayleigh-Taylor turbulence

Numerical model: Oldroyd-B model + temperature within Boussinesq approximation

$$\begin{aligned} \partial_{t} \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} &= -\nabla p + v \Delta \mathbf{u} - \beta \mathbf{g} T + (2v\eta / \tau_{p}) \nabla \cdot \sigma \\ \partial_{t} T + \mathbf{u} \cdot \nabla T &= \kappa \Delta T \\ \partial_{t} \sigma + \mathbf{u} \cdot \nabla \sigma &= (\nabla \mathbf{u})^{T} \cdot \sigma + \sigma \cdot (\nabla \mathbf{u}) - (2 / \tau_{p})(\sigma - \mathbf{1}) \end{aligned}$$

small Atwood: no direct effect of temperature fluctuations on polymers

Run	$N_{x,y}$	N_z	$L_{x,y}$	L_z	θ_0	βg	$\nu = \kappa$	κ_p	γ	τ_p
N	512	1024	2π	4π	1	0.5	3×10^{-4}	_	_	_
Α	512	1024	2π	4π	1	0.5	3×10^{-4}	1×10^{-3}	0.2	1
В	512	1024	2π	4π	1	0.5	3×10^{-4}	1×10^{-3}	0.2	2
B2	512	1024	2π	4π	1	0.5	3×10^{-4}	3×10^{-3}	0.2	2
С	512	1024	2π	4π	1	0.5	3×10^{-4}	1×10^{-3}	0.2	10

TABLE I. Parameters of the simulations.

Coil-stretch transition in RT turbulence

Lumley scale: $\tau_p/\tau(r_L)=1$

For t>T_{tr}:

- * linear growth of mean elongation (from energy balance)
- * self-similar evolution of the right tail of pdf (viscoelastic effect: polymers reduce velocity gradients)

Kolmogorov timescale decreases in time

 $\tau_{\eta} \simeq v^{1/2} (Ag)^{-1} t^{-1/2}$

Weissenberg number increases and coil-stretch transition at time

 $\simeq \overline{(\tau Ag)^2}$

Two effects induced by polymers:

- faster thermal plumes: acceleration of mixing layer growth ("drag" reduction)
- small scale turbulence reduced: heat transfer enhancement

Accelerated growth of the mixing layer

When polymers are stretched mixing layer grows faster than in the Newtonian case (up to 50% larger at final time).

Consistent with the speed-up of RT instability (linear analysis) G.Boffetta, A.Mazzino, S.Musacchio, L.Vozella, JFM **643** (2010)

Interpretation in terms of drag reduction Assuming a linear temperature profile: $\Delta P = P(0) - P(t) \approx \frac{1}{6} Agh(t)$ Kinetic energy of large scale plumes: $K \approx \frac{1}{2}\dot{h}^2(t)$ Drag coefficient $f = \frac{\Delta P}{K} = \frac{1}{3}\frac{h}{\dot{h}^2} = \frac{1}{12\alpha}$ where $h(t) = \alpha Agt^2$ 30% reduction of drag coefficient f

more energy at large scales (mixing layer accelerates) less energy at small scales (reduced mixing)

consistent with what observed in homogeneous-isotropic turbulence

Energy balance and asymptotic behavior

$$E = P + K + \Sigma = -\beta g < zT > +\frac{1}{2} < u^2 > +\frac{v\eta}{\tau} [\langle tr(\sigma) \rangle -3]$$

Energy balance

$$\frac{dP}{dt} = \beta g < wT >= \frac{d}{dt} \frac{1}{2} < u^2 > + \frac{d}{dt} \frac{v\eta}{\tau} < tr(\sigma) > -\varepsilon_v - \varepsilon_{\Sigma}$$

with $\varepsilon_{\Sigma} = \frac{2\nu\eta}{\tau^2} < tr(\sigma) >$

At variance with Newtonian case not all terms in energy balance can have same temporal scaling

We observe that

 $\Sigma \approx K \approx t^2$

and elastic dissipation dominates

 $\frac{\varepsilon_{\Sigma}}{\varepsilon_{V}} \approx t$

Energy balance and asymptotic behavior

$$E = P + K + \Sigma = -\beta g < zT > +\frac{1}{2} < u^2 > +\frac{v\eta}{\tau} [\langle tr(\sigma) \rangle -3]$$

Energy balance

$$\frac{dP}{dt} = \beta g < wT >= \frac{d}{dt} \frac{1}{2} < u^2 > + \frac{d}{dt} \frac{v\eta}{\tau} < tr(\sigma) > -\varepsilon_v - \varepsilon_{\Sigma}$$
with $\varepsilon_{\Sigma} = \frac{2v\eta}{2} < tr(\sigma) >$

At variance with Newtonian case not all terms in energy balance can have same temporal scaling

We observe that

 $\Sigma \approx \mathbf{K} \approx \mathbf{t}^2$

and elastic dissipation dominates

 $\frac{\varepsilon_{\Sigma}}{\Sigma} \approx t$

 \mathcal{E}_{ν}

 10^{0} 5^{0} 10^{-1} 10^{-2} 0.5 1 2 t/τ

Heat transfer enhancement

Nu is larger in presence of polymers.

Nu increases more than Ra therefore

 $Nu = C \Pr^{1/2} Ra^{1/2}$

C increases with polymers (about 50%)

 $\tau_p = 0$

 $\tau_{p}=1$ $\tau_{p}=2$ $\tau_{p}=10$

The origin of heat transfer enhancement?

 $Nu = \frac{1}{k\theta_0} hw_{rms} T_{rms} C(w,T)$

faster thermal plumes (h and w), reduced turbulent mixing (T) and stronger correlation between T and w (more coherent plumes)

C(W,T)

 $\tau_p = 0$

 $\tau_p = 1$ $\tau_p = 2$

Effects of polymers: 30% increase of h, 15% increase for w_{rms} , 10% increase for T_{rms} , 20% increase for C_{wt}